8.851 Course 2006 (Lecture Notes, I. Stewart)

Soft - Collinear Effectise Theory (SCET)

For this port we'll switch sign convention for $g$
$\underline{\xi}=i g T^{A} \gamma^{\mu}$ to agree with literature

Outline
Class 1: Intro, Degreer of Freedom, Scales Expansion of Spinors, Propanators, Power Counting see (2), (3)

Class 2: Construction of Currents, Lagrangion Multipole Expansion, Labals, Grid in detail see (2), (3), (10) (not in notes)
Class 3: Lagrangion, Gauge Symety, (3), (1).(1) Reparameterization Insoriance (RPI) Closs 4: more RPI, Ultrasoft-Collineor Fact. Hard-Collinea Factorization, IR dius, Martchim, Ruaning $\sec$ (4), (1), (2), (3)

Class 5: DIS see (8)
Soft-Collinam Interactions (4)
Class 6: SCETII
Power Countin Formuloe
ag. $\gamma^{k} \gamma \rightarrow \pi^{\circ}$ (8), eg $B \rightarrow 0 \pi$
eg. $B \rightarrow x_{s} \gamma$. Defina a Jet
(Jets in $e^{+} e^{-}$, see (II))
(1) hep-ph 10005275
(2) hep-ph $/ 0011336$
(3) hep-ph $/ 0107001$
(4) hep-ph $/ 0109045$ Gouge Inv.

Power Gounting
(5) hep-ph $/ 0205289$
(6) hep-ph/RPI 04229

GaegeInv at $\lambda^{2}$
() hep-ph/0303156
(8) hep-ph/0202088

Hard-Scattering
(9) hep-ph / 0107002

$$
B \rightarrow O \pi
$$

(10) hep-ph/0605001 o-bin
(11) hep-ph/0212255 hep-ph/0603066

Intro, Degrees of Freedom, Coordinates

Want an EFT for energetic hadrons,,$E_{H} \simeq Q \gg 1 Q<0$

Why? - Many processes have large regions of phase space when the hadrons are energetic $\longrightarrow E_{H}>M_{H}$ eg $\quad B$-decays $\quad B \rightarrow \pi e v, B \rightarrow K^{*} \gamma, B \rightarrow \pi \pi, B \rightarrow$ Xe $^{\prime}$ $B \rightarrow X=\gamma, B \rightarrow D^{*} \pi$,

$$
M_{B}=5.279 \mathrm{GeV} \gg \text { Nav }
$$

eg. Hard Scottan.

$$
e^{-} p \rightarrow e^{-} \times(D I 5), \quad p \bar{p} \rightarrow \times e^{+} e^{-} \text {(Dell Yon), }
$$

$$
\gamma^{*} \gamma>\pi^{0} \rightarrow \gamma^{*} \rho \rightarrow \gamma^{(x)} p^{\prime} \text { (Deeply Virtual }
$$

Compton Saltern)

- Need to separate perturbative, $\alpha(Q)$ \& non-perturbative $" \alpha_{s}$ (taco)" effects $\rightarrow$ factorization

What are the low every degrees of freedom?
eg. $1 \quad B \rightarrow D \pi$
in $B$-rest frame $\quad P_{\pi}^{\mu}=(2.310 \mathrm{GeV}, 0,0,-2.306 \mathrm{GeV})$
$\simeq Q n^{\mu} \quad$ to good apex.
$Q>\wedge, n^{\mu} \equiv(1,0,0,-1) \quad, n^{2}=0$. light-like

$$
\text { in } 0,1,2,3 \text { basis }
$$

Basis vectors $n^{\mu}, \bar{n}^{\mu}$
Use Light -Cone coordinates: $n^{2}=0, \bar{n}^{2}=0, n-\bar{n}=2$
vectors $\quad p^{\mu}=\frac{n^{\mu}}{2} \pi \cdot p+\frac{\pi^{\mu}}{2} n \cdot p+p_{\perp}^{\mu}$
metric $\quad g^{\mu \nu} \equiv n^{\mu} \bar{n}^{\nu}+\frac{\bar{n}^{\mu} n^{\nu}}{2}+g_{\perp}^{\mu \nu}$ orthogonal $n^{\mu}, \pi^{\mu}$
Define
epsilon

$$
\epsilon_{\perp}^{\mu \nu} \equiv \epsilon^{\mu \nu \alpha \beta} \frac{\bar{n}_{\alpha} n \beta}{2}
$$

$$
\begin{aligned}
& p^{+} \equiv n \cdot p \\
& p^{-} \equiv \pi \cdot p
\end{aligned}
$$

- Since $n^{2}=0$ we needed to define complementary vector $\pi$ - choice $\quad n^{\mu}=(1,0,0,-1) \rightarrow \bar{n}^{\mu}=(1,0,0,1)$ is possible t but other choices also work

$$
\begin{aligned}
& n^{\mu}=(1,0,0,-1) \\
& \pi^{\mu}=(3,2,2,1)
\end{aligned}
$$

(more on this later)

In $B \rightarrow D \pi$ the $B, D$ are soft $E_{H} \sim M_{H}$ \& we can use $H Q E T$ for their constituents ie quarks d gluons with $p^{\mu} \sim 1$

- But pion is "collinear",... $E_{H} \gg M_{H}$

In rest frame ( $\pi$ has quark gluon $p^{\mu} \sim(\stackrel{+}{\wedge}, \stackrel{\perp}{\wedge}, \stackrel{\wedge}{\wedge})$
boosting
for $B \rightarrow D \pi$

has constituents

$$
p^{\mu} \sim\left(\frac{\Lambda^{2}}{Q}, Q, \Lambda\right)
$$

三 collinear
fluctuations around $(0, Q, 0)=P_{\pi}^{\mu}$

Note: Boost in direction orthogonal to $\perp$ directions changes $p^{+}, p^{-}$multiplicatively $\quad p^{+} \rightarrow a p^{+}$

$$
p^{-} \rightarrow \frac{1}{a} p^{-}
$$

generically
$\left(p^{+}, p^{-}, p^{+}\right) \sim Q\left(\lambda^{2}, 1, \lambda\right)$ is collinear
where $\lambda \ll 1$ is small parameter. (above eg. $\lambda=\frac{\Lambda}{Q}$ )

What makes this EFT different?

- usually we separate scales. $M_{1} \gg M_{2}$ and have

$$
\sum_{i=1}^{n} C_{i}^{n}\left(\mu, m_{1}\right)-O_{i}\left(\mu, m_{2}\right)
$$

short distance long distance wilson coeffs operators
eg in $H Q E T$
the $B$-meson

picture momenta

well separated in all components

- now we have over lap between perturbative a non-perturbative momenta in $p^{-}$component
for collinear pion

$$
\begin{gathered}
E_{\pi} \sim m_{b} \\
P_{c} \sim\left(\frac{\Lambda^{2}}{m_{b}}, m_{b}, \Lambda\right)
\end{gathered}
$$


$\psi_{\text {overlap in } P^{-} \text {, but }}$

$$
P_{c}^{2} \ll P_{a}^{2} \text { still }
$$

(10)
2. inclusive decay $B \rightarrow x_{s} \gamma \quad$ from $b \rightarrow s \gamma$ $\ldots \geqslant 1$ hadron, summed over in general $E_{\gamma}=\frac{m_{B}^{2}-m_{x_{s}}^{2}}{2 m_{B}} \in\left[0, \frac{m_{B}^{2}-m_{K}^{2}}{2 m_{B}}\right]$ for $\quad M_{X} \in\left[M_{B}, M_{K^{*}}\right]$

For $\quad m_{x}^{2} \sim m_{B}^{2}$ $\qquad$

$X$ has hadrons in all directions did for $B \rightarrow X_{c} e v$

For $M_{x}^{2} \sim \Lambda^{2} \quad K^{*} \longleftarrow(B \sim \gamma \quad$ exclusive decay (not inclusive)

