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Problem 3

The Lagrangian for a weakly-interacting Bose gas consisting of atoms with
scattering length a and number density n is

L = 1
2

(
ψ∗i∂∂tψ + h.c.

)
− 1

2m
∇ψ∗ · ∇ψ − V ,

V = −µψ∗ψ +
2πa

m
(ψ∗ψ)2.

A. Show that if a > 0, the potential energy density V is minimized by a
nonzero value of ψ that corresponds to a number density given by

n = ψ∗ψ =
m

4πa
µ.

B. Expand the field around its vacuum expectation value by expressing it in
the form

ψ(~r, t) =
√
n+ ξ(~r, t) + iη(~r, t),

where ξ and η are real-valued fields. Show that the quadratic terms in the
Lagrangian can be reduced to the form

L2 = i
(
ξη̇ − ηξ̇

)
− 1

2m
(∇ξ · ∇ξ +∇η · ∇η)− 2µξ2.

C. Find the dispersion relation ω(k) for the quasiparticles by expressing L2

in terms of a 2-component field
(

ξ
η

)
, finding the matrix equation of motion,
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and looking for solutions of the form(
ξ(~r, t)

η(~r, t)

)
=

(
ξ0
η0

)
exp(i~k · ~r − iωt).

Show that the dispersion relation is

ω(k) =
k
√
k2 + k2

B

2m
,

where the Bogoliubov momentum is kB =
√

16πan.

D. The leading terms in the effective Lagrangian for the Goldstone mode
have the form

Leff = 1
2φ̇

2 − 1
2v

2∇φ · ∇φ.
Find the dispersion relation for the Goldstone mode. Determine the param-
eter v2 by matching with the dispersion relation for the weakly-interacting
Bose gas.
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Problem 4

Consider a weakly-interacting Fermi gas consisting of atoms with two spin
states and equal number densities n1 = n2. The equal number densities can
arise from a common chemical potential µ = k2

F/(2m), where kF is the Fermi
momentum. The Lagrangian for the fermion fields is

L =
∑

σ

(
1
2

[
ψ∗σi

∂
∂tψσ + h.c.

]
− 1

2m
∇ψ∗σ · ∇ψσ + µψ∗σψσ

)
−4πa

m
ψ∗1ψ

∗
2ψ2ψ1,

where a is the scattering length for a pair of fermions in the spin states 1
and 2. The Lagrangian is invariant under the U(1) symmetry corresponding
to multiplying both fields by a common phase. The propagator for either
fermion field is

iD(ω, k : kF ) =
i θ(k − kF )

ω − k2/2m+ iε
+

i θ(kF − k)

ω − k2/2m− iε
,

which reveals that the propagating degrees of freedom are atoms above the
Fermi surface and holes below the Fermi surface.

A. Verify that the number density of fermions in the spin state 1 is equal to
n1 = k3

F/(6π
2) by evaluating the one-loop diagram for 〈ψ†1ψ1〉 and subtracting

the number density of the vacuum, which is defined by kF = 0:

n1 = (−1)

∫
dω

2π

∫
d3k

(2π)3 [iD(ω, k; kF )− iD(ω, k; 0)] .

B. Use the thermodynamic relation dP = (n1 + n2)dµ, to show that the
pressure P (which is equal to the thermodynamic potential) is given by

P (µ) =
1

15π2m
(2mµ)5/2.

C. If the scattering length a is negative, Cooper pairing between atoms in
the spin states 1 and 2 near the Fermi surface breaks the U(1) symmetry
spontaneously and leads to a nonzero expectation value for the operator ψ1ψ2.
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The field for the resulting Goldstone boson can be identified with the phase
of this composite operator:

ψ1ψ2(~r, t) = 〈ψ1ψ2〉 exp[2iφ(~r, t)].

Deduce the Galilean transformation of the Goldstone field from the Galilean
transformations of the fermion fields:

ψσ(~r, t) −→ exp(im~v · ~r − i12mv
2t)ψσ(~r − ~v t, t).

D. Use the Galilean transformation of the Goldstone field to deduce that
a time derivative of φ in the effective lagrangian can only appear in the
combination

φ̇+
1

2m
∇φ · ∇φ.

E. The common chemical potential µ can be regarded as a constant back-
ground gauge field A0 associated with a U(1) gauge symmetry:

ψσ(~r, t) −→ exp[iθ(~r, t)]ψ(~r, t).

Determine the U(1) gauge transformation of the Goldstone field. Use it
to deduce that φ̇ and µ can appear in the effective lagrangian only in the
combination φ̇− µ.

F. The above results imply that the leading terms in the effective lagrangian
for the Goldstone bosons have the form

Leff = P (X), X = µ− φ̇− 1

2m
∇φ · ∇φ,

where P (µ) is the pressure as a function of the chemical potential. Expand
the expression for the pressure to second order around X = µ to deduce
that the Goldstone bosons associated with Cooper pairing must have velocity
v = kF/(

√
3m).
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