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1. Interactions
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2. QED+QCD
Precision theory for E ≪ 100GeV

Qualitative difference QED ⇐⇒ QCD

3. Chiral symmetry
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Approximate chiral symmetry

Spontaneous symmetry breakdown

4. Goldstone theorem
If Nf of the quark masses are put equal to zero

QCD contains N2
f − 1 Goldstone bosons

5. Gell-Mann-Oakes-Renner relation
Quark masses break chiral symmetry
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M2
π is proportional to mu +md
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I. Standard Model at low energies

1. Interactions

strong weak e.m. gravity

SU(3) × SU(2) × U(1) × D

Gravity

understood only at classical level

gravitational waves
√

quantum theory of gravity ?

classical theory adequate for

r ≫
√

G h̄

c3
= 1.6 · 10−35 m

Weak interaction

frozen at low energies

E ≪Mw c
2 ≃ 80GeV

⇒ structure of matter: only strong and

electromagnetic interaction

⇒ neutrini decouple
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Electromagnetic interaction

Maxwell ∼ 1860

survived relativity and quantum theory, unharmed

• Electrons in electromagnetic field (h̄ = c = 1)

1

i

∂ψ

∂t
− 1

2m2
e
(~∇ + i e ~A)2ψ − e ϕψ = 0

contains the potentials ~A, ϕ

• only ~E = −~∇ϕ− ∂ ~A

∂t
and ~B = ~∇× ~A

are of physical significance

• Schrödinger equation is invariant under gauge

transformations

~A ′ = ~A+ ~∇f , ϕ ′ = ϕ− ∂f

∂t
, ψ ′ = e−ief ψ

describe the same physical situation as ~A, ϕ, ψ
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• Equivalence principle of the e.m. interaction:

ψ physically equivalent to e−ief ψ

• e−ief is unitary 1 × 1 matrix, e−ief ∈ U(1)

f = f(~x, t) space-time dependent function

• gauge invariance ⇐⇒ local U(1) symmetry

electromagnetic field is gauge field of U(1)

Weyl 1929

• U(1) symmetry + renormalizability

fully determine the e.m. interaction
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Strong interaction

nuclei = p + n ∼ 1930

• Nuclear forces

Yukawa ∼ 1935

Ve.m. = − e2

4πr
Vs = − h2

4πr
e
− r
r0

e2

4π
≃ 1

137

h2

4π
≃ 13

long range short range

r0 = ∞ r0 =
h̄

Mπc
= 1.4 · 10−15 m

Mγ = 0 Mπ c
2 ≃ 140MeV

• Problem with Yukawa formula:

p and n are extended objects

diameter comparable to range of force

formula only holds for r ≫ diameter
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• Protons, neutrons composed of quarks

p = uud n = udd

• Quarks carry internal quantum number

u =









u1
u2
u3









d =









d1
d2
d3









occur in 3 “colours”

• Strong interaction is invariant under

local rotations in colour space 1973

u ′ = U · u d ′ = U · d

U =







U11 U12 U13
U21 U22 U23
U31 U32 U33






∈ SU(3)

• Can only be so if the strong interaction

is also mediated by a gauge field

gauge field of SU(3) =⇒ strong interaction

Quantum chromodynamics

9



Comparison of e.m. and strong interaction

QED QCD

symmetry U(1) SU(3)

gauge field ~A , ϕ gluon field

particles photons gluons

source charge colour

coupling
constant e g

• All charged particles generate e.m. field

• All coloured particles generate gluon field

• Leptons do not interact strongly

because they do not carry colour

• Equivalence principle of the strong interaction:

U ·







u1
u2
u3






physically equivalent to







u1
u2
u3
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2. QED+QCD

Effective theory for E≪Mwc2 ≃ 80GeV

Symmetry

Lagrangian

U(1)×SU(3)

QED+QCD

• Dynamical variables:

gauge fields for photons and gluons

Fermi fields for leptons and quarks

• Interaction fully determined by group geometry

Lagrangian contains 2 coupling constants

e, g

• Quark and lepton mass matrices can be brought

to diagonal form, eigenvalues real, positive

me, mµ, mτ , mu, md, ms, mc, mb, mt

• Transformation generates vacuum angle

θ
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• Precision theory for cold matter,

atomic structure, solids, . . .

Bohr radius: a =
4π

e2me

• θ breaks CP

Neutron dipole moment is very small

⇒ strong upper limit, θ ≃ 0
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Qualitative difference between
e.m. and strong interactions

• Photons do not have charge

• Gluons do have colour

x1 · x2 = x2 · x1 for x1, x2 ∈ U(1) abelian

x1 · x2 6= x2 · x1 for x1, x2 ∈ SU(3)

⇒ Consequence for vacuum polarization

QED
Density of charge

QCD
Density of colour

bare positron

cloud of electrons
and positrons

r

bare red quark

cloud of gluons is red

cloud of quarks
and antiquarks

r

e < ebare

vacuum
shields charge

g > gbare

vacuum
amplifies colour
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Comparison with gravity

• source of gravitational field: energy

gravitational field does carry energy

• source of e.m. field: charge

e.m. field does not carry charge

• source of gluon field: colour

gluon field does carry colour

gravity strong interaction

sun u

u

planet feels
less than total
energy of the sun

u quark feels
less than total
colour of u

Perihelion shift of Mercury:

43′′ = 50′′ − 7′′ per century
⇑
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• Force between u and u :

Vs = −4

3

g2

4πr
, g → 0 for r → 0

g2

4π
=

6π

(11Nc − 2Nf) | ln(rΛQCD)|

| ln(rΛQCD)| ≃ 7 for r =
h̄

MZ c
≃ 2 · 10−18 m

• Vacuum amplifies gluonic field of a bare quark

• Field energy surrounding isolated quark = ∞
Only colour neutral states have finite energy

⇒ Confinement of colour

• Theoretical evidence for confinement meagre

Experimental evidence much more convincing

QED: interaction weak at low energies

QCD: interaction strong at low energies

e2

4π
≃ 1

137

photons, leptons
nearly decouple

g2

4π
≃ 1

gluons, quarks
confined

• Nuclear forces = van der Waals forces of QCD
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3. Chiral symmetry

• For bound states of quarks,

e.m. interaction is a small perturbation

Perturbation series in powers of
e2

4π

√

Discuss only the leading term: set e = 0

• Lagrangian then reduces to QCD

g , mu ,md , ms , mc , mb , mt

• mu,md,ms happen to be light

Consequence:

Approximate flavour symmetries

Play a crucial role for the low energy properties
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Theoretical paradise

mu = md = ms = 0

mc = mb = mt = ∞

QCD with 3 massless quarks

• Lagrangian contains a single parameter: g

g is net colour of a quark

depends on radius of the region considered

• Colour contained within radius r

g2

4π
=

2π

9 | ln(rΛQCD)|

• Intrinsic scale ΛQCD is meaningful,

but not dimensionless

⇒ No dimensionless free parameter

All dimensionless physical quantities are pure

numbers, determined by the theory

Cross sections can be expressed in terms of

ΛQCD or in the mass of the proton
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• Interactions of u, d, s are identical