For $M_{x}^{2} \sim m_{B} \wedge$
hadrons in $X$
jet $\left(p^{+}, p^{-}, p_{\perp}\right) \sim(\Lambda, Q, \sqrt{\Lambda Q}) \sim Q\left(\lambda^{2}, 1, \lambda\right)$
constituents collinear again this time $\lambda=\sqrt{\frac{\Lambda}{Q}} \ll 1$

Infrared Degrees of Freedom. have $P^{2} \leq Q^{2} \lambda^{2}$


Off shell modes have ............ $P^{2}>Q^{2} \lambda^{2}$ and are integrated out into wilson coefficients $C(\mu)$
en ....... $P^{\mu} \sim Q(1,1,1)$

TrOn use ful_cases

$$
\text { SCETI } \quad \lambda=\sqrt{\frac{\Lambda}{Q}} \quad\left[\begin{array}{lll}
\text { collinear } & P_{c}^{2} \sim Q \Lambda & \text { examples } \\
\text { Usoft } & P_{u}^{2} \sim \Lambda^{2} & * D I s, \cdots
\end{array}\right.
$$

$$
S C E T_{\text {II }}
$$

$$
\lambda=\frac{\Lambda}{Q}
$$

$\square$ $\begin{array}{cl}\text { collinear } & P_{c}^{2} \sim \Lambda^{2} \\ \text { Soft } & P_{s}^{2} \sim \Lambda^{2}\end{array}$ $B \rightarrow D \pi$, $\gamma^{*} \gamma \rightarrow \pi^{0}$,

The theory $S C E T I I$ con be derived from SCETI so well study I first

Factorization: $\quad \sum_{i} C_{i} O_{i}$ becomes continuous

$$
\int d \xi \quad C(\xi) O(\xi) \quad \text { since } p^{-} \text {were same }
$$

6
$\qquad$ Un:- labelled by direction $n$ (recall $M Q E T$ spinars $U_{v}$ )

let $n^{\mu}=(1,0,0,1)$ and expand,$\quad \bar{n} \cdot p=P^{0}+P^{3}=\frac{Q}{2}+\frac{Q}{2}$

$$
\bar{n}^{\mu}=(1,0,0,-1) \quad \text { nip }<Q, P_{\perp} \ll Q
$$

$$
\begin{aligned}
& \frac{\bar{\sigma} \cdot \bar{p}}{p^{p}}=\sigma^{3} \\
& u_{n}=\frac{1}{\sqrt{2}}\left(\frac{u}{\sigma^{3} u}\right)=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right)\right\} \text { particles } \\
& v_{n}=\frac{1}{\sqrt{2}}\left(\frac{\sigma^{3} v}{v}\right)=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
\vdots
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right)\right\} \text { antiportic } \\
& \alpha=\left(\begin{array}{cc}
\mathbb{1} & -\sigma^{3} \\
\sigma^{3} & -\mathbb{1}
\end{array}\right) \quad \alpha u_{n}=\alpha v_{n}=0 \\
& \frac{\alpha \not \partial}{4}=-\frac{1}{2}\binom{\mathbb{1} \sigma^{3}}{\sigma^{3} \mathbb{I}} \quad \frac{\alpha \pi}{4} u_{n}=u_{n}, \frac{\alpha \not \partial}{4} v_{n}=v_{n}
\end{aligned}
$$

Projection Operator $\quad \mathbb{1}=\frac{\alpha \bar{x}}{4}+\frac{\vec{x} x}{4}$

$$
\text { field } 4^{\theta<0}=\varphi_{n}+\varphi_{n}
$$

weill integrate out "small" component ... In

Collinear Propagators

$$
\begin{aligned}
p^{2}+i \epsilon & =\bar{n} \cdot p n \cdot p+p_{+}^{2}+i \epsilon \\
& \sim \lambda^{0}+\lambda^{2}+\lambda+\lambda
\end{aligned}
$$

same size

Fermions

$$
\begin{aligned}
\frac{i \not 又}{p^{2}+i \epsilon} & =\frac{\frac{i x}{2}-\frac{\bar{n} \cdot p}{p^{2}+i \epsilon}+\ldots}{\frac{i \alpha}{2}} \frac{1}{n \cdot p+\frac{p_{\perp}^{2}}{\bar{n} \cdot p}+i \epsilon \operatorname{sign}(\bar{n} \cdot p)}
\end{aligned}
$$

from $T\left\{Y_{n}(x), I_{n}(0)\right\}$

Gluons $\quad \frac{-i g^{\mu}}{p^{2}+i \epsilon}$ stays same os $Q C D$
(true in any gauge)

$$
g^{\mu \nu} \sim \lambda^{0}
$$

$\uparrow$
(eg Feyn Gauge

Power counting for collinear fields.

$$
\begin{aligned}
& \mathcal{L}=\int d^{4} x \quad \eta_{n} \frac{\bar{\gamma}}{2}[i n \lambda+\ldots] \text { In }_{n} \\
& \lambda^{-4} \lambda^{a} \quad \lambda^{a}=\lambda^{2 a-2}
\end{aligned}
$$

set $\mathcal{L}$ a $\lambda^{\circ}$ ie normalize Kinetic term so no $\lambda^{\prime}$ s then $\quad \varphi_{n} \sim \lambda$

For gluons Find $A_{n}^{\mu}=\left(A_{n}^{+}, A_{n}^{-}, A_{n}^{+}\right) \sim\left(\lambda^{2}, 1, \lambda\right)$ just_ like collinear momenta
ie have $9^{\mu}+A^{\mu}=i 0^{\mu}$ homogeneous covariant derivative
$f^{\prime}$
Currents

if $u$ energetic match onto $S C E T$ ( $A H Q E T$ forb) $J^{a f f}=\overline{\underline{q}}_{n} r h_{v}$

for offshell, $k^{\mu}=m_{b} v^{\mu}+\frac{n^{\mu}}{2} \bar{n}=q+\cdots$
Consider

$$
\begin{aligned}
& k^{2}=m_{b}^{2}+n \cdot v m_{b} \bar{n} \cdot q \\
& k^{2}-m_{b}^{2} \sim m_{b}^{2} \\
& \quad \text { for } \bar{n} \cdot q \sim m_{b}
\end{aligned}
$$

$\bar{n} A_{n} \sim \lambda^{0} *$ no power
Suppression
for these gluons
Find $\quad \bar{\varphi}_{n} \Gamma \frac{i\left(k+m_{b}\right)}{k^{2}-m_{b}^{2}} i g T^{\wedge} \gamma^{\mu} h_{\sigma}=-9 \bar{q}_{n} \Gamma\left(\alpha /(1+\sigma)+\frac{\alpha}{2} / \bar{n} \cdot 8\right) \frac{\alpha}{2} \pi^{\mu} T^{\wedge} h$
ie

$$
\begin{aligned}
& =\Gamma \\
& \frac{q}{q}---\frac{9 \bar{n}^{\mu}}{\bar{n} \cdot g} \Gamma T^{A}
\end{aligned}
$$

some order in $\lambda$ (add more gluons later)

Which Field con interact in a Lacal way?
(1)


$$
p+k=\frac{n^{\mu}}{2} \bar{n}_{\cdot} \cdot p+\frac{\bar{n}^{\mu}}{2} n \cdot(p+k)+p_{\perp}
$$

$$
+\cdots
$$

collinear $P$ still collinear $\therefore$ local
 k
(2)
collinem

$$
p+k=\frac{n^{\mu}}{2} \bar{n} \cdot(p+h)+\frac{\bar{n}^{\mu}}{2} n \cdot(p+h)+p_{\perp}+k_{\perp}
$$ still sollineor

(3)
 offshell integrte it out (preve egr)

(4)

(5)


Field whid rediate interactions in SCETII aee offshell making it more complicetad so we postpone furthe discussion to after developing SCETI

