Introduction to lattice QCD (4)

Martin Lüscher, CERN Physics Department

School on Flavour Physics, Benasque, 13.-25. July 2008

How large is the lattice spacing?

Consider two-flavour QCD with quark mass matrix

$$M=\left(egin{array}{cc} m_0 & 0 \\ 0 & m_0 \end{array}
ight), \qquad m_0: \ {
m bare \ mass \ of \ the } \ u \ {
m and } \ d \ {
m quark}$$

The parameters in the lattice action are then

$$g_0,\,am_0$$
 and a
$$\uparrow$$
 cancels out after substituting $\psi\to a^{-3/2}\psi,\,\overline{\psi}\to a^{-3/2}\overline{\psi}$

⇒ the lattice spacing is a redundant parameter

Now suppose the pion mass M_{π} is computed at some g_0, am_0

$$a^3 \sum_{\boldsymbol{x}} \langle (\bar{u}\gamma_5 d)(x)(\bar{d}\gamma_5 u)(0) \rangle \underset{x_0 \to \infty}{\sim} e^{-M_{\pi}x_0}$$

Since $x_0 = na$, n = 1, 2, 3, ..., one obtains aM_{π} not M_{π}

Similarly for the proton mass

$$\psi_p = \epsilon_{\alpha\beta\gamma} (d_{\alpha}^T C \gamma_5 u_{\beta}) u_{\gamma}, \qquad a^3 \sum_{\boldsymbol{x}} \langle \psi_p(\boldsymbol{x}) \overline{\psi}_p(0) \rangle \underset{x_0 \to \infty}{\sim} e^{-M_p x_0}$$

charge conjugation matrix

The computation thus yields

$$aM_{\pi} = \Phi_{\pi}(g_0, am_0)$$

$$aM_p = \Phi_p(g_0, am_0)$$

Going to the continuum limit

$$M_{\pi} \ll a^{-1}, \qquad M_{p} \ll a^{-1}$$

amounts to taking $g_0, am_0 \rightarrow 0$

(QCD is "asymptotically free")

Eventually we are only interested in the trajectory where

 $M_{\pi}/M_{p}=$ physical value \implies fixes am_{0} as a function of g_{0}

Along this curve, the lattice spacing is then determined by

- setting $M_p = 938 \text{ MeV}$
- and calculating

$$a = \frac{aM_p}{M_p} = 0.21 \times aM_p \text{ fm}$$

Note: other physical scales $(F_{\pi}, M_{\varrho}, ...)$ can be used here $\Rightarrow a[\mathrm{fm}]$ is slightly convention dependent!

Principal tools in LQCD

1. Strong-coupling expansion

Substitute

$$\psi \rightarrow a^{-2} m_0^{-1/2} \psi, \quad \overline{\psi} \rightarrow a^{-2} m_0^{-1/2} \overline{\psi}$$

and let $m_0, g_0 \to \infty$

$$S = \sum_{x} \left\{ \overline{\psi}(x)\psi(x) + \frac{1}{m_0} \overline{\psi}(x) D_{\mathbf{w}}\psi(x) + \frac{1}{g_0^2} \sum_{\mu,\nu} P_{\mu\nu}(x) \right\}$$

- \Rightarrow the field variables at different points x decouple
- \Rightarrow theory is soluble in powers of $1/m_0$ and $1/g_0^2$

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q ()

At $m_0 = \infty$, for example,

⇒ quark confinement

However, this limit is unphysical since

$$\sigma = \frac{1}{a^2} \ln(g_0^2) + \dots$$

$$M_{\pi} = O(1/a), \quad M_{p} = O(1/a), \quad \text{etc}$$

2. Numerical simulations

- = Monte-Carlo integration of the (bosonized) functional integral
 - Choose a finite lattice (64×32^3 , for example)
 - Generate a representative ensemble of gauge fields $\{U_1,U_2,\ldots,U_N\}$ using a Markov process

•
$$\Rightarrow \langle \mathcal{O} \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[U_k] + \mathcal{O}(N^{-1/2})$$

Benasque, 13.-25. July 2008

In the case of the pion propagator, for example,

$$\mathcal{O}[U] = \langle (\bar{u}\gamma_5 d)(x)(\bar{d}\gamma_5 u)(y) \rangle_{\mathrm{F}}$$

$$= -\mathrm{tr}\{\gamma_5 S(x, y; U)_{dd} \gamma_5 S(y, x; U)_{uu}\} = \mathbf{x}$$