If the masses are set equal to zero,

there is no difference at all

q =







u
d
s







• Lagrangian symmetric under u↔ d↔ s

q′ = V · q V ∈ SU(3)

V acts on quark flavour, mixes u, d, s

• More symmetry: For massless fermions,

right and left do not communicate

⇒ Lagrangian of massless QCD is invariant under

independent rotations of the right– and left–

handed quark fields

q
R
= 1

2(1 + γ5) q , q
L
= 1

2(1 − γ5) q

q′
R
= V

R
· q

R
q′

L
= V

L
· q

L

SU(3)R × SU(3)L
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• Massless QCD invariant under SU(3)R×SU(3)L

SU(3) has 8 parameters

⇒ Symmetry under Lie group with 16 parameters

⇒ 16 conserved “charges”

QV
1, . . . , Q

V
8 (vector currents)

QA
1, . . . , Q

A
8 (axial currents)

commute with the Hamiltonian:

[QV
i , H0] = 0 [QA

i , H0] = 0

“Chiral symmetry” of massless QCD

• Vafa and Witten 1984: state of lowest energy

is invariant under the vector charges

QV
i |0〉 = 0

• Axial charges ? QA
i |0〉 =?
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Two alternatives for axial charges

QA
i |0〉 = 0

Wigner-Weyl realization of G
ground state is symmetric

〈0|qR qL |0〉 = 0

ordinary symmetry
spectrum contains parity partners

degenerate multiplets of G

QA
i |0〉 6= 0

Nambu-Goldstone realization of G
ground state is asymmetric

〈0|qR qL |0〉 6= 0

“order parameter”
spontaneously broken symmetry

spectrum contains Goldstone bosons
degenerate multiplets of SU(3)V ⊂G

G = SU(3)R × SU(3)L
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• Spontaneous symmetry breakdown was

discovered in condensed matter physics:

Spontaneous magnetization selects direction

⇒ Rotation symmetry is spontaneously broken

Goldstone bosons = spin waves, magnons

• Nambu 1960: state of lowest energy in particle

physics is not invariant under chiral rotations

QA
i |0〉 6= 0

For dynamical reasons, the state of

lowest energy must be asymmetric

⇒ Chiral symmetry is spontaneously broken

• Very strong experimental evidence
√

• Theoretical understanding on the basis

of the QCD Lagrangian ?

21



• Analog of Magnetization ?

qR qL =









uR uL dR uL sR uL

uR dL dR dL sR dL

uR sL dR sL sR sL









Transforms like (3̄,3) under SU(3)R × SU(3)L

If the ground state were symmetric, the matrix

〈0|qR qL |0〉 would have to vanish, because it

singles out a direction in flavour space

“quark condensate”, is quantitative measure

of spontaneous symmetry breaking

“order parameter”

〈0|qR qL |0〉 ⇔ magnetization

• Ground state is invariant under SU(3)V

⇒ 〈0|qR qL |0〉 is proportional to unit matrix

〈0|uR uL |0〉 = 〈0|dR dL |0〉 = 〈0|sR sL |0〉
〈0|uR dL |0〉 = . . . = 0
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4. Goldstone Theorem

• Consequence of QA
i |0〉 6= 0 :

H0Q
A
i |0〉 = QA

i H0 |0〉 = 0

spectrum must contain 8 states

QA
1 |0〉, . . . , QA

8 |0〉 with E = 0,

spin 0, negative parity, octet of SU(3)V

Goldstone bosons

• Argument is not water tight:

〈0|QA
i Q

A
k |0〉 =

∫

d3xd3y 〈0|A0
i (x)A

0
k(y) |0〉

〈0|A0
i (x)A

0
k(y) |0〉 only depends on ~x− ~y

⇒ 〈0|QA
i Q

A
k |0〉 is proportional to the

volume of the universe, |QA
i |0〉| = ∞
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• Rigorous version of Goldstone theorem:

〈0|qR qL |0〉 6= 0 ⇒ ∃ massless particles

Proof

Q =

∫

d3xuγ0γ5d

[Q,dγ5u] = −uu− dd

• Fµ(x− y) ≡ 〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉
Lorentz invariance ⇒ Fµ(z) = zµf(z2)

Chiral symmetry ⇒ ∂µFµ(z) = 0

Fµ(z) =
zµ

z4
× constant (for z2 6= 0)

• Spectral decomposition:

Fµ(x− y) = 〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉

=
∑

n
〈0|uγµγ5d|n〉〈n|dγ5u |0〉 e−i pn(x−y)

p0n ≥ 0 ⇒ Fµ(z) is analytic in z0 for Im z0 < 0

Fµ(z) =
zµ

{(z0 − iǫ)2 − ~z 2}2 × constant
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• Positive frequency part of massless propagator:

∆+(z,0)=
i

(2π)3

∫

d3p

2p0
e−ipz , p0 = |~p |

=
1

4π i {(z0 − iǫ)2 − ~z 2}
• Result

〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉 = C ∂µ∆+(z,0)

• Compare Källen–Lehmann representation:

〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉

= (2π)−3
∫

d4p pµ ρ(p2)e−ip(x−y)

=

∫ ∞

0
ds ρ(s)∂µ∆+(x− y, s)

∆+(z, s) ⇐⇒ massive propagator

∆+(z, s) =
i

(2π)3

∫

d4p θ(p0) δ(p2 − s) e−ipz

⇒ Only massless intermedate states contribute:

ρ(s) = C δ(s)
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• Why only massless intermediate states ?

〈n|dγ5u |0〉 6= 0 only if 〈n| has spin 0

If |n〉 has spin 0 ⇒ 〈0|u(x)γµγ5d(x)|n〉 ∝ pµ e−ipx

∂µ(uγµγ5d) = 0 ⇒ p2 = 0

⇒ Either ∃ massless particles or C = 0

• Claim: 〈0|qR qL|0〉 6= 0 ⇒ C 6= 0

Lorentz invariance, chiral symmetry

⇒ 〈0|d(y)γ5u(y)u(x)γµγ5d(x) |0〉 = C′ ∂µ∆−(z)
⇒ 〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉

= C∂µ∆+(z,0) − C′∂µ∆−(z,0)
• Causality: if x− y is spacelike, then

〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉 = 0

⇒ C′ = −C

⇒ 〈0| [u(x)γµγ5d(x), d(y)γ5u(y)] |0〉 = C∂µ∆(z,0)

⇒ 〈0| [Q, d(y)γ5u(y)] |0〉 = C

• 〈0| [Q, d(y)γ5u(y)] |0〉 = −〈0|uu+ dd |0〉 = C

Hence 〈0|uu+ dd |0〉 6= 0 implies C 6= 0 qed.
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5. Gell-Mann-Oakes-Renner relation