Separate $Q, Q \lambda, Q \lambda^{2}$ moment
label residual
Analogy
$b: \quad H Q \in T \quad P^{\mu}=m b v^{\mu}+k^{\mu}$

$$
h_{0}(x)
$$

$$
u: \quad S C E T \quad P^{\mu}=p^{\mu}+k^{\mu}
$$

$$
\tau_{n, p}(x)
$$

$$
t_{(1, \lambda)} \quad t_{\lambda^{2}}
$$

terms terms
Mode Exp

$$
\psi(x)=\int d^{4} p \delta\left(p^{2}\right) \theta(p)\left[U(p) a(p) e^{-i p \cdot x}+v(p) b^{+}(p) e^{i p \cdot x}\right]
$$

expand $\$$
Write $\psi^{+}(x)=\sum_{p} e^{-i p \cdot x} \psi_{n_{1}}^{+}(x)$

$$
\alpha \psi_{n, p}^{ \pm}=0
$$

$$
\Psi^{-}(x)=\sum_{p} e^{i p \cdot x} \psi_{n_{n p}}(x)
$$

\& both have $\theta(\bar{n} \cdot p)$

Now define... $\eta_{n, p}(x) \equiv \psi_{n, p}^{+}(x)+\psi_{n,-p}^{-}(x)$
$\bar{n} \cdot p>0$ particles. $E=\frac{\pi \cdot p}{2}>0$
$\bar{n} \cdot p<0$ antiparticles $E=-\frac{\bar{n} \cdot \rho}{2}>0$

Similiar for Gluons
$A_{n, 8}^{\mu}$
destroy

$$
A_{n, q}^{\mu}=A_{n,-q}^{\mu} \quad \text { crate }
$$

In HQET label $v^{\mu}$ was conserved by gluons In SCET. labels are changed by collinear gluons $n$ are conserved by usoft gloons


OP Page with SCET Grid

lorge momenter $e^{-}=p^{-}+k^{-}$

$$
\& p-\neq 0
$$

Snall mometion $e^{-}=k^{-}, \quad p^{-}=0$, zero-bin

Introduce Label Operator for $p^{\mu}$ momenta

$$
p^{\mu}\left(\phi_{q_{1}}^{+} \phi_{q_{2}}^{+} \cdots \phi_{p_{1}} \phi_{p_{2}} \cdots\right)=\left(p_{1}^{\mu}+p_{2}^{\mu}+\cdots-q_{1}^{\mu}-q_{2}^{\mu}\right)\left(\phi_{b_{1}}^{+} \cdots \phi_{p_{1}} \cdots\right)
$$

eigenvalue eqto
"derivative" for labels $p^{\mu}$
derivative for residual $i \partial^{\mu}$

$$
\begin{aligned}
i \partial^{\mu} \sum_{p} e^{-i p \cdot x} \phi_{n, p}(x) & =\sum_{p} e^{-i p \cdot x}\left(\rho^{\mu}+i \partial^{\mu}\right) \phi_{n, p}(x) \\
& =\sum_{p} e^{-i x \cdot \rho}\left(\rho^{\mu}+i \partial^{\mu}\right) \phi_{n, p}(x)
\end{aligned}
$$

in products of fields this residual makes labels conserved moments. conserved

Summary

| Type | $\left(p^{+}, p^{-}, p^{1}\right)$ | Fields |
| :---: | :---: | :---: |
| collinear | $\left(\lambda^{2}, 1, \lambda\right)$ | $\mathcal{I n}_{n, p}(x)$ |

soft $\left.(\lambda, \lambda, \lambda) \quad q_{s, e} \quad \begin{array}{l}q_{s, p}\end{array}\right\} \begin{aligned} & \text { essentially } \\ & \begin{array}{ll}\text { Fourier } \\ \text { transform }\end{array} \\ & \lambda^{3 / 2}\end{aligned}$
USoft $\quad\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$
que
$\lambda^{3}$
$A_{u s}^{\mu}$
$\lambda^{2}$

Label residual
Last time

$$
\begin{aligned}
& P^{-}=p^{-}+k^{-} \\
& P_{\perp}=p_{\perp}+k_{\perp}
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{n, p}(x) \\
& A_{n, p}^{\mu}(x)
\end{aligned}
$$

label operator $p^{\mu}$
$p^{\mu} \quad Y_{n, p}=p^{\mu} Y_{n, p}$
$p^{\mu} \quad \bar{q}_{n, p}, r Y_{n, p}=\left(p^{\mu}-p^{\prime \prime}\right) \overline{\bar{Y}}_{n, p}, \Gamma Y_{n, p}$

$$
\begin{aligned}
& i \partial^{\mu} \sum_{\rho \neq 0} e^{-i p \cdot x} \varphi_{n, p}(x)=e^{-i x \cdot P} \sum_{p \neq 0}\left(p^{\mu}+i \partial^{\mu}\right) \gamma_{n, p}(x) \\
& \underset{\text { labels }}{\uparrow} \quad P \neq 0 \quad \uparrow \\
& \begin{array}{l}
\text { labels } \\
\text { conserved }
\end{array} \\
& \text { often suppress } \\
& \text { this }
\end{aligned}
$$

-summary


Collinear Lagrangian

Write, $\psi=Y_{n}+\varphi_{n}, \quad Y_{n}=p_{n} \psi, \quad Y_{n}=p_{n} \psi$

$$
\begin{aligned}
& P_{n}=\frac{x \not x}{4} \quad P_{n}=\frac{\pi x}{4} \\
& \mathcal{L}=\bar{\Psi} i \phi \psi=\left(\bar{Y}_{\bar{n}}+\varphi_{n}\right)\left(i \frac{\alpha}{2} \bar{n} \cdot D+\frac{i \not \partial}{2} n \cdot D+i \sigma_{+}\right)\left(\varphi_{n}+\mathcal{Y}_{n}\right) \\
& =\bar{I}_{n} \frac{\not \partial}{2} \text { inD } Y_{n}+\bar{Y}_{\bar{n}} \frac{\alpha}{2} i \bar{n} D Y_{\bar{n}}+\bar{Y}_{n} i \theta_{1} Y_{n}+\bar{Y}_{n}: \theta_{1} Y_{n}
\end{aligned}
$$

So for wive done nothing, just written QCD in daff. vars. Only in component are big, so lets take only external In's [ do st couple current to Ir in path int.]
Integrate out $\xi=$

$$
\begin{aligned}
\delta / \delta \eta_{n}: \frac{\alpha}{2} i \pi \cdot D Y_{\pi} & +i \theta_{\perp} Y_{n}=0 \\
i \pi \cdot D Y_{\pi} & +\frac{a}{2} i \theta_{\perp} Y_{n}=0 \\
\eta_{\bar{n}} & =\frac{1}{i \bar{\pi} D} i \phi_{\perp} \frac{x}{2} \quad Y_{n}
\end{aligned}
$$

Think of $\frac{1}{i \pi \cdot 2} f(x)=\int d^{4} p \frac{e^{-i p \cdot x}}{\bar{n} \cdot p} f(p) \quad$ for inv. derive
Now

$$
\mathcal{L}=\bar{\zeta}_{n}\left(i n \cdot 0+i \nabla_{\perp} \frac{1}{i \pi \cdot 0} i \theta_{\perp}\right) \frac{\pi}{2} \zeta_{n}
$$

