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How large is the lattice spacing?

Consider two-flavour QCD with quark mass matrix

M = ( mo 0 ) , myo : bare mass of the u and d quark
0 mo

The parameters in the lattice action are then

go, amg and a

1

cancels out after substituting ¢ — a=3/24), ¢ — a=3/24)

=> the lattice spacing is a redundant parameter
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Now suppose the pion mass M is computed at some gg, amg

agz:((ﬂ%d)(x)(ci%u)(o» ~ oMo

xr9—00
Since g = na, n =1,2,3,..., one obtains aM, not M;

Similarly for the proton mass
Vp = eaﬂv(dgc%uﬁ)uw a’ Z <¢p("17)$p(0)> ~ e Mpmo

To—00
T

charge conjugation matrix
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The computation thus yields

aM; = ®,(go, amg)

alM, = ®p(go, amo)

am,
.
Going to the continuum limit constant My/Mp
M, <a™?, M, < a™? 0 /
amounts to taking gg,amy — 0
(QCD is “asymptotically free")

> g,

critical line
=] [ = E na
Benasque, 13.-25. July 2008



Eventually we are only interested in the trajectory where
My /M, = physical value = fixes amy as a function of go

Along this curve, the lattice spacing is then determined by
e setting M, = 938 MeV

e and calculating
aM,

azvppzo.ﬂxaMpfm

Note: other physical scales (F5, M,, ...) can be used here
= a[fm] is slightly convention dependent!
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Principal tools in LQCD

1. Strong-coupling expansion

Substitute
b —aPmy Py, P —a2my Y

and let mg, gg — o©

_ 1 — 1
§= S {FE0 + L T@DE) + S Pl

0 v

=> the field variables at different points x decouple

=> theory is soluble in powers of 1/mg and 1/g3
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At my = oo, for example,

> ~ (1/g§)Nplaq = exp{—0 X area}

= quark confinement

However, this limit is unphysical since
1

o= Eln(gg)—i-...
M, =0(1/a),

M, = O(1/a),

etc.
=] [ = E na
Benasque, 13.-25. July 2008



2. Numerical simulations

= Monte-Carlo integration of the (bosonized) functional integral

e Choose a finite lattice (64 x 323, for example)

e Generate a representative ensemble of gauge fields
{U;1,Us,...,Un} using a Markov process

N
1 —1/2
-:><0=Nk§:: (U] + O(N~1/2)
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In the case of the pion propagator, for example,

O[U] = ((wysd)(w)(dysu) (y))r

—tl‘{’y5S(.’E, Y, U)dd'VSS(ya x; U)uu} = X

=> need to compute quark propagators for all U = Uy,

Uy

=] [ = E na
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3. Weak-coupling expansion

For a, mq fixed and gg — 0

k=0
Ck(l‘l, .

, ) = sum of Feynman diagrams

u quark
Feynman rules derive from the lattice action

dq\uark
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Lattice perturbation theory

For simplicity we omit the quarks. Then
= l/D[U]OQ_SG
Z
2ZRetr{l— O} >0

For go — 0 the minimal-action configurations dominate
Sc =0 < U = pure gauge

Perturbation theory = saddle-point expansion about these
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In the vicinity of U = 1 we may set
Uz, 1) = exp{goaA,(z)}, Ay(x)

= A} (z)T°
DU] o [ ] dAs(x) {1+ O(g5)}
x,u,C

Expansion of the action

Sec=a' Y H{0,45(x) - 8,A5(x) } + Olgo)
Z,,V,C

(lattice derivatives)

=> gluon propagator =

N
52
p

-+ gauge terms

=] [ = E na
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As in the continuum, we need to fix the gauge
Sa — Sg + a* Z &
z,c 2

Feynman rules

{; a:Az(w)}Q ¢ Ser

b, n (A sbe -
VIV, V.V Ve Tz{éuy—(l—Aal)p‘f];”}
p p
b c 6bC
........... — = O
p

=] [ = E na
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/
d,p
by bed — 1
p— = —igof {,W(p q)p cos(zary) + cyclic
A
\\
q

}

On the lattice there are further vertices of order a, a
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Remarks

* Feynman integrands are rational functions in
the sines and cosines of the momenta

* Integrals are finite since [p,| < 7/a

* Many more diagrams than in the continuum

=] [ = E na
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Renormalization & continuum limit

At fixed external momenta, any I-loop diagram J can be expanded
[%S) l
J o a® Z a" Z cnr(Ina)®
n=0 k=0

w : superficial degree of divergence

There is a power-counting theorem (Reisz 1988) and a rigorous
proof of renormalizability to all orders
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Renormalization

g0 =229, =27\

2 . :
Go(p1y...ypn) = Zg/ G(pi,---,pn) (gluon n-point function)

where

oo
Zp, =1+ sz’l g2l
=1

Zy1 = polynomial in In(au) of degree [, (4 : normalization mass

“Minimal subtraction” scheme: Zj; has no constant term
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Then, with properly chosen Z;,;, the continuum limit
lim G(p1,...,pn)
a—0

can be taken order by order in g

Remarks

* Up to finite renormalizations, the n-point functions
limg—0 G(p1,...,pn) are universal

* Confirms that LQCD is just a regularization of QCD

* The leading lattice corrections are of O(a)

Benasque, 13.-25. July 2008 Renormalization and continuum limit 18/19



Renormalization group

For u, g fixed

9o = Z1Z3_3/29 = function of a

990 3 5 1 2
—— = b by = 11— 2N,
“aa 090 + 0190 + -+, 0 (477)2{ 3 f}
=> the lattice coupling vanishes in the continuum limit
1
2 ~Y e —-ee-r ro
90 a—0 by ln(a,u) +

=> studying the continuum limit in perturbation theory is meaningful!
=] = = = A2 N Ge
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