⇒ Spectrum of QCD with 3 massless quarks must

contain 8 massless physical particles, JP = 0−

• Indeed, the 8 lightest mesons do have these

quantum numbers:

π+, π0, π−,K+,K0, K̄0,K−, η

But massless they are not

• Real world 6= paradise

mu , md , ms 6= 0

Quark masses break chiral symmetry,

allow left to talk to right

• Chiral symmetry broken in two ways:

spontaneously 〈0|qR qL |0〉 6= 0

explicitly mu , md , ms 6= 0
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• HQCD only has approximate symmetry to the

extent that mu,md,ms are small

HQCD = H0 +H1

H1 =

∫

d3x {muuu+mddd+msss}

• H0 is Hamiltonian of the massless theory,

invariant under SU(3)R×SU(3)L

• H1 breaks the symmetry,

transforms with (3, 3̄) ⊕ (3̄,3)

• For the low energy structure of QCD, the

heavy quarks do not play an essential role:

c, b, t are singlets under SU(3)R×SU(3)L

Can include the heavy quarks in H0

• Goldstone bosons are massless only if

the symmetry is exact
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M2
π = (mu +md) × |〈0|uu |0〉| × 1

F2
π

1968

⇑ ⇑
explicit spontaneous

Coefficient: decay constant Fπ

Derivation

• Pion matrix elements in massless theory:

〈0|uγµγ5d|π−〉=i
√

2F pµ

〈0|u i γ5d|π−〉=
√

2G

Only the one–pion intermediate state

〈0|u(x)γµγ5d(x)d(y)γ5u(y) |0〉 = C ∂µ∆+(z,0)
⇑

|π−〉〈π−|
contributes. Hence 2F G = C

• Value of C fixed by quark condensate

C = −〈0|uu+ dd |0〉

⇒ Exact result in massless theory:

F G = −〈0|uu |0〉
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• Matrix elements for mquark 6= 0:

〈0|uγµγ5d|π−〉=i
√

2Fπ p
µ

〈0|u i γ5d|π−〉=
√

2Gπ

• Current conservation

∂µ(uγ
µγ5d) = (mu +md)u i γ5d

⇒ FπM2
π = (mu +md)Gπ

M2
π = (mu +md)

Gπ

Fπ
exact for m 6= 0

• Fπ → F , Gπ → G for m→ 0

F G = −〈0|uu |0〉

⇒ Gπ

Fπ
= −〈0|uu |0〉

F2
π

+O(m)

⇒M2
π = (mu +md)

(

−〈0|uu |0〉
F2
π

)

+O(m2)
√

⇒ 〈0|uu |0〉 ≤ 0 if quark masses are positive
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•M2
π = (mu +md)B +O(m2)

B =
|〈0|uu |0〉|

F2
π

•Mπ disappears if the symmetry breaking

is turned off, mu,md → 0
√

• Explains why the pseudoscalar mesons

have very different masses

M2
K+ = (mu +ms)B +O(m2)

M2
K− = (md +ms)B +O(m2)

⇒M2
K is about 13 times larger than M2

π , because

mu,md happen to be small compared to ms

• First order perturbation theory also yields

M2
η = 1

3 (mu +md + 4ms)B +O(m2)

⇒M2
π − 4M2

K + 3M2
η = O(m2)

Gell-Mann-Okubo formula for M2
√
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Checking the GMOR formula on a lattice

• Can determine Mπ as function of mu=md=m

0 0.01 0.02 0.03am
0

0.02

0.04

0.06

0.08

(amπ)2
mπ∼676 MeV

484

381

294

fit to 4 points
fit to 5 points

(amPS)
2

(aµ)

0.0160.0120.0080.0040

0.08

0.06

0.04

0.02

0

Lüscher, Lattice conference 2005 ETM collaboration, hep-lat/0701012

• No quenching, quark masses sufficiently light

⇒ Legitimate to use χPTfor the extrapolation to

the physical values of mu,md
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• Quality of data is impressive

• Proportionality of M2
π to the quark mass ap-

pears to hold out to values of mu,md that are

an order of magnitude larger than in nature

• Main limitation: systematic uncertainties

in particular: Nf = 2 → Nf = 3
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II. Chiral perturbation theory

6. Group geometry

• QCD with 3 massless quarks:

spontaneous symmetry breakdown

from SU(3)R×SU(3)L to SU(3)V

generates 8 Goldstone bosons

• Generalization: suppose symmetry group

of Hamiltonian is Lie group G

Generators Q1, Q2, . . . , QD, D = dim(G)

For some generators Qi |0〉 6= 0

How many Goldstone bosons ?

• Consider those elements of the Lie algebra

Q = α1Q1 + . . .+ αnQD, for which Q |0〉 = 0

These elements form a subalgebra:

Q |0〉 = 0, Q′ |0〉 = 0 ⇒ [Q,Q′] |0〉 = 0

Dimension of subalgebra: d ≤ D

• Of the D vectors Qi |0〉
D − d are linearly independent

⇒ D − d different physical states of zero mass
⇒ D − d Goldstone bosons
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• Subalgebra generates subgroup H⊂G

H is symmetry group of the ground state

coset space G/H contains as many parameters

as there are Goldstone bosons

d = dim(H), D = dim(G)

⇒ Goldstone bosons live on the coset G/H

• Example: QCD with Nf massless quarks

G = SU(Nf)R × SU(Nf)L

H = SU(Nf)V

D = 2(N2
f − 1), d = N2

f − 1

N2
f − 1 Goldstone bosons

• It so happens that mu,md ≪ ms

• mu = md = 0 is an excellent approximation

SU(2)R× SU(2)L is a nearly exact symmetry

Nf = 2, N2
f − 1 = 3 Goldstone bosons (pions)
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7. Effective action

• Basic objects for quantitative analysis of QCD:

Green functions of the currents

V µa =q γµ1
2λa q , A

µ
a = q γµγ5

1
2λa q ,

Sa=q 1
2λa q , Pa = q i γ5

1
2λa q

Include singlets, with λ0 =
√

2/3× 1, as well as

ω =
1

16π2
tr
c
GµνG̃

µν

• Can collect all of the Green functions formed

with these operators in a generating functional:

Perturb the system with external fields

vaµ(x), a
a
µ(x), sa(x), p

a(x), θ(x)

Replace the Lagrangian of the massless theory

L0 = − 1

2g2
tr
c
GµνG

µν + q iγµ(∂µ − iGµ) q

by L = L0 + L1

L1 = vaµV
µ
a + aaµA

µ
a − saSa − paPa − θ ω

• Quark mass terms are included in the external

field sa(x)
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• |0 in〉: system is in ground state for x0 → −∞
Probability amplitude for finding ground state

when x0 → +∞:

eiSeff{v,a,s,p,θ}=〈0out|0 in〉
v,a,s,p,θ

• Expressed in terms of ground state of L0:

eiSeff{v,a,s,p,θ}=〈0|T exp i
∫

dxL1 |0〉

• Expansion of Seff{v, a, s, p, θ} in powers of the

external fields yields the connected parts of

the Green functions of the massless theory

Seff{v, a, s, p, θ} = −
∫

dx sa(x)〈0|Sa(x) |0〉

+ i
2

∫

dxdy aaµ(x)a
b
ν(y)〈0| TAµa(x)Aνb(y) |0〉conn + . . .