Next: introduce collinear \& usoft gluon fields \& phases e

- recall $A u^{\mu}$ hoo $P^{2} \sim Q^{2} \lambda^{4} \ll P_{c}^{2} \sim Q^{2} \lambda^{2}$ ic long wavelength, its like a classical background field as for as $A_{n}{ }^{\prime \prime} \&$ In are concerned write $A^{\mu}=A_{n}^{\mu}+A_{u s}^{\mu} \quad$ [not quite right, but suffices have]
- Phase Redefinition

$$
i \partial^{\mu} \rightarrow p^{\mu}+i \partial^{\mu}
$$ get $e^{-i x \cdot P}$ out front irrespective of number of fields we hove $\left(\frac{1}{i n ̃ o}\right.$ meanowe hove freyr rule with $0,1,2,3, \ldots, 10015)$

$$
\begin{aligned}
& \varphi_{n}=Y_{n, p} \\
& \text { in. } D=\text { in. } 2+9 n \cdot A_{1,8}+9 n \cdot A_{4} \\
& \lambda^{2} \\
& i D_{\perp}=\underbrace{P_{\perp}+9 A_{n_{18}}^{1}}_{i D_{\perp}^{C} \sim \lambda})+\underbrace{\left(i \partial^{\perp}+2 A_{\Delta s}\right)}_{\lambda^{2} \text { drop it }} \\
& i \bar{n} D=(\underbrace{\bar{\rho}+\rho \bar{n} \cdot A_{n, 8}}_{i \bar{万} \cdot D^{c} \sim \lambda^{\circ}})+\underbrace{\left(i \bar{n} \cdot \partial+\rho \bar{n} \cdot A_{\nu_{s}}\right)}_{\lambda^{2} \text { drop } 1+}
\end{aligned}
$$

Leading Order Action is O( $\lambda^{4}$ ) [* $\lambda^{-4}$ from measure $]$

$$
\mathcal{L}_{q}^{(0)}=e^{-i x \cdot p} \bar{\xi}_{n, p^{\prime}}\left[i n \cdot 0+i D_{\perp}^{e} \frac{1}{i \bar{n} \cdot O_{c}} i D_{\perp}^{c}\right] \frac{\not x}{2} \quad \xi_{n, p}
$$

- drop this if we remanbar to impose label conservation
- all fields are at $x$, derivatives $i \partial^{\mu} \sim \lambda^{2}$
- action explicitly local at $\mathbb{Q} \lambda^{2}$ scale
- action local at $Q \lambda$ too ( $D_{\perp}$ in numerator) mom. space version $f$ (call $)$
- only non-bal at $\sim Q$ scale
- terms ae some size in power counting

Repeat for Gluons

$$
\mathscr{L}=-1 / 4 G_{\mu \nu}^{A} G^{\mu \nu A}=-\frac{1}{2} \operatorname{tr}\left[G_{\mu \nu} G^{\mu \nu}\right], G^{\mu \nu}=\frac{i}{9}\left[D^{\mu}, D^{\nu}\right]
$$

$$
\begin{aligned}
& \mathcal{L}_{c,}^{(0)}=\frac{1}{2 g^{2}} \operatorname{tr}\left\{\left(\left[i \hat{D D}^{\mu}+g A_{n, b}^{\mu}, i \hat{D}^{\nu}+g A_{n, b}^{J}\right]\right)^{2}\right\}+\underset{\text { fixing }}{\text { range }} \\
& i \hat{D}^{\mu}=\frac{i \bar{n}^{\mu}}{2} n \cdot 0+\rho_{\perp}^{\mu}+\frac{n^{\mu}}{2} \bar{\rho}
\end{aligned}
$$

- terms dropped in contructing $\mathcal{L}_{2}^{(0)}, \mathscr{L}_{0}^{(0)}$ give. $\mathscr{L}_{\underset{e}{(1)}, \mathscr{L}_{c 3}^{(1)}, \ldots . . . . . . . . .}$

Arguement so for was tree level. To go further we need Symmativ ( $\frac{1}{1}$ power counting)
(1) Gauge Symmet
(2) Repor amptorization Invariance
(3) 5 pin Symaty?

1: Easiest in two-component form (rather then 4-comporats with $\left.\frac{d \bar{X}}{4} \quad q_{n}=l_{1}\right)$

$$
\begin{aligned}
& Y_{n}=\frac{1}{\sqrt{2}}\binom{\varphi_{n}}{\sigma^{3} \varphi_{n}} \\
& \mathscr{L}=\varphi_{n, p^{\prime}}+\left\{i n, D+i D_{\perp}^{c \mu} \frac{1}{i \bar{n} \cdot D_{c}} i D_{\perp}^{c \mu}\left(g_{\mu \nu}^{1}+i \epsilon_{\mu \nu}^{+} \sigma_{3}\right)\right\} \varphi_{n, p}
\end{aligned}
$$

not $\operatorname{su}(2)$
just $U(1)$ felicity $h=\frac{i \epsilon_{\perp}^{\mu \nu}}{4}\left[\gamma_{\mu}, \gamma_{\mu}\right]$ genator $h \sim \sigma_{3}$, spin along direction of motion

Broken by masses
Broken by non-pert effects Useful in pert. theory
(1) Gauge Symmaty $U(x)=\exp \left[i \alpha^{\wedge}(x) T^{A}\right]$

Nerd to consider U's which leave us within EFT eg. $i \partial^{\mu} \alpha^{A} \sim Q \alpha^{A}$ them $\varphi_{n}^{\prime}=u(x)$ in would no longer have $\rho^{2} \leqslant Q^{2} \lambda^{2}$
collinear $U(x) \quad i \gamma^{\mu} U_{c}(x) \sim Q\left(\lambda^{2}, 1, \lambda\right) U_{c}(x) \leftrightarrow A_{n, 8}^{\mu}$ usoft $U(x) \quad i \partial^{\mu} u_{u}(x) \sim Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right) u_{u}(x) \leftrightarrow A^{\mu}$

- two classes of gauge trnstm for two gave fields
- in momentum space we hove convolutions for $U_{c}$ $\xi_{n, 1} \rightarrow \sum_{i}\left(U_{c}\right)_{p-8} \zeta_{n, q}$
weill write shorthand $\quad I_{n} \rightarrow U_{e}$ In $_{n}$

Now bus $\xrightarrow{U_{c}}$ gov since otherwise wee give
large nom. to an usoft field
Aside recall our haoug-to-light current

In $\Gamma h_{v}^{u s} \rightarrow \bar{I}_{\sim} U_{c}^{+} \Gamma h_{u}^{u s}$ is rot gauge invariant
BuT we had to integrate out offshall propagators


$$
\begin{aligned}
& +\begin{array}{c}
\text { perms of } \\
\text { assigning } \\
q_{1},-1, q_{m}
\end{array} \quad=r \sum_{m=0}^{\infty} \sum_{\text {perms }} \frac{(-\eta)^{m} \bar{n} \cdot \epsilon_{n, b_{1}}^{a_{1}} \cdots \bar{n} \cdot \epsilon_{n, b_{m}}^{a_{m}}}{\bar{n} \cdot q_{1} \bar{n} \cdot\left(q_{1}, q_{2}\right) \cdots \bar{n} \cdot\left(\sum q_{i}\right)} \\
& \text { ie.crossed } * T^{a_{m}} \ldots T^{a_{1}} \\
& \text { graphs }=\Gamma \omega \quad \bar{n} \cdot A_{n, q_{i}}^{a_{i}} \rightarrow \bar{n} \cdot \epsilon_{n, q_{i}}^{a_{i}}
\end{aligned}
$$

we had first term previously $\quad-\frac{9 \bar{n}^{\mu}}{\bar{n} \cdot q} r T^{a}$
Here $\omega$ is a Wilson Line
Short form $\omega=\left[\sum_{p e m s} \exp \left(\frac{-9}{\bar{p}} \bar{n}, A_{n, \phi}(x)\right]\right.$
If we set residual coolinat $x=0$ than Founder transform $\omega=\omega(y,-\infty)=P \exp \left(i 2 \int_{-\infty}^{y} d s \bar{n} \cdot A(s \pi)\right)$
i. ie like $\quad \bar{\varphi}_{n}(y) W(y,-\infty) h_{u}(-\infty)$
short dist." $e$ usoft field at "long" dist.
Y ... \& doesn't see short dist. interactions
Now $\omega \rightarrow U_{c} \omega \neq \bar{Y}_{n} \omega r h v$ is invariant
End Aside

