Lectures on Effective Field Theory

Eric Braaten

July 12, 2008

Problem 1

Consider fermionic atoms with a single spin state. Write down the most general Galilean-invariant effective lagrangian that can contribute to scattering through 2nd order in the momentum expansion. Use the anticommuting character of the fermionic field $\psi(\vec{r}, t)$ to show that the only 2-body interaction term at this order that does not vanish has the form

$$
\mathcal{L}_{\mathrm{int}}=-\frac{g_{P}}{4 m} \psi^{\dagger} \stackrel{\leftrightarrow}{\nabla} \psi^{\dagger} \cdot \psi \stackrel{\leftrightarrow}{\nabla} \psi,
$$

where $\stackrel{\leftrightarrow}{\nabla} \equiv \vec{\nabla}-\overleftarrow{\nabla}$. Show that the resulting T-matrix element for scattering of atoms with momenta $+\vec{p}$ and $-\vec{p}$ into atoms with momenta $+\vec{p}^{\prime}$ and $-\vec{p}^{\prime}$ is

$$
\mathcal{T}=\frac{4 g_{P}}{m} \vec{p} \cdot \vec{p}^{\prime}
$$

Show that this interaction term gives rise to P -wave scattering with differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{g_{P}^{2}}{\pi^{2}} p^{4} \cos ^{2} \theta
$$

Problem 2

Consider bosonic atoms with a single spin state. The most general Galileaninvariant effective lagrangian, including all terms that can contribute to scattering through 2 nd order in the momentum expansion, is $\mathcal{L}_{1}+\mathcal{L}_{2}$, where

$$
\begin{aligned}
\mathcal{L}_{1}= & \frac{1}{2}\left[\psi^{\dagger}\left(i \frac{\partial}{\partial t}+\nabla^{2} / 2 m\right) \psi+\text { h.c. }\right] \\
\mathcal{L}_{2}= & -\frac{g_{0}}{4 m} \psi^{\dagger} \psi^{\dagger} \psi \psi \\
& +\frac{h_{0}}{4 m}\left[\psi^{\dagger} \psi^{\dagger} \psi \stackrel{\leftrightarrow}{\nabla}\right.
\end{aligned}
$$

The tree-level amplitude for the scattering of atoms with energy-momenta $\left(E_{1}, \overrightarrow{p_{1}}\right)$ and $\left.E_{2}, \overrightarrow{p_{2}}\right)$ into atoms with energy-momenta ($\left.E_{1}^{\prime}, \vec{p}_{1}^{\prime}\right)$ and $\left.E_{2}^{\prime}, \vec{p}_{2}^{\prime}\right)$ satisfying energy-momentum conservation is

$$
\begin{aligned}
& -i \frac{g_{0}}{m}-i \frac{h_{0}}{m}\left[\left(\vec{p}_{1}-\vec{p}_{2}\right)^{2}+\left(\vec{p}_{1}^{\prime}-\vec{p}_{2}^{\prime}\right)^{2}\right] \\
& -i h_{0}^{\prime}\left[\left(E_{1}-p_{1}^{2} / 2 m\right)+\left(E_{2}-p_{2}^{2} / 2 m\right)+\left(E_{1}^{\prime}-p_{1}^{\prime 2} / 2 m\right)+\left(E_{2}^{\prime}-{p_{2}^{\prime}}^{2} / 2 m\right)\right] .
\end{aligned}
$$

The T-matrix element for this scattering process is obtained by setting the external lines on their energy shells.
A. Note that the h_{0}^{\prime} term does not contribute to the T-matrix element. Identify the field redefinition that can eliminate the h_{0}^{\prime} term.
B. Calculate the one-loop amplitude for the propagation of a pair of atoms between successive contact interactions with g_{0} vertices. Evaluate the diagram in the center-of-momentum frame with an ultraviolet momentum cutoff Λ. Use Galilean invariance to extend the result to an arbitrary frame in which the pair of atoms have total energy-momentum (E, \vec{P}) :

$$
-i \frac{m}{4 \pi^{2}}\left(\Lambda-\frac{\pi}{2} \sqrt{-m\left(E-P^{2} /(4 m)+i \epsilon\right)}\right) .
$$

C. Calculate the T-matrix element for the scattering of atoms with momenta $+\vec{p}$ and $-\vec{p}$ into atoms with momenta $+\vec{p}^{\prime}$ and $-\vec{p}^{\prime}$ to second order in the momentum expansion. Include the tree diagrams, the one-loop diagram with two g_{0} vertices, and the two-loop diagram with three g_{0} vertices.
D. The only contributions to the T-matrix element through 2 nd order in the momentum expansion come from the S-wave channel. Unitarity requires the S -wave contribution to have the form

$$
\mathcal{T}=\frac{8 \pi}{m} \frac{1}{p \cot \delta(p)-i p},
$$

where $\delta(p)$ is the S-wave phase shift. The low-momentum expansion of the S-wave phase shift is conventionally expressed in the form

$$
p \cot \delta(p)=-1 / a+\frac{1}{2} r_{s} p^{2}+\ldots
$$

where a is the scattering length and r_{s} is the effective range. Expand the Swave T-matrix element to second order in p. Show that the T-matrix element calculated from diagrams is consistent with this expansion. Determine the scattering length to 3 rd order in g_{0} and the effective range to leading order:

$$
\begin{aligned}
a & =\frac{g_{0}}{8 \pi}\left[1-\frac{g_{0} \Lambda}{4 \pi^{2}}+\left(\frac{g_{0} \Lambda}{4 \pi^{2}}\right)^{2}\right] \\
r_{s} & =\frac{128 \pi h_{0}}{g_{0}^{2}}
\end{aligned}
$$