• For Green functions of full QCD, set

sa(x) = ma + s̃a(x) , ma = trλam

and expand around s̃a(x) = 0
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• Path integral representation of effective action:

eiSeff{v,a,s,p} = N
∫

[dG] e i
∫

dxLG detD

LG = − 1

2g2
tr
c
GµνG

µν − θ

16π2
tr
c
GµνG̃

µν

D = iγµ{∂µ − i(Gµ + vµ + aµγ5)} − s− iγ5p

Gµ is matrix in colour space

vµ, aµ, s, p are matrices in flavour space

vµ(x) ≡ 1
2λa v

a
µ(x), etc.
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8. Ward identities

Symmetry in terms of Green functions

• Lagrangian is invariant under

qR(x) → VR(x) qR(x) , qL(x) → VL(x) qL(x)

VR(x), VL(x) ∈ U(3)

provided the external fields are transformed with

v′µ + a′µ=VR(vµ + aµ)V
†
R − i∂µVRV

†
R

v′µ − a′µ=VL(vµ − aµ)V
†
L − i∂µVLV

†
L

s′ + i p′=VR(s+ i p)V
†
L

The operation takes the Dirac operator into

D′=
{

P−VR + P+VL

}

D
{

P+V
†
R + P−V

†
L

}

P±=1
2(1 ± γ5)

• detD requires regularization

∃/ symmetric regularization

⇒ detD′ 6= detD, only |detD′ | = |detD |
symmetry does not survive quantization
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• Change in detD can explicitly be calculated

For an infinitesimal transformation

VR = 1+ i α+ iβ+ . . . , VL = 1+ i α− iβ+ . . .

the change in the determinant is given by

detD′ = detD e−i
∫

dx {2〈β〉ω+〈βΩ〉}

〈A〉 ≡ trA

ω =
1

16π2
tr
c
GµνG̃

µν gluons

Ω =
Nc

4π2
ǫµνρσ∂µvν∂ρvσ + . . . ext. fields

• Consequence for effective action:

The term with ω amounts to a change in θ,

can be compensated by θ′ = θ − 2 〈β〉
Pull term with 〈βΩ〉 outside the path integral

⇒ Seff{v′, a′, s′, p′, θ′} = Seff{v, a, s, p, θ} −
∫

dx〈βΩ〉
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Seff{v′, a′, s′, p′, θ′} = Seff{v, a, s, p, θ} −
∫

dx〈βΩ〉

• Seff is invariant under U(3)R×U(3)L, except

for a specific change due to the anomalies

• Relation plays key role in low energy analysis:

collects all of the Ward identities

For the octet part of the axial current,e.g.

∂xµ〈0|TAµa(x)Pb(y) |0〉 = −1
4 i δ(x− y)〈0|q{λa, λb}q |0〉

+ 〈0|Tq(x) iγ5{m, 12λa}q(x)Pb(y) |0〉

• Symmetry of the effective action implies the

operator relations

∂µV
µ
a =q i[m, 12λa]q , a = 0, . . . ,8

∂µA
µ
a=q iγ5{m, 12λa}q , a = 1, . . . ,8

∂µA
µ
0 =

√

2
3 q iγ5mq+

√
6ω

• Textbook derivation of the Ward identities

goes in inverse direction, but is slippery

formal manipulations, anomalies ?
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9. Low energy expansion

• If the spectrum has an energy gap

⇒ no singularities in scattering amplitudes

or Green functions near p = 0

⇒ low energy behaviour may be analyzed with

Taylor series expansion in powers of p

f(t)=1 + 1
6〈r

2〉 t+ . . . form factor

T(p)=a+ b p2 + . . . scattering amplitude

Cross section dominated by

S–wave scattering length

dσ

dΩ
≃ |a|2

• Expansion parameter:
p

m
=

momentum

energy gap

• Taylor series only works if the spectrum

has an energy gap, i.e. if there are

no massless particles
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• Illustration: Coulomb scattering

p

p′

e

e

e

e

γ

Photon exchange ⇒ pole at t = 0

T =
e2

(p′ − p)2

Scattering amplitude does not admit

Taylor series expansion in powers of p

• QCD does have an energy gap

but the gap is very small: Mπ

⇒ Taylor series has very small radius of

convergence, useful only for p < Mπ
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• Massless QCD contains infrared singularities

due to the Goldstone bosons

• For mu = md = 0, pion exchange gives rise to

poles and branch points at p = 0

⇒ Low energy expansion is not a Taylor series,

contains logarithms

Singularities due to Goldstone bosons can be

worked out with an effective field theory

“Chiral Perturbation Theory”

Weinberg, Dashen, Pagels, Gasser, . . .

• Chiral perturbation theory correctly reproduces

the infrared singularities of QCD

• Quantities of interest are expanded in powers

of external momenta and quark masses

• Expansion has been worked out to

next-to-leading order for many quantities

”Chiral perturbation theory to one loop”

• In quite a few cases, the next-to-next-to-leading

order is also known
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• Properties of the Goldstone bosons are

governed by the hidden symmetry that

is responsible for their occurrence

• Focus on the singularities due to the pions

HQCD = H0 +H1

H1 =
∫

d3x {muuu+mddd}

H0 is invariant under G = SU(2)R × SU(2)L

|0〉 is invariant under H = SU(2)V

mass term of strange quark is included in H0

• Treat H1 as a perturbation

Expansion in

powers of H1

⇐⇒ Expansion in

powers of mu,md

• Extension to SU(3)R×SU(3)L straightforward:

include singularities due to exchange of K, η
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10. Effective Lagrangian

• Replace quarks and gluons by pions

~π(x) = {π1(x), π2(x), π3(x)}
LQCD → Leff

• Central claim:

A. Effective theory yields alternative

representation for effective action of QCD

eiSeff{v,a,s,p,θ} = Neff

∫

[dπ]ei
∫

dxLeff{~π,v,a,s,p,θ}

B. Leff has the same symmetries as LQCD

⇒ Can calculate the low energy expansion of the

Green functions with the effective theory.

If Leff is chosen properly, this reproduces the

low energy expansion of QCD, order by order.

• Proof of A and B: H.L., Annals Phys. 1994
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• Pions live on the coset G/H = SU(2)

~π(x) → U(x) ∈ SU(2)

The fields ~π(x) are the coordinates of U(x)

Can use canonical coordinates, for instance

U = exp i ~π · ~τ ∈ SU(2)

• Action of the symmetry group on the quarks:

q′R = VR · qR , q′L = VL · qL

• Action on the pion field:

U ′ = VR · U · V †
L

Note: Transformation law for the coordinates

~π is complicated, nonlinear

• Except for the contribution from the

anomalies, Leff is invariant

Leff{U ′, v′, a′, s′, p′, θ′} = Leff{U, v, a, s, p, θ}

Symmetry of Seff implies symmetry of Leff
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Side remark

• For nonrelativistic effective theories, the effec-

tive Lagrangian is in general invariant only up

to a total derivative.