Gouge Transformations


- homogeneous in $\lambda$, recall $i \hat{D}^{\mu}$ ha ind in it Mus An.p Hus ${ }^{+}$ir like bock ground field trasfm of quantum field Anip

Gouge Symmetry ties together

$$
\begin{aligned}
& i n \cdot D=i n \cdot \partial+g n \cdot A_{n}+g m \cdot A_{u s}, \\
& i D_{\perp}{ }^{c} \\
& i \pi \cdot D^{c}
\end{aligned}
$$

Mass Dimension \& P.C. means either in .D $\sim \lambda^{2}$

$$
\text { or } \left.\frac{1}{\bar{p}}\left(i D_{+}\right)^{2} \sim \lambda^{2} \quad \text { (no other } \lambda^{2} o p s\right)
$$

What about coff, between inD i $D_{\perp} \frac{1}{i \pi \cdot 0} i \theta_{\perp}$ ?
What about other operators like

$$
\tau_{-} i D_{+c}^{\mu} \frac{1}{i \pi \cdot 0} i O_{\infty, c}^{\mu} \frac{\not \partial}{2} \xi_{n} \quad ?
$$

(ज) Reparameterization Invariance (RPI) $\frac{n^{\mu} m_{\mu \nu}, \bar{n}^{\mu} m_{\mu \nu}}{n, \bar{n} \text { break Lorentz Inv. }}$ (only $\epsilon_{+}{ }^{\mu \nu} M_{\mu \nu}$ preserved) rotations about 3 -axis
3 types of RPI which keep $n^{2}=\bar{n}^{2}=0$, $n \cdot \bar{n}=2$
I. $\quad n \rightarrow n+\Delta_{\perp}$

II $n \rightarrow n$
III
$n \rightarrow e^{\alpha} n$
$\bar{n} \rightarrow \bar{n}$
$\bar{n} \rightarrow \bar{n}+\epsilon_{2}$
type III is simple: implies for any operator with an $n^{\mu}$ we hove corresponding $n$ in denominator or a corresponding $\bar{n}$ in numerator
eg. Liq $\operatorname{la}^{(0)}$ had $\bar{x} \frac{1}{i n \cdot 0_{c}}, \bar{x} \cdot 0$ Cant hove $\overline{\text { IT .D }}$

Dower Counting $\left.\begin{array}{l}\Delta_{ \pm} \sim \lambda \\ \epsilon_{\perp} \sim \lambda^{\circ}, \alpha \sim \lambda^{\circ}\end{array}\right\} \begin{array}{r}\text { max power that } \\ \text { leaves scaling of }\end{array}$ collinear momenta intact
ie we only care about restoring Lorentz Inv. for. the set of fluctuations described by SCET stopped hare

Find
under I

$$
\begin{aligned}
& n \cdot D \rightarrow n \cdot D+\Delta^{+} \cdot D^{+} \\
& D_{\mu} \rightarrow D_{\mu}^{2}-\frac{\Delta \mu}{2} \bar{n} \cdot D-\frac{\bar{n} \mu}{2} \Delta^{2} \cdot D^{+} \\
& \bar{n} D \rightarrow \bar{n} \cdot D \\
& I_{n} \rightarrow\left(1+\frac{\Delta_{1} \bar{x}}{4}\right) I_{n} \\
& \omega \rightarrow \omega
\end{aligned}
$$

under III

$$
\begin{aligned}
& n \cdot D \rightarrow n \cdot D \\
& D_{\mu}^{\perp} \rightarrow D_{\mu}^{1}-\frac{\epsilon \frac{1}{\mu}}{2} n: D-\frac{n \mu}{2} \epsilon^{\perp} \cdot D^{\perp} \\
& \bar{n} D \rightarrow D^{\perp} \\
& \xi_{n} \rightarrow\left(1+\frac{\epsilon^{\perp}}{2} \frac{1}{i n \cdot D} i \theta_{\perp}\right) \xi_{n} \\
& \omega \rightarrow\left[\left(1-\frac{1}{i n \cdot D} i \epsilon^{+} \cdot D_{\perp}\right) \omega\right]
\end{aligned}
$$

$$
V^{\mu}=\frac{n \cdot V}{2} n^{\mu}+\frac{n V}{2} n^{\mu}+V_{+}^{\mu} \text { invariant under I, II, III }
$$

'-oast Time
RPT

$$
p^{\mu}=\frac{n^{\mu}}{2} \bar{n} \cdot(p+k)+\frac{\bar{n}^{\mu}}{2} n \cdot k+\left(p_{\perp}^{\mu}+k_{\perp}^{\mu}\right)
$$

- Any choice of basis vectors, $n^{2}=0=\bar{n}^{2}, n \cdot \bar{n}=2$ equally good
I $n \rightarrow n+\Delta_{+}$II $n \rightarrow n$ III $n \rightarrow e^{\alpha} n$

$$
\bar{n} \rightarrow \bar{n} \quad \pi \rightarrow \bar{n}+\epsilon_{1} \quad \bar{n} \rightarrow e^{-\alpha} \bar{n}
$$

- Freedom in the component decomposition

$$
\begin{array}{ll}
\pi \cdot(p+k), \quad p_{\perp}^{\mu}+k_{\perp}^{\mu} \\
p_{\mu} \rightarrow p_{\mu}+\beta \mu & i \partial_{\mu} \rightarrow i \partial_{\mu}-\beta \mu \\
\varphi_{n}, p(x) \rightarrow e^{i \beta \cdot x} \varphi_{n, p+\beta}(x) & n \cdot \beta=0
\end{array}
$$

Connects: $\quad p^{\mu}+i \partial^{\mu}$

Gauge this

$$
\begin{aligned}
& i D_{\perp}{ }^{c \mu}+W_{i} O_{\perp}^{u s \mu} W^{+} \\
& i \bar{n} \cdot 0^{c}+\omega \text { in aus } W^{+}
\end{aligned}
$$

nice properties under gauge symmetry

Modifies earlier attempt:-due to $w^{\prime}$ s this is not $A_{n}{ }^{\mu}+A_{u s}^{\mu}$ - doesn't affect nOD in LO $\mathscr{L}$.

I, II, III leave $V^{\mu}=\frac{n^{\mu}}{2} \bar{n} V+\frac{n^{\mu}}{2} n \cdot V+V_{\perp}^{\mu} \quad$ invariant

III last time

Under I

$$
\begin{aligned}
& n \cdot D \rightarrow n \cdot D+\Delta_{\perp} \cdot D_{\perp} \\
& D_{\mu} \rightarrow D_{\mu}^{+}-\frac{\Delta_{\mu}}{2} \pi \cdot D-\frac{\pi_{\mu}}{2} \Delta^{+} \cdot D^{+} \\
& \bar{n} \cdot 0 \rightarrow n \cdot D \\
& \eta_{n} \rightarrow\left(1+\frac{\Delta_{\perp} \not D^{\prime}}{4}\right) \ell_{n} \\
& \omega \rightarrow \omega^{\prime}
\end{aligned}
$$

Under II

$$
\begin{aligned}
& n \cdot D \rightarrow \cap . D \\
& D_{\mu}^{\perp} \rightarrow D_{\mu}^{\perp}-\frac{\epsilon_{\mu}^{1}}{2} n \cdot D-\frac{n_{\mu}}{2} \epsilon^{\perp} D^{\perp} \\
& \bar{n} \cdot D \rightarrow \bar{n} \cdot D+\epsilon_{\perp} \cdot D_{1} \\
& q_{n \rightarrow \ldots}\left(1+\frac{\varepsilon_{1}}{2} \frac{1}{i \bar{\pi} \cdot D} i \Omega_{1}\right) q_{n} \\
& \omega \rightarrow\left[\left(1-\frac{1}{i \bar{n} \cdot 0} \quad i \epsilon^{\perp} \cdot D_{\perp}\right) \omega\right]
\end{aligned}
$$

