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SU(3) lattice gauge fields
Gauge transformations
P(z) = AMz)(z),

A(z) € SU(3)
Covariant derivative (continuum theory)

Dy = (0, + Ap)v

Ay — AN+ A9 AT

spaces at infinitesimally separated points
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The gauge potential provides a connection between the colour



On the lattice

0u(z) = - [l +ai) — (a)}

1 . .
— ~ (Al +ap)p(e + i) — A@)(e)}
The colour connection is here provided by
Uz,u) €SUB), Ul p) — AMa)U(z, p)A(z + aft) ™
=> covariant difference operator
1 .
V() = (U, (e + o) — ()}

Viu(x) = M) V()
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Similarly

V(@

——{w

Ux — afio )" o(a — ap)}
=> gauge-covariant Wilson—Dirac operator

+V,)—avViv,}

U(z,p) € SU(3)

An SU(3) lattice gauge field is an assignment of a matrix

x x+afl
to every link (z,x + aft) on the lattice
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Wilson lines

May build gauge-covariant products x+afi+al

X x+afl
Uz, )U(z + app — av,v) ™!
x+afi-a¥
x+aV| | x+afi+al
Uz, 1)U (x + aji, v)U (x + a, )~ U (,v) " L]
x| [ x+all

“plaquette loop”
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More generally, for any lattice curve C

U(z,y;C) = ordered product of U's

Ul(z,y;C) — A(z)U(x,y;C)A(y) ™!

In particular, for any closed curve, the Wilson loop
W(C) = tr{U(z,2:C)}

is gauge-invariant and independent of x
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Classical continuum limit

In which way can a continuum gauge field be approximated
by a lattice gauge field?
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First attempt

Uz, 1) = exp{ad,(z)} = 1+ aA,(z) + O(a?)

L {1+ ady(@)d(@ + ap) — 9(x)} + O(a)

a

= (O + Ap(z))¥(z) + O(a)

= Vuy(z) =

However, this choice of U is not gauge-covariant
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A more educated choice is
1

U(z,p) =T exp {a/ dt Ay (z+ (1 - t)aﬂ)}
0

In this case

*x Uz, p) =1+ ad,(z) + O(a?) as before
* the mapping A — U is gauge-covariant

* U(z,y;C) = continuum Wilson line, for all lattice curves C

& lattice gauge field = set of Wilson-line elements
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Gauge-invariant local lattice fields

Examples of quark bilinear fields
va E’YST%D’ EQ’Yﬁﬂpv

Y.V, PV, V1,

Xy

“Plaquette” and "rectangle” fields

n

Py (xz) =Retr{l — U(x,z;0)},

Ry(xz) = Retr{l — U(x,z; )}

] = A2 N Ge
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In the classical continuum limit

O(x) o Z a" Oy ()

n>0

On(x) : gauge-invariant polynomial in ¥(z), ¥ (z), A, (x)

and their derivatives of dimension n
For example
Pw/(x) = _%a4tr{FuV(x)FW($)}

— 3@t { Fu (2)(Dpy + Do) Fpu ()} + ...

Ry () = —2a*tr{F, (x) Fu(x)} + . ..
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Remarks

* Lattice fields can be classified by their leading
behaviour in the classical continuum limit

* Any gauge-invariant, local continuum field can be
represented on the lattice

* However, the representation is not unique
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Lattice QCD action

Wilson action (1974)

S =5qg+ Sk

T p,v

Saq = g% Z Z Py (x), P,,: plaquette field
0
S =a* Y P(a)(Dy + M)i(x),

Dy,: Wilson-Dirac operator

M quark mass matrix
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However, there are alternative lattice actions, e.g.

2 Zz {coPu(z) + 1Ry ()} co+4cp =1

T p,v

Symanzik 1980, Weisz 1983, M.L. & Weisz 1985, Iwasaki 1985, .. .

e The differences are of order aP in the classical
continuum limit

e Additional terms may be tuned so as to accelerate
the convergence to the continuum limit

= “Symanzik improvement programme”
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QCD in finite volume

Consider T x L3 box with periodic b.c.

Ay () =1 = Ap(x)g,—0 (k=1,2,3) L
Ap(@) a0t = Q) Ay (@) a0 2@) " + )5, 2(@)
where Q(x) is a periodic gauge function

The mapping
Q: T3 — SU(3)

may have a non-zero winding number () = cannot be “gauged away"
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@ is a gauge-invariant property of the gauge field

17 t
Q= 1672 / dzo / & €upotr{ Fuu (2) Fpo () }
0 0

=0,+1,42, ...

“Topological charge” or “instanton number”

=> in finite volume, the field space divides into disconnected sectors
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Lattice gauge fields in finite volume

The independent field variables are

U(z,p), 0<z0<T-—a 1
0<zpr<L-—a

Elsewhere the field is determined through

Uz + Lk, p) = Uz, p)

Uz +T0, 1) = Qx)U(z, 1)z + ajn) " J

=> classical continuum limit works out as before

On the lattice, the b.c. are not a property of the field space
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Moreover, by applying the gauge transformation
Uz, p) — AU (z, ) Az + ajp) ™!
Ax) = Q(:l:)*txo/TJ
we may “gauge away’ Q(x)
=> no need to consider b.c. “up to gauge transformations”

= We may impose ordinary periodic b.c. from the beginning and
nevertheless have all topological sectors included in the theory
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Somewhat puzzling may be the fact that the space of lattice fields
F=28u(3)*™",
is connected!

N = # of lattice points

action ~ 1/a* —
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