⇒ From the point of view of effective field theory,

nonrelativistic systems with Goldstone bosons

are more complicated than relativistic ones

detailed discussion: H. L., Phys. Rev. D49 (1994) 3033

• Origin of the complication: the generators of

the symmetry group may themselves give rise

to order parameters

〈0|Qi |0〉 6= 0

This cannot happen in the relativistic case:

Q =

∫

d3x j0(x)

〈0| jµ(x) |0〉 = 0 ⇒ 〈0|Q |0〉 = 0
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Nonrelativistic example where it does happen:

Heisenberg model of a ferromagnet

H = −g
∑

〈ij〉
~si · ~sj

g > 0 ⇑⇑ lower in energy than ⇑⇓
• Ground state = ⇑⇑⇑⇑ · · · ⇑ ⇑

• Magnetization: ~M =
µ

V

∑

i

~si

〈0| ~M |0〉 6= 0 ⇐⇒ 〈0|qR qL |0〉 6= 0

• Symmetry generators: ~Q =
∑

i ~si ∝ ~M

• Hamiltonian is invariant under the full rotation

group G = SO(3), ground state is invariant

only under rotations around the direction of

〈0| ~M |0〉, H = U(1)

• Effective field lives on G/H = S2: unit vector
~U , parametrized by 2 coordinates π1, π2.

• Effective Lagrangian of ferromagnet is

invariant under local rotations only up to a

total derivative. Leading term is related to the

Brouwer degree of the map (π1, π2) → ~U.
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11. Explicit construction of Leff

• First ignore the external fields,

Leff = Leff(U, ∂U, ∂2U, . . .)

Derivative expansion:

Leff = f0(U)+f1(U)× U+f2(U)×∂µU×∂µU+. . .
⇑ ⇑ ⇑
O(1) O(p2) O(p2)

Amounts to expansion in powers of momenta

• Term of O(1): f0(U) = f0(VRUV
†
L )

VR = 1 , VL = U → VRUV
†
L = 1

⇒ f0(U) = f0(1) irrelevant constant, drop it

• Term with U : integrate by parts

⇒ can absorb f1(U) in f2(U)
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⇒ Derivative expansion of Leff starts with

Leff = f2(U) × ∂µU × ∂µU +O(p4)

• Replace the partial derivative by

∆µ ≡ ∂µUU
† , tr∆µ = 0

∆µ is invariant under SU(2)L and transforms

with the representation D(1) under SU(2)R:

∆µ → VR ∆µ V
†
R

In this notation, leading term is of the form

Leff = f̃2(U) × ∆µ × ∆µ +O(p4)

• Invariance under SU(2)L: f̃2(U) = f̃2(UV
†
L )

⇒ f̃2(U) is independent of U

• Invariance under SU(2)R: ∆µ×∆µ transforms

with D(1)×D(1) → contains unity exactly once:

tr(∆µ∆µ) = tr(∂µUU†∂µUU†) = −tr(∂µU∂µU†)

⇒ Geometry fixes leading term up to a constant

Leff =
F2

4
tr(∂µU∂

µU†) +O(p4)
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Leff =
F2

4
tr(∂µU∂

µU†) +O(p4)

• Lagrangian of the nonlinear σ-model

• Expansion in powers of ~π:

U = exp i ~π · ~τ = 1 + i ~π · ~τ − 1
2 ~π

2 + . . .

⇒ Leff = F2

2 ∂µ~π · ∂µ~π+ F2

48tr{[∂µπ, π] [∂µπ, π]}+ . . .

For the kinetic term to have the standard

normalization: rescale the pion field, ~π → ~π/F

Leff = 1
2 ∂µ~π ·∂µ~π+ 1

48F2tr{[∂µπ, π] [∂µπ, π]}+ . . .

⇒ a. Symmetry requires the pions to interact

b. Derivative coupling: Goldstone bosons only

interact if their momentum does not vanish λπ4/
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• Expression given for Leff only holds if the ex-

ternal fields are turned off. Also, tr(∂µU∂µU†)
is invariant only under global transformations

Suffices to replace ∂µU by

DµU = ∂µU − i(vµ + aµ)U + i U(vµ − aµ)

In contrast to tr(∂µU∂µU†), the term tr(DµUDµU†)
is invariant under local SU(2)R× SU(2)L

• Can construct further invariants: s+ ip

transforms like U ⇒ tr{(s+ ip)U†} is invariant

Violates parity, but tr{(s+ip)U†}+tr{(s−ip)U}
is even under p→ −p, ~π → −~π
In addition, ∃ invariant independent of U :

DµθDµθ, with Dµθ = ∂µθ+ 2tr(aµ)

• Count the external fields as

θ = O(1), vµ, aµ = O(p), s, p = O(p2)
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• Derivative expansion yields string of the form

Leff = L(2) + L(4) + L(6) + . . .

• Full expression for leading term:

L(2) =
F2

4
〈DµUDµU† + χU† + Uχ†〉 + h0DµθD

µθ

χ ≡ 2B (s+ ip) , 〈X〉 ≡ tr(X)

• Contains 3 constants: F,B, h0

“effective coupling constants”

• Next-to-leading order:

L(4)=
ℓ1
4
〈DµUDµU〉2 +

ℓ2
4
〈DµUDνU〉〈DµUDνU〉

+
ℓ3
4
〈χU† + Uχ†〉2 +

ℓ4
4
〈DµχDµU† +DµUD

µχ†〉
+ . . .

• Number of effective coupling constants rapidly

grows with the order of the expansion
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• Infinitely many effective coupling constants

Symmetry does not determine these

Predictivity ?

• Essential point: If Leff is known to given order

⇒ can work out low energy expansion of the

Green functions to that order (Weinberg 1979)

• NLO expressions for Fπ,Mπ involve 2 new

coupling constants: ℓ3, ℓ4.

In the ππ scattering amplitude, two further

coupling constants enter at NLO: ℓ1, ℓ2.

• Note: effective theory is a quantum field theory

Need to perform the path integral

eiSeff{v,a,s,p,θ} = Neff

∫

[dπ]ei
∫

dxLeff{~π,v,a,s,p,θ}
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• Classical theory ⇔ tree graphs

Need to include graphs with loops

• Power counting in dimensional regularization:

Graphs with ℓ loops are suppressed by factor

p2ℓ as compared to tree graphs

⇒ Leading contributions given by tree graphs

Graphs with one loop contribute at next-to-

leading order, etc.