Power Counting: max power that leaves scaling for collin momentum

$$
\begin{array}{lrl}
\epsilon_{\perp} \sim \lambda^{0} & , & \alpha \sim \lambda^{0} \\
\Delta_{+} \sim \lambda & & {\left[\text { else } \sim \cdot 0 x \lambda^{2}\right]}
\end{array}
$$

盟.

$$
\begin{aligned}
& \delta(I) \quad\left(\bar{q}_{n} i \phi_{\perp}^{c} \frac{1}{i=0} i \theta_{+}^{c} \frac{\not \partial}{2} \eta_{n}\right)=-\bar{q}_{n} i \Delta^{+} \cdot 0^{+} \frac{\ddot{\partial}}{2} \operatorname{lin}_{n} \\
& \delta(I)\left(\bar{\tau}_{n} \text { in } D \frac{\bar{x}}{2}, \mathcal{I}_{n}\right)=\underbrace{\bar{\zeta}_{n} i \Delta+D^{2} \frac{\bar{x}}{2} \vartheta_{n}}_{\text {connected }}
\end{aligned}
$$

type -II rules out.. $\bar{q}_{n} D_{2}^{\mu} \frac{1}{i n \cdot 0} D_{\perp}^{\mu} \frac{D}{2}$ in operator in $\mathcal{L}_{q}{ }_{q}{ }^{(0)}$
So

$$
\mathcal{L}_{Y Y}^{(0)}=\bar{\varphi}_{n}\left[i n .0+i \theta_{\perp}^{c} \frac{1}{i n O^{c}} i D_{\perp}^{c}\right] \frac{\bar{x}}{2} \varphi_{n}
$$

Unique by pic., garage inv, $\$$ Ref

More collinear fuels: for $>1$ energetic hadron
or $>1$ u jet
Genenaluge to $\sum_{n} \mathcal{L}_{\xi i}^{(0)}$ read more $n$ 's ( $\ddagger n^{\prime} s$ )

For $n_{1}, n_{2}, n_{3}, \ldots$ the modes are distinct only if


$$
n_{i} \cdot n_{j} \quad>\lambda^{2} \quad i \neq j
$$

eg. $\quad P_{2}=Q n_{2}$
$n_{1} \cdot P_{2}=Q n \cdot n_{2} \sim Q \lambda^{2}$ than $P_{2}$ is $n_{1}$-collinear

Discrete Sym notes

$$
n=(1,0,0,1), \quad \bar{n}=(1,0,0,-1)
$$

$$
\begin{aligned}
& c^{-1} \xi_{n, p} c=-\left[\begin{array}{l}
q_{n,-p}
\end{array} e\right]^{\top} \\
& P=\left(p^{+}, p^{-}, \rho^{2}\right) \\
& p^{-1} Y_{n, p}(x) p=\gamma_{0} \quad \eta_{\pi}, \tilde{p}\left(x_{p}\right) \\
& \hat{p}=\left(p^{-}, p^{+}, p_{+}\right) \\
& T^{-1} \varphi_{n, p}(x) T=\tau \quad Y_{n}, \tilde{p}\left(x_{\tau}\right) \\
& X_{p}=\left(x^{-}, x^{+},-x_{1}\right) \\
& X_{T}=\left(-x^{-},-x^{+}, x^{+}\right)
\end{aligned}
$$

Tudy $\mathcal{L}$ (0)
(1) Propagator

$$
\begin{aligned}
& i \frac{\theta}{2} \frac{\theta(\bar{n} \cdot p)}{n \cdot p+\frac{p_{1}^{2}}{n \cdot p}+i \epsilon}+\frac{i p}{2} \frac{\theta(-n \cdot p)}{+n \cdot p+\frac{p_{1}^{2}}{\pi p}-i \epsilon}=\frac{i x}{2} \frac{\bar{n} \cdot p}{n \cdot p \bar{n} p+p_{1}^{2}+i \epsilon} \\
& \text { particles } \bar{n} \cdot p>0 \quad \text { anti } \pi \cdot p<0
\end{aligned}
$$

(2) Interactions

- only ........... gloat lo us $\xi k^{\mu}, a$

$$
=i \rho T^{a} n^{\mu} \frac{\vec{x}}{2}
$$

\& only seer....nik usoft momentum... (multipole expn.)

$$
\lim ^{\xi^{k}} \underbrace{\xi}
$$

$$
\begin{aligned}
& \frac{\bar{n} \cdot \rho}{\bar{n} \cdot \rho n \cdot(p+k)+p_{2}^{2}+i \epsilon}=\frac{\bar{n} \cdot p}{\bar{n} \cdot \rho n \cdot k+p^{2}+i \epsilon} \\
& =\frac{\bar{n} \cdot \rho}{\bar{n} \cdot \rho n \cdot k+i \epsilon}
\end{aligned}
$$

(Compore Collinen G'uon $\left.\frac{\bar{n} \cdot(p+\xi)}{(p+\xi)^{2}+i \epsilon}\right)$

Propagator reduces to eikonal approx when appropriate


Usoft - Collinear Factorization

Consider

Motivates us to consider a field redefinition

$$
\begin{aligned}
& q_{n, p}(x)=Y(x) \quad q_{n, p}^{(0)}(x) \quad A_{n, p}=Y A_{n, p}^{(0)} y^{+} \\
& \uparrow \text { adjoint version } \\
& Y(x)=P \exp \left(i g \int_{-\infty}^{0} d s n \cdot \operatorname{Aus}^{a}(x+n s) T^{a}\right) \\
& \text { naD } Y=0 \text {, } Y^{+} Y=1 \quad \text { find } W=Y \omega^{(0)} Y^{+} \\
& \mathcal{Y}_{\xi}(0)=\bar{q}_{n, p^{\prime}} \frac{\not \partial}{2}[\text { in.0 }+\ldots] Y_{n, p} \\
& =\bar{Y}_{n+p}^{(0)} \frac{\bar{X}}{2}\left[Y^{+}{ }_{\text {in }} \text {. Out } Y+Y^{+}\left(Y_{g} \bar{n} \cdot A_{n} Y^{+}\right) Y+\cdots\right] \operatorname{Incp} \\
& =\overline{I n}_{n, p}^{(0)} \frac{\bar{\alpha}}{2}\left[i n \cdot \partial+g n \cdot A_{n}+\ldots\right] \text { Yn,p }
\end{aligned}
$$

it all $a$ Aus 's disappear!

True for gluon action too

$$
\mathcal{L}\left(q_{n . p}, A_{n .8}^{\mu}, n . A_{u s}\right)=\mathscr{L}\left(q_{n, p}^{(0)}, A_{n .8}^{(0)}, 0\right)
$$

Interactions don't disappear, but are moved out of L.O. $\mathcal{L}$ and into currents
$\operatorname{eg} 1$

$$
\begin{gathered}
J=\bar{q} \omega \Gamma h_{v}=\bar{q}_{n}^{(0)} Y^{+} Y \omega^{(0)} Y^{+} \Gamma \text { ho } \\
=\left(\bar{q}_{n}^{(0)} \omega^{(0)}\right) \Gamma\left(Y^{+} h_{v}\right)
\end{gathered}
$$

If our current was a collinear color singlet

$$
\lg 2 \quad J=\left(\bar{q}_{n} \omega\right) \Gamma\left(\omega^{+} \underline{\xi}_{n}\right)=\bar{\varphi}_{n}^{(0)} \omega^{(0)} y^{+} \not \nVdash\left(\omega^{+(0)} \varphi_{n}^{(0)}\right)
$$

Quite powerful, sums an oo clos of diagram in eg 1

in eg 2 useft gluons decouple at L.O. from any graph This is color transparency
©


- usoft gluons decouple from energetic partors in color singlet state
- than just "see" overall color singlet due to moltipole exparsion

