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How large is the lattice spacing?

Consider two-flavour QCD with quark mass matrix

M =
(
m0 0
0 m0

)
, m0 : bare mass of the u and d quark

The parameters in the lattice action are then

g0, am0 and a

↑
cancels out after substituting ψ → a−3/2ψ, ψ → a−3/2ψ

⇒ the lattice spacing is a redundant parameter
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Now suppose the pion mass Mπ is computed at some g0, am0

a3
∑
x

〈(ūγ5d)(x)(d̄γ5u)(0)〉 ∼
x0→∞

e−Mπx0

Since x0 = na, n = 1, 2, 3, . . ., one obtains aMπ not Mπ

Similarly for the proton mass

ψp = εαβγ(dTαCγ5uβ)uγ , a3
∑
x

〈ψp(x)ψp(0)〉 ∼
x0→∞

e−Mpx0

↑
charge conjugation matrix
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The computation thus yields

aMπ = Φπ(g0, am0)

aMp = Φp(g0, am0)

Going to the continuum limit

Mπ � a−1, Mp � a−1

amounts to taking g0, am0 → 0

(QCD is “asymptotically free”)

am0

critical line

0

constant M  /M
π p

g0

Benasque, 13.–25. July 2008 How large is the lattice spacing? 4/19



Eventually we are only interested in the trajectory where

Mπ/Mp = physical value ⇒ fixes am0 as a function of g0

Along this curve, the lattice spacing is then determined by

• setting Mp = 938 MeV

• and calculating

a =
aMp

Mp
= 0.21× aMp fm

Note: other physical scales (Fπ, M%, . . .) can be used here

⇒ a[fm] is slightly convention dependent!
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Principal tools in LQCD

1. Strong-coupling expansion

Substitute

ψ → a−2m
−1/2
0 ψ, ψ → a−2m

−1/2
0 ψ

and let m0, g0 →∞

S =
∑
x

{
ψ(x)ψ(x) +

1
m0

ψ(x)Dwψ(x) +
1
g2
0

∑
µ,ν

Pµν(x)
}

⇒ the field variables at different points x decouple

⇒ theory is soluble in powers of 1/m0 and 1/g2
0

Benasque, 13.–25. July 2008 Principal tools in LQCD 6/19



At m0 =∞, for example,

∼
(
1/g2

0

)Nplaq = exp{−σ × area}

⇒ quark confinement

However, this limit is unphysical since

σ =
1
a2

ln(g2
0) + . . .

Mπ = O(1/a), Mp = O(1/a), etc.
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2. Numerical simulations

= Monte-Carlo integration of the (bosonized) functional integral

• Choose a finite lattice (64× 323, for example)

• Generate a representative ensemble of gauge fields
{U1, U2, . . . , UN} using a Markov process

• ⇒ 〈O〉 =
1
N

N∑
k=1

O[Uk] + O(N−1/2)
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In the case of the pion propagator, for example,

O[U ] = 〈(ūγ5d)(x)(d̄γ5u)(y)〉F

= −tr{γ5S(x, y;U)ddγ5S(y, x;U)uu} = x y

⇒ need to compute quark propagators for all U = U1, . . . , UN
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3. Weak-coupling expansion

For a,m0 fixed and g0 → 0

〈φ(x1) . . . φ(xn)〉 ∼
∞∑
k=0

g2k
0 Ck(x1, . . . , xn)

Ck(x1, . . . , xn) = sum of Feynman diagrams

Feynman rules derive from the lattice action

x y

u quark

d quark
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Lattice perturbation theory

For simplicity we omit the quarks. Then

〈O〉 =
1
Z

∫
D[U ]O e−SG

SG =
1
g2
0

∑
Re tr{1− U( )} ≥ 0

For g0 → 0 the minimal-action configurations dominate

SG = 0 ⇔ U = pure gauge

Perturbation theory = saddle-point expansion about these
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In the vicinity of U = 1 we may set

U(x, µ) = exp
{
g0aAµ(x)

}
, Aµ(x) = Acµ(x)T c

D[U ] ∝
∏
x,µ,c

dAcµ(x)
{

1 + O(g2
0)
}

Expansion of the action

SG = a4
∑
x,µ,ν,c

1
4

{
∂µA

c
ν(x)− ∂νAcµ(x)

}2 + O(g0)

(lattice derivatives)

⇒ gluon propagator =
δµν
p̂2

+ gauge terms
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As in the continuum, we need to fix the gauge

SG → SG + a4
∑
x,c

λ0

2

{∑
µ

∂∗µAcµ(x)
}2

+ SFP

Feynman rules

b,µ c,ν

p

c

p

b

=
δbc

p̂2

{
δµν − (1− λ−1

0 )
p̂µp̂ν
p̂2

}

=
δbc

p̂2
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p

q

r

d,

c,

b,µ

ν

ρ

= −ig0f bcd
{
δµν(p̂− q)ρ cos(1

2arµ) + cyclic
}

On the lattice there are further vertices of order a, a2, . . .
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Remarks

? Feynman integrands are rational functions in
the sines and cosines of the momenta

? Integrals are finite since |pµ| ≤ π/a

? Many more diagrams than in the continuum
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Renormalization & continuum limit

At fixed external momenta, any l-loop diagram J can be expanded

J ∼
a→0

a−ω
∞∑
n=0

an
l∑

k=0

cn,k(ln a)k

ω : superficial degree of divergence

There is a power-counting theorem (Reisz 1988) and a rigorous
proof of renormalizability to all orders
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Renormalization

g0 = Z1Z
−3/2
3 g, λ0 = Z−1

3 λ

G0(p1, . . . , pn) = Z
n/2
3 G(p1, . . . , pn) (gluon n-point function)

where

Zk = 1 +
∞∑
l=1

Zk,l g
2l

Zk,l = polynomial in ln(aµ) of degree l, µ : normalization mass

“Minimal subtraction” scheme: Zk,l has no constant term
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Then, with properly chosen Zk,l, the continuum limit

lim
a→0

G(p1, . . . , pn)

can be taken order by order in g

Remarks

? Up to finite renormalizations, the n-point functions
lima→0G(p1, . . . , pn) are universal

? Confirms that LQCD is just a regularization of QCD

? The leading lattice corrections are of O(a)
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Renormalization group

For µ, g fixed

g0 = Z1Z
−3/2
3 g = function of a

a
∂g0
∂a

= b0g
3
0 + b1g

5
0 + . . . , b0 =

1
(4π)2

{
11− 2

3Nf

}
⇒ the lattice coupling vanishes in the continuum limit

g2
0 ∼
a→0
− 1
b0 ln(aµ)

+ . . .

⇒ studying the continuum limit in perturbation theory is meaningful!
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