• The leading contribution to Seff is given by the

sum of all tree graphs = classical action:

Seff{v, a, s, p, θ} = extremum
U(x)

∫

dxLeff{U, v, a, s, p, θ}
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III. Illustrations

12. Some tree level calculations

A. Condensate in terms of effective action

• To calculate the quark condensate of the mass-

less theory, it suffices to consider the effective

action for v = a = p = θ = 0 and to take a

constant scalar external field

s =

(

mu 0
0 md

)

• Expansion in powers of mu and md treats

H1 =

∫

d3x {muuu+mddd} as a perturbation

Seff{0,0,m,0,0} = S0
eff + S1

eff + . . .

• S0
eff is independent of the quark masses

(cosmological constant)

• S1
eff is linear in the quark masses
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• First order in mu, md ⇒ expectation value of

H1 in unperturbed ground state is relevant

S1
eff = −

∫

dx〈0|muuu+mddd |0〉

⇒ 〈0|uu |0〉 and 〈0|dd |0〉 are the coefficients of

the terms in Seff that are linear in mu and md

B. Condensate in terms of effective theory

• Need the effective action for v = a = p = θ = 0

to first order in s

⇒ classical level of effective theory suffices.

• extremum of the classical action: U = 1

S1
eff =

∫

dxF2B(mu +md)

• comparison with

S1
eff = −

∫

dx〈0|muuu+mddd |0〉 yields

〈0|uu |0〉 = 〈0|dd |0〉 = −F2B (1)
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C. Evaluation of Mπ at tree level

• In classical theory, the square of the mass is

the coefficient of the term in the Lagrangian

that is quadratic in the meson field:

F2

4
〈χU† + Uχ†〉 =

F2B

2
〈m(U† + U)〉

= F2B(mu +md){1 − ~π 2

2F2
+ . . .}

Hence M2
π = (mu +md)B (2)

• Tree level result for Fπ:

Fπ = F (3)

• (1) + (2) + (3) ⇒ GMOR relation:

M2
π =

(mu +md) |〈0|uu |0〉|
F2
π
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13. Mπ beyond tree level

• The formula M2
π = (mu +md)B only holds at

tree level, represents leading term in expansion

of M2
π in powers of mu,md

• Disregard isospin breaking: set mu = md = m

A. Mπ to 1 loop

• Claim: at next-to-leading order, the expansion

of M2
π in powers of m contains a logarithm:

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

M2 ≡ 2mB

• Proof: Pion mass ⇔ pole position, for instance

in the Fourier transform of 〈0|TAµa(x)Aνb(y) |0〉
Suffices to work out the perturbation series for

this object to one loop of the effective theory
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• Result

M2
π = M2+

2 ℓ3M
4

F2
+
M2

2F2

1

i
∆(0,M2)+O(M6)

∆(0,M2) is the propagator at the origin

∆(0,M2)=
1

(2π)d

∫

ddp

M2 − p2 − iǫ

=i (4π)−d/2 Γ(1 − d/2)Md−2

• Contains a pole at d = 4:

Γ (1 − d/2) =
2

d− 4
+ . . .

• Divergent part is proportional to M2:

Md−2=M2µd−4(M/µ)d−4 = M2µd−4e(d−4) ln(M/µ)

=M2µd−4{1 + (d− 4) ln(M/µ) + . . .}
• Denote the singular factor by

λ≡ 1

2
(4π)−d/2 Γ(1 − d/2)µd−4

=
µd−4

16π2

{

1

d− 4
− 1

2
(ln 4π+ Γ′(1) + 1) +O(d− 4)

}
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• The propagator at the origin then becomes

1

i
∆(0,M2)=M2

{

2λ+
1

16π2
ln
M2

µ2
+O(d− 4)

}

• In the expression for M2
π

M2
π = M2+

2 ℓ3M
4

F2
+
M2

2F2

1

i
∆(0,M2)+O(M6)

the divergence can be absorbed in ℓ3:

ℓ3 = −1

2
λ+ ℓ ren

3

• ℓ ren
3 depends on the renormalization scale µ

ℓ ren
3 =

1

64π2
ln
µ2

Λ2
3

running coupling constant

• Λ3 is the ren. group invariant scale of ℓ3

Net result for M2
π

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

⇒M2
π contains a chiral logarithm at NLO



• Crude estimate for Λ3, based on SU(3) mass

formulae for the pseudoscalar octet:

0.2 GeV < Λ3 < 2 GeV

ℓ̄3 ≡ ln
Λ2

3

M2
π

= 2.9 ± 2.4 Gasser & L. 1984

⇒ Next–to–leading term is small correction:

0.005 <
1

2

M2
π

(4πFπ)2
ln

Λ 2
3

M2
π
< 0.04

• Scale of the expansion is set by size of

pion mass in units of decay constant:

M2

(4πF)2
≃ M2

π

(4πFπ)2
= 0.0144
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B. Mπ to 2 loops

• Terms of order m3
quark:

M2
π=M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2

+
17

18

M6

(4πF)4

(

ln
Λ 2

M

M2

)2

+ kMM
6 +O(M8)

F is pion decay constant for mu = md = 0

ChPT to two loops Colangelo 1995

• Coefficients 1
2 and 17

18 determined by symmetry

• Λ3,ΛM and kM ⇐⇒ coupling constants in Leff
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14. Fπ to one loop

• Also contains a logarithm at NLO:

Fπ=F

{

1− M2

16π2F2
ln
M2

Λ 2
4

+O(M4)

}

M2
π=M2

{

1+
M2

32π2F2
ln
M2

Λ 2
3

+O(M4)

}

F is pion decay constant in limit mu,md → 0

• Structure is the same, coefficients and scale of

logarithm are different
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• Low energy theorem: Λ4 also determines the

slope of the scalar form factor to leading order

〈r2〉
s
=

6

(4πF)2

{

ln
Λ2

4

M2
π
− 13

12
+O(M2)

}

• Scalar form factor of the pion can be calculated

by means of dispersion theory

• Result for the slope:

〈r2〉
s

= 0.61 ± 0.04 fm2

Colangelo, Gasser & L. Nucl. Phys. 2001

⇒ Corresponding value of the scale Λ4:

Λ4 = 1.26 ± 0.14GeV
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15. Lattice results for Mπ, Fπ

A. Results for Mπ

• Determine the scale Λ3 by comparing the
lattice results for Mπ as function of m with
the χPTformula

M2
π = M2 − 1

2

M4

(4πF)2
ln

Λ 2
3

M2
+O(M6)

M2 ≡ 2Bm

0

0

2

2

4

4

6

6

Gasser & L. 1984

MILC 2007

Del Debbio et al. 2006, Nf = 2

ETM 2007, Nf = 2

RBC/UKQCD 2008

JLQCD 2007, Nf = 2

PACS-CS (preliminary)

Horizontal axis shows the value of ℓ̄3 ≡ ln
Λ 2

3

M2
π

Range for Λ3 obtained in 1984 corresponds to ℓ̄3 = 2.9 ± 2.4

Result of RBC/UKQCD 2008: ℓ̄3 = 3.13 ± 0.33
stat

± 0.24
syst
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3

3

4

4

5

5

Gasser & L. 1984

Colangelo, Gasser & L. 2001

MILC 2007

ETM 2007, Nf = 2

JLQCD 2007, Nf = 2

RBC/UKQCD 2008

PACS-CS (preliminary)

systsyst

ℓ̄4 = ln
Λ 2

4

M2
π

• Lattice results beautifully confirm the predic-

tion for the sensitivity of Fπ to mu,md:

Fπ

F
= 1.072 ± 0.007 Colangelo and Dürr 2004
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16. ππ scattering

A. Low energy scattering of pions

• Consider scattering of pions with ~p = 0

• At ~p = 0, only the S-waves survive (angular

momentum barrier). Moreover, these reduce

to the scattering lengths

• Bose statistics: S-waves cannot have I = 1,

either have I = 0 or I = 2

⇒ At ~p = 0, the ππ scattering amplitude is

characterized by two constants: a00, a
2
0

• Chiral symmetry suppresses the interaction at

low energy: Goldstone bosons of zero

momentum do not interact

⇒ a00, a
2
0 disappear in the limit mu,md → 0

⇒ a00, a
2
0 ∼M2

π measure symmetry breaking
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B. Tree level of χPT

• Low Energy theorem Weinberg 1966:

a00=
7M2

π

32πF2
π

+O(M4
π)

a20=− M2
π

16πF2
π

+O(M4
π)

⇒ Chiral symmetry predicts a00, a
2
0 in terms of Fπ

• Accuracy is limited: Low energy theorem

only specifies the first term in the expansion

in powers of the quark masses

Corrections from higher orders ?
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C. Scattering lengths at 1 loop

• Next term in the chiral perturbation series:

a00=
7M2

π

32πF2
π

{

1 +
9

2

M2
π

(4πFπ)2
ln

Λ2
0

M2
π

+O(M4
π)

}

• Coefficient of chiral logarithm unusually large

Strong, attractive final state interaction

• Scale Λ0 is determined by the coupling

constants of L(4)
eff :

9

2
ln

Λ2
0

M2
π

=
20

21
ℓ̄1 +

40

21
ℓ̄2 − 5

14
ℓ̄3 + 2 ℓ̄4 +

5

2

• Information about ℓ̄1, . . . , ℓ̄4 ?

ℓ̄1, ℓ̄2 ⇐⇒ momentum dependence

of scattering amplitude

⇒ Can be determined phenomenologically

ℓ̄3, ℓ̄4 ⇐⇒ dependence of scattering

amplitude on quark masses

Have discussed their values already
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D. Numerical predictions from χPT

0.16 0.18 0.2 0.22 0.24 0.26

-0.06

-0.05

-0.04

-0.03

1966
1983 1996

Universal Band
tree, one loop, two loops
low energy theorem for scalar radius
Colangelo, Gasser & L. 2001

a00

a20

Sizable corrections in a00
a20 nearly stays put
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E. Consequence of lattice results for ℓ3, ℓ4

• Uncertainty in prediction for a00, a
2
0 is domi-

nated by the uncertainty in the effective cou-

pling constants ℓ3, ℓ4

• Can make use of the lattice results for these

0.16 0.18 0.2 0.22 0.24

a
0
0

-0.05 -0.05

-0.04 -0.04

-0.03 -0.03

-0.02 -0.02

-0.01 -0.01

a
2
0

Universal band
tree (1966), one loop (1983), two loops (1996)
Prediction (χPT + dispersion theory, 2001)
l4  from low energy theorem for scalar radius (2001)

NPLQCD (2005, 2007)
l3 and l4 from MILC (2004, 2006)

l3  from Del Debbio et al. (2006)

l3 and l4 from ETM (2007)

l3 and l4 from RBC/UKQCD (2007)

l3 and l4 from PACS-CS (preliminary)
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F. Experiments concerning a0
0
, a2

0

• Production experiments πN → ππN ,

ψ → ππω, B → Dππ, . . .

Problem: pions are not produced in vacuo

⇒ Extraction of ππ scattering amplitude is

not simple

Accuracy rather limited

• K± → π+π−e±ν data:

CERN-Saclay, E865, NA48/2

• K± → π0π0π±, K0 → π0π0π0: cusp near

threshold, NA48/2

• π+π− atoms, DIRAC
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G. Results from Ke4 decay

K± → π+π−e±ν

• Allows clean measurement of δ00 − δ11

Theory predicts δ00 − δ11 as function of energy

0.28 0.3 0.32 0.34 0.36 0.38 0.4
GeV

-5

0

5

10

15

20

δ0
0− δ1

1

theoretical prediction (2001)
Geneva-Saclay (1977)
E865 (2003) isospin corrected
NA48/2 (2006) isospin corrected

preliminary

There was a discrepancy here, because a

pronounced isospin breaking effect from

K→π0π0eν→π+π−eν
had not been accounted for in the data analysis

Colangelo, Gasser, Rusetsky 2007, Bloch-Devaux 2007
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H. Summary for a0
0
, a2

0
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tree (1966), one loop (1983), two loops (1996)
Prediction (χPT + dispersion theory, 2001)
l4  from low energy theorem for scalar radius (2001)

NPLQCD (2005, 2007)
l3 and l4 from MILC (2004, 2006)

l3  from Del Debbio et al. (2006)

l3 and l4 from ETM (2007)

l3 and l4 from RBC/UKQCD (2007)

l3 and l4 from PACS-CS (preliminary)

E865 Ke4 (2003) isospin corrected
DIRAC (2005)
NA48 K3π (2006)
NA48 Ke4 (preliminary)  isospin corrected
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17. Conclusions for SU(2)×SU(2)

• Expansion in powers of mu,md yields a very

accurate low energy representation of QCD

• Lattice results confirm the GMOR relation

⇒ Mπ is dominated by the contribution from the

quark condensate

⇒ Energy gap of QCD is understood very well

• Lattice approach allows an accurate

measurement of the effective coupling constant

ℓ3 already now

• Even for ℓ4, the lattice starts becoming

competitive with dispersion theory

76



18. Expansion in powers of ms

• Theoretical reasoning

• The eightfold way is an approximate

symmetry

• The only coherent way to understand this

within QCD: ms − md, md − mu can be

treated as perturbations

• Since mu,md ≪ ms

⇒ ms can be treated as a perturbation

⇒ Expect expansion in powers of ms to work,

but convergence to be comparatively slow

• This can now also be checked on the lattice

77



• Consider the limit mu,md → 0, ms physical

• F is value of Fπ in this limit

• Σ is value of |〈0| ūu |0〉| in this limit

• B is value of M2
π/(mu+md) in this limit

• Exact relation: Σ = F2B

• F0, B0,Σ0: values for mu = md = ms = 0

• Paramagnetic inequalities: both F and Σ should

decrease if ms is taken smaller

F > F0 , Σ > Σ0 Jan Stern et al. 2000

• Nc → ∞: F,Σ, B become independent of ms

⇒ (F/F0−1), (Σ/Σ0−1), (B/B0−1)

violate the OZI rule
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A. Condensate
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Bijnens & Dhonte 2003
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RBC/UKQCD preliminary

syst stat stat syst

direct
with FSE
without FSE

Σ/Σ0

• Central values of RBC/UKQCD and

PACS-CS for Σ/Σ0 lead to qualitatively

different conclusions concerning OZI-violations

⇒ Discrepancy indicates large systematic errors

• The lattice results confirm the parametric

inequalities, but do not yet allow to draw

conclusions about the size of the OZI-violations
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B. Results for B, F
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• Results for B are coherent,

indicate small OZI-violations in B

⇒ F is the crucial factor in Σ = F2B

• Note: most of the numbers quoted are prelim-

inary, errors purely statistical, continuum limit,

finite size effects, . . .
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C. Expansion to NLO

Involves the effective coupling constants L4

and L6 of the SU(3)×SU(3) Lagrangian:

F/F0=1 +
8M2

K

F2
0

L4 + χlog + . . .