What about Wilson Coefficients?
have $C(\bar{P}, \mu)$ ie depend on large momenta picked out by label operation $P \sim \lambda^{\circ}$
eg. $C(-\bar{p}, \mu)\left(\bar{q}_{n} \omega\right) \Gamma h_{\sigma}=\left(\bar{\varphi}_{n} \omega\right) \Gamma h_{v} C\left(\bar{p}^{+}\right)$
must act on product ( $\bar{q} \omega$ ) since only momentum of this combination is gauge invariant

Write. $(\bar{\zeta} \omega) r h_{u} C\left(\bar{p}^{+}\right)=\int \operatorname{d\omega } C(\omega, \mu)\left[(\bar{q} \omega) \delta\left(\omega-\bar{p}^{+}\right) \Gamma h_{\omega}\right]$

$$
=\int d \omega C(\omega, \mu) O(\omega, \mu)
$$

$\uparrow \stackrel{\uparrow}{\uparrow}$ convolution (as promised)
Hord-Collinear Factorization of " $c$ " and collinear " $O$ "

Recall def of $\omega, \quad \omega^{+} \omega=1$
as operator in. $D_{c} \omega=\omega \bar{p}$

$$
\begin{aligned}
& i \overline{\bar{n}} \cdot D_{c}=\omega \bar{\rho} \omega^{+} \\
& \left(i \bar{n} \cdot D_{c}\right)^{k}=\omega \bar{p}^{k} \omega^{+} \\
& f\left(i \bar{n} D_{c}\right)=\omega f(\bar{P}) \omega^{+} \quad \text { trades } \pi \cdot A \rightarrow \omega \\
& \text { Part of collin op. } p^{2} \sim \lambda^{2} Q^{2} \\
& \text { hard } \\
& \text { coefficient } \\
& =\int d \omega f(\omega) \omega \delta(\omega-\bar{p}) \omega^{+}
\end{aligned}
$$

In genenal define.

$$
\begin{aligned}
& x_{n}=\left(\omega^{+} \xi_{n}\right) \\
& x_{n, \omega}=\delta(\omega-\bar{p})\left(\omega^{+} \xi_{n}\right)
\end{aligned}
$$

Operatiors ... $\int d \omega_{1} d \omega_{2} \quad \bar{x}_{1, \omega_{1}} \Gamma x_{n_{1} \omega_{2}}$ etc.

IR dijergences, Matchin, \& Rumaing

Consider heary- to light current for $b \rightarrow 5 \gamma$

$$
I^{Q C O}=\xi^{5} \quad b
$$

$$
\left.J^{S C E T}=(\bar{\Psi} \omega) \Gamma \text { ho } C\left(\bar{p}^{+}\right) \quad \text { (pre } 1 \text {-field-redef }\right)
$$

$A C D$ grapheat onc-loop take $p^{2} \neq 0$ to cegulat IR of collim-ouark


$$
z_{\text {tensor }}=1+\frac{\alpha_{s} c_{F}}{4 \pi} \frac{1}{\epsilon}
$$

tensor current not conrerved

$$
\text { Sum }=\bar{s} \Gamma b \quad\left[1-\frac{\alpha_{s} C_{F}}{4 \pi}\left(\ln ^{2}\left(\frac{-p^{2}}{m_{b}}\right)+\frac{3}{2} \ln \left(\frac{-p^{2}}{m_{b}^{2}}\right)+\frac{1}{\epsilon_{I n}}+\cdots\right]\right.
$$

$$
\begin{aligned}
& =-\bar{s} \Gamma b \frac{\alpha s c}{4 \pi}\left[\ln ^{2}\left(-\frac{p^{2}}{m b^{2}}\right)+2 \ln \left(-\frac{p^{2}}{m b^{2}}\right)+\cdots\right] \\
& Z_{b}=1-\frac{\alpha_{s}(r}{4 \pi}\left[\frac{1}{\epsilon_{u v}}+\frac{2}{\epsilon_{I R}}+3 \ln \frac{\mu^{2}}{m \sigma^{2}}+\cdots\right] \leftarrow \sum_{R} \\
& z_{s}=1-\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{1}{\epsilon \omega v}-h \frac{p^{2}}{\mu^{2}}\right]
\end{aligned}
$$

vsot-


$$
\int \frac{d^{d} k n \cdot n}{(v \cdot k+i \epsilon)\left(k^{2}+i \epsilon\right)\left(n \cdot k+p^{2} / \pi \cdot p+i \epsilon\right)}
$$

$=-\operatorname{Tin}_{s} \frac{\alpha_{s} C_{E}}{4 \pi}\left[\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(\frac{\mu \bar{\pi} \rho}{-\rho^{2}-i \epsilon}\right)+2 \sin ^{2}\left(\frac{\mu \pi \rho}{-\rho^{2}}\right)+\frac{3 \pi^{2}}{y}\right]$
$\alpha n^{\mu} n_{\mu}=0$ Feyn. Gauge

$$
Z_{H Q E T}=1+\frac{\alpha_{S} C_{F}}{4 \pi}\left[\frac{2}{\epsilon_{U N}}-\frac{2}{\epsilon_{I R}}\right]
$$

Collinest Graphs

$$
\sum_{k \neq 0} \int_{k \neq-p}^{k+p} d^{d} k r \frac{n \cdot \bar{n} \cdot \bar{n} \cdot(p+k)}{\bar{n} \cdot k k^{2}(k+p)^{2}}
$$

each has lakel oresidual

$$
\left(k, k_{r}\right)
$$

recall grid
Grid is like Wilsonion EFT
$T_{0}$ make it Continuum

if $k=0$ iglvon is usoft

$$
\begin{aligned}
& \sum_{k \neq 0} \int d^{d} k_{r} F\left(k, p, k_{r}\right)=\int d^{d} k\left[F(k, p)-F^{\text {subt }}(k, r)\right] \\
& k=-p \text { usoft } \\
& \text { gurk } \\
& \text { (harnles) } \\
& \begin{array}{l}
k \text { scale } \\
\begin{array}{c}
\text { owords } \\
\text { usoft }
\end{array}
\end{array} \frac{n \cdot \bar{n} \bar{n} \cdot p}{\bar{n} \cdot k k^{2}\left(n \cdot k \bar{n} \cdot p+p^{2}\right)} \\
& =- \text { irho } \frac{\alpha_{S} G_{F}}{4 \pi}\left[-\frac{2}{\epsilon^{2}}-\frac{2}{\epsilon}-\frac{2}{\epsilon} \ln \left(\frac{\mu^{2}}{-\rho^{2}}\right)-\ln ^{2}\left(\frac{\mu^{2}}{-\rho^{2}}\right)\right. \\
& \left.-2 \ln \left(\mu^{2} / \rho^{2}\right)-4+\pi^{2} / 6\right]
\end{aligned}
$$



$$
\alpha n \cdot \bar{n}=0
$$

$$
\text { —0- EnT } \quad z=1-\frac{\alpha_{s}(F}{4 \pi}\left[\frac{1}{\epsilon_{u v}}+e \frac{\mu^{2}}{p^{2}}\right]
$$

IR matches $\ln ^{2}\left(p^{2}\right) \quad Q C D=S C E T$
$\ln \left(p^{2}\right)$
H
$Y / \epsilon_{x r}$
11

If we had nejected sollinea grophs thir would not be true [ historicall LEET....]

degrees of freedom tile momentum space while main taiainy p.c.