 \Rightarrow need to compute quark propagators for all $U = U_1, \dots, U_N$

Benasque, 13.-25. July 2008

3. Weak-coupling expansion

For a, m_0 fixed and $g_0 \rightarrow 0$

$$\langle \phi(x_1) \dots \phi(x_n) \rangle \sim \sum_{k=0}^{\infty} g_0^{2k} C_k(x_1, \dots, x_n)$$

$$C_k(x_1,\ldots,x_n)=$$
 sum of Feynman diagrams

Feynman rules derive from the lattice action

Lattice perturbation theory

For simplicity we omit the quarks. Then

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathrm{D}[U] \, \mathcal{O} \, \mathrm{e}^{-S_{\mathrm{G}}}$$

$$S_{\rm G} = \frac{1}{g_0^2} \sum_{\square} \text{Re} \, \text{tr} \{ 1 - U(\square) \} \ge 0$$

For $g_0 \rightarrow 0$ the minimal-action configurations dominate

$$S_{\rm G}=0 \quad \Leftrightarrow \quad U={\rm pure\ gauge}$$

Perturbation theory = saddle-point expansion about these

In the vicinity of U=1 we may set

$$U(x,\mu) = \exp\{g_0 a A_{\mu}(x)\}, \qquad A_{\mu}(x) = A_{\mu}^c(x) T^c$$

$$D[U] \propto \prod_{x,\mu,c} dA^c_{\mu}(x) \{1 + O(g_0^2)\}$$

Expansion of the action

$$S_{\rm G} = a^4 \sum_{x,\mu,\nu,c} \frac{1}{4} \{ \partial_{\mu} A_{\nu}^c(x) - \partial_{\nu} A_{\mu}^c(x) \}^2 + \mathcal{O}(g_0)$$

(lattice derivatives)

$$\Rightarrow$$
 gluon propagator $= rac{\delta_{\mu
u}}{\hat{p}^2} + {
m gauge\ terms}$

As in the continuum, we need to fix the gauge

$$S_{\rm G} \to S_{\rm G} + a^4 \sum_{x,c} \frac{\lambda_0}{2} \left\{ \sum_{\mu} \partial_{\mu}^* A_{\mu}^c(x) \right\}^2 + S_{\rm FP}$$

Feynman rules

$$\overset{\boldsymbol{b},\mu}{\sim} \overset{\boldsymbol{c},\nu}{\sim} = \frac{\delta^{bc}}{\hat{p}^2} \left\{ \delta_{\mu\nu} - (1 - \lambda_0^{-1}) \frac{\hat{p}_{\mu} \hat{p}_{\nu}}{\hat{p}^2} \right\}$$

$$\begin{array}{ccc} \pmb{b} & & \pmb{c} & \\ \pmb{p} & & = & \frac{\delta^{bc}}{\hat{p}^2} \end{array}$$

$$p \rightarrow 0$$
, μ

$$c, v$$

$$q$$

$$\vdots$$

On the lattice there are further vertices of order a, a^2, \dots

Remarks

- ★ Feynman integrands are rational functions in the sines and cosines of the momenta
- ★ Integrals are finite since $|p_{\mu}| \leq \pi/a$
- ★ Many more diagrams than in the continuum

Renormalization & continuum limit

At fixed external momenta, any l-loop diagram $\mathcal J$ can be expanded

$$\mathcal{J} \underset{a \to 0}{\sim} a^{-\omega} \sum_{n=0}^{\infty} a^n \sum_{k=0}^{l} c_{n,k} (\ln a)^k$$

 ω : superficial degree of divergence

There is a power-counting theorem (Reisz 1988) and a rigorous proof of renormalizability to all orders

Renormalization

$$g_0 = Z_1 Z_3^{-3/2} g, \qquad \lambda_0 = Z_3^{-1} \lambda$$

$$G_0(p_1,\ldots,p_n)=Z_3^{n/2}G(p_1,\ldots,p_n)$$
 (gluon *n*-point function)

where

$$Z_k = 1 + \sum_{l=1}^{\infty} Z_{k,l} g^{2l}$$

 $Z_{k,l}=$ polynomial in $\ln(a\mu)$ of degree $l,\qquad \mu:$ normalization mass

"Minimal subtraction" scheme: $Z_{k,l}$ has no constant term

Then, with properly chosen $Z_{k,l}$, the continuum limit

$$\lim_{a\to 0} G(p_1,\ldots,p_n)$$

can be taken order by order in g

Remarks

- ★ Up to finite renormalizations, the n-point functions $\lim_{a\to 0} G(p_1,\ldots,p_n)$ are universal
- ★ Confirms that LQCD is just a regularization of QCD
- \star The leading lattice corrections are of O(a)

Renormalization group

For μ, g fixed

$$g_0 = Z_1 Z_3^{-3/2} g =$$
function of a

$$a\frac{\partial g_0}{\partial a} = b_0 g_0^3 + b_1 g_0^5 + \dots, \qquad b_0 = \frac{1}{(4\pi)^2} \left\{ 11 - \frac{2}{3} N_f \right\}$$

⇒ the lattice coupling vanishes in the continuum limit

$$g_0^2 \underset{a \to 0}{\sim} -\frac{1}{b_0 \ln(a\mu)} + \dots$$

⇒ studying the continuum limit in perturbation theory is meaningful!