Σ/Σ0=1 +
32M2

K

F2
0

L6 + χlog + . . .

B/B0=1 +
16M2

K

F2
0

(2L6 − L4) + χlog + . . .

MK is the kaon mass for mu = md = 0.

81



D. Running coupling constants L4, L5, L6, L8
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PACS-CS with FSE 2008
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MILC 2006
Kaiser 2005
MILC 2004
Bijnens & Dhonte 2003
Meissner & Oller 2001
Moussallam 2000
Gasser & L. 1985

Numerical values shown refer to running scale µ = Mρ
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19. Conclusions for SU(3)×SU(3)

• In B/B0 ↔ 2L6−L4, the available lattice results

indicate little if any violations of the OZI rule

• For F/F0 (and hence Σ/Σ0), the situation is

not conclusive: some of the data indicate very

juicy OZI-violations, others are consistent with

F/F0 ≃ Σ/Σ0 ≃ 1

• If the central value F/F0 = 1.23 of RBC/UKQCD

were confirmed within small uncertainties, we

would be faced with a qualitative puzzle:

• Fπ is the pion wave function at the origin

• FK is larger because one of the two valence

quarks is heavier → moves more slowly

→ wave function more narrow → higher at

the origin: FK/Fπ ≃ 1.19

• F/F0 = 1.23 indicates that the wave func-

tion is more sensitive to the mass of the

sea quarks than to the mass of the valence

quarks . . . very strange → most interesting

if true
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• The PACS-CS results are consistent with our

old estimates. Only show modest violations of

the OZI rule. If these results are confirmed,

then the picture looks very coherent, also for

SU(3)×SU(3).
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20. Puzzling results on KL → πµν

• Hadronic matrix element of weak current:

〈K0|ūγµs|π−〉 = (pK+pπ)
µf+(t)+(pK−pπ)µf−(t)

• Scalar form factor ∼ 〈K0|∂µ(ūγµs)|π−〉

f0(t) = f+(t) +
t

M2
K −M2

π
f−(t)

• Low energy theorem Callan & Treiman 1966

f0(M
2
K −M2

π) =
FK
Fπ







1 +O(mu,md)







≃ 1.19

f0(0) = f+(0) ≃ 0.96 relevant for

determination of Vus
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• Comparison with experiment
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NA48, Phys. Lett. B647 (2007) 341 (141 authors, 2.3×106 events)

• Plot shows normalized scalar form factor

f̄0(t) =
f0(t)

f0(0)

• CT relation in this normalization:

f̄0(M
2
K−M2

π) =
FK

Fπf+(0)
= 1.2446±0.0041

Bernard and Passemar 2008

86



• Implications

• NA48 data on KL → πµν disagree with SM

• If confirmed, the implications are dramatic:

⇒W couples also to right-handed currents
Bernard, Oertel, Passemar & Stern 2006

• There are not many places where the SM

disagrees with observation, need to

investigate these carefully

• At low energies, high precision is required
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• New data from KLOE
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I thank Emilie Passemar for some of the material shown in this

figure
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• History of the issue: data on the slope of the

scalar form factor

f0(t) = f0(0)







1 +
λ0 t

M2
π+

+O(t2)
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Exercises

1. Evaluate the positive frequency part of the massless propagator

∆+(z,0) =
i

(2π)3

∫

d3k

2k0
e−ikz , k0 = |~k|

for Imz0 < 0. Show that the result can be represented as

∆+(z,0) =
1

4πiz2

2. Evaluate the d-dimensional propagator

∆(z,M) =

∫

ddk

(2π)d
e−ikz

M2 − k2 − iǫ

at the origin and verify the representation

∆(0,M) =
i

4π
Γ

(

1 − d

2

)

(

M2

4π

) d
2
−1

How does this expression behave when d→ 4 ?
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3. Leading order effective Lagrangian:

L(2) =
F 2

4
〈DµUD

µU† + χU† + Uχ†〉 + h0DµθD
µθ

DµU = ∂µU − i(vµ + aµ)U + i U(vµ − aµ)

χ = 2B (s+ ip)

Dµθ = ∂µθ+ 2〈aµ〉
〈X〉 = trX

• Take the space-time independent part of the external field
s(x) to be isospin symmetric (i. e. set mu = md = m):

s(x) = m1 + s̃(x)

• Expand U = exp i φ/F in powers of φ = ~φ · ~τ and check that,
in this normalization of the field φ, the kinetic part takes the
standard form

L(2) = 1
2
∂µ~φ · ∂µ~φ− 1

2
M2~φ2 + . . .

with M2 = 2mB.

• Draw the graphs for all of the interaction vertices containing
up to four of the fields φ, vµ, aµ, s̃, p, θ.
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4. Show that the classical field theory belonging to the QCD La-
grangian in the presence of external fields is invariant under

v′µ + a′µ = VR(vµ + aµ)V
†
R

− i∂µVRV
†
R

v′µ − a′µ = VL(vµ − aµ)V
†
L
− i∂µVLV

†
L

s′ + i p′ = VR(s+ i p)V †
L

q′R = VR qR(x)

q′L = VL qL

where VR, VL are space-time dependent elements of U(3).

5. Evaluate the pion mass to NLO of χPT . Draw the relevant
graphs and verify the representation

M2
π = M2 +

2 ℓ3M4

F 2
+

M2

2F 2

1

i
∆(0,M2) +O(M6)

6. Start from the symmetry property of the effective action,

Seff{v′, a′, s′, p′, θ′} = Seff{v, a, s, p, θ} −
∫

dx〈βΩ〉,

and show that this relation in particular implies the Ward identity

∂xµ〈0|TAµa(x)Pb(y) |0〉 = −1
4
i δ(x− y)〈0|q{λa, λb}q |0〉

+ 〈0|Tq(x) iγ5{m, 1
2
λa}q(x)Pb(y) |0〉

a = 1, . . . ,8, b = 0, . . . ,8

7. What is the Ward identity obeyed by the singlet axial current,

∂xµ〈0|TAµ0(x)Pb(y) |0〉 = ?
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