UV dijergences in SCET need a c.t.

$$
z=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\frac{1}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \left(\frac{\mu}{\pi \cdot p}\right)+\frac{5}{2 \epsilon}\right]
$$

$\psi_{L L} \quad e_{\text {port of NLC }}$

Running
In geneal we must be careful with coifs since than act like operators $C(\mu, \bar{p})$

In our eg. $\bar{p} \rightarrow \pi \cdot p$ of external field always nontrivial case

$$
\begin{aligned}
& C(\mu, \bar{n} \cdot(p+k)+\bar{n} \cdot(-k)) \\
& =C(\mu, \pi \cdot p)
\end{aligned}
$$

$$
\mu \frac{d}{d \mu} C(\mu)=-\frac{d_{s}(\mu) C_{F}}{\pi} \ln \left(\frac{\mu}{\bar{p}}\right) C(\mu) \quad \text { an dm } \quad \text { aim }
$$

Sol $\quad Q E D \quad d_{s}=$ fixed, $\quad C_{F}=1$

$$
c(\mu)=\exp \left[-\frac{\alpha}{2 \pi} \ln ^{2}\left(\frac{\mu}{\rho}\right)\right]
$$

$$
Q \subset D \quad C(\mu)=\exp \left[\frac{-4 \pi C_{F}}{\beta_{0}^{2} \alpha_{s}(m b)}\left(\frac{1}{z}-1+\ln z\right)\right]
$$

$$
z=\frac{\alpha_{s}(\mu)}{\alpha_{s}(m t)}
$$

have $m_{b}=$ matching scale
In more complicated cases $C\left(\bar{p}, \bar{p}^{+}\right)$will be sensitive to $\bar{n} \cdot k$ loop monenturn and weill get

$$
\mu \frac{2}{2 \mu} C(\mu, \omega)=\int d \omega^{\prime} \gamma\left(\omega, \omega^{\prime}\right) C\left(\mu, \omega^{\prime}\right)
$$

examples

$$
\begin{gathered}
D I S \\
\gamma^{*} \pi^{0} \rightarrow \pi^{0} \\
\gamma^{*} p \rightarrow \gamma_{p^{\prime}}
\end{gathered}
$$

Alterelli - Parisi evolution.
Brodsky - Lepose
Deeply thirtual Compton Scott,
these one actually all the evolution of a single SLET operator

$$
\left(\bar{q}_{n} \omega\right) C\left(\bar{p}, \bar{p}^{+}\right)\left(\omega^{+} \xi_{n}\right)
$$

Note: Senies in $\ln C(\mu)$


$$
1 / \epsilon^{2} \rightarrow 1 / \epsilon h(\mu) \text { tern }
$$

Differs from single lo, case somewhat
[At LHC, Sudakou effects are important in
Partan showers [Prob to evolve withart bronchi]

Jets
est Time

SCET : soft - wllineor factorization

- hard - collinear factorization

$$
\left[\mathcal{L}_{a, 2}^{(0)}, R P I, I R\right. \text { div., }
$$

| hard | $P^{\mu}$ |
| ---: | :--- |
| collin | $\sim(Q, Q, Q)$ |
| usoft | $\sim\left(Q \lambda^{2}, Q, Q a\right)$ |
| $\left.Q \lambda^{2}, Q \lambda^{2}, Q \lambda^{2}\right)$ |  |

SCETII: still to come, - soft-collinear factorization

- Wilson coeffs
hard-collin $\left.p^{\mu}\left(Q \eta_{1}, Q\right), \sqrt{Q \eta}\right)$ $C=J$ jet function
collin $P^{\mu} \sim\left(Q \eta^{2}, Q, Q \eta\right)$
soft $\left.\quad p^{\mu} \sim(\hat{Q})_{i} Q n, Q n\right)$
Nate: identification of d.o.f. is frore dependant, but relationships between d.of. are frame indep. eg. boost can swap collin $\leftrightarrow$ soft

Results for observalue which tie doff together are "Factorization Theorem"
eg $\int[d \ldots] H\left(q^{-}\right) J\left(q^{-}, p^{-}, k^{+}\right) \varnothing\left(p^{-}\right) \varnothing(k+)$

Processes

- $\gamma^{*} \gamma \rightarrow \pi^{0}$
$\Pi-\gamma$ form factor at $Q^{2} \gg \Lambda^{2}$ for $\gamma^{*}$ Breit frame $q^{\mu}=\frac{Q}{2}\left(n^{\mu}-\pi^{\mu}\right), \ldots P_{\gamma}^{\mu}=E n^{\mu}$

$$
P_{\pi^{\mu}}^{\mu}=\frac{Q}{2} n^{\mu}+\underbrace{\left(E-\frac{Q}{2}\right)}_{M_{\pi^{2} / 2 Q}^{2}} \bar{n}^{\mu}
$$

pion $=$ collinear in $n$-direction $\quad\left(5 C E T_{\text {III }}\right)$

- $\gamma^{*} m^{\prime} \rightarrow M^{\prime} \quad m^{\prime} \quad$ (meson) form factor $Q^{2} \gg \Lambda^{2}$ for $\gamma^{2}$ $M=$ collinear in $n$.
$m^{\prime}=\cdots \quad . \quad \bar{n} \quad$ (say) $\quad$ (SCETI)
- $B \rightarrow D \pi$ Matrix Elf. of 4-guack operators

$$
\begin{aligned}
& Q=\left\{M_{b}, M_{c, 1} E_{\pi}\right\}>\wedge \\
& B, D \text { one soft } P^{2} \mu \Lambda^{2}, \pi \text {-collingon }\left(S C E T_{I I}\right)
\end{aligned}
$$

- DIS
$e^{-} \rho \rightarrow e^{-x}$

Structure Functions at $\mathbb{Q}^{2} \gg \Lambda^{2}$
and $1-x \gg 1 / Q$. (ie not near endpts in Bjorken $x$ )
Breit frame: proton $n$-collinear, $X$-hard
(SCETI)

- Drell-Yan

$$
\operatorname{l-Yan}_{p \bar{p} \rightarrow e^{+} e^{-} x} \quad \frac{d \sigma}{d Q^{2}} \quad Q^{2}=\text { inv. mans of } e^{+} e^{-}>\Lambda^{2}
$$

$p-n$-collin, $\bar{p}-\bar{n}$-collin, $x$-hard

- $e^{+} e^{-} \rightarrow$ jets
$\bar{p}>$ jets
PP $\rightarrow$ jets an two jets
$n$-collin jet $\bar{n}$-collin jet etc.

IIS A rich subject, only aspects related to QCD factorization are covered here using SCET

Refs: $\quad\{1.8$ of text
Aneesh M.'s review: hep-ph / 9204208
Bob J.'s review: hep-pt/9602236
papa: hep-ph/0202088 (for material below)


$$
\vec{P}_{x}^{\mu}=\sum_{\substack{\text { ail } \\ \text { hadrons }}} P_{x_{i}}^{\mu}
$$

inclusive $O P E$
$\sim Q \Lambda \sim N / Q$ endpt. region

Parton Variables
struck guork corries some

$$
\sim \Lambda^{2} \quad \sim \Lambda^{2} / Q^{2}
$$

 fraction $\xi_{2}$ of proton momentum
$\bar{n} \cdot p=\xi \bar{n} \cdot R \quad 4$ we $l l$ see how to $p^{\prime 2} \simeq Q^{2}\left(\frac{q}{x}-1\right)$ formulate $\xi$ in $Q C D$

- Framew

Breit Frome

$$
\begin{aligned}
& q^{\mu}=\frac{Q}{2}\left(\bar{n}^{\mu}-n^{\mu}\right) \\
& e^{\mu}=\frac{n^{\mu}}{2} \bar{n} \cdot P+\frac{\bar{n}^{\mu} m_{p}^{2}}{2 \bar{n} \cdot p}=\frac{n^{\mu}}{2} \frac{Q}{x}+\cdots \text { collineor } \\
& P_{x}^{\mu}=\frac{n^{\mu}}{2} Q+\frac{\bar{n}^{\mu}}{2} \frac{Q(1-x)}{x}+\cdots \quad \text { hard }
\end{aligned}
$$

Proton is moct of colliver gur-ks and gloons
Rest Frome

$$
\begin{array}{ll}
E^{\mu}=\frac{m_{p}}{2}\left(n^{\mu}+\bar{n}^{\mu}\right) & \text { soft } \\
q^{\mu}=\frac{\bar{n}^{\mu}}{2} \frac{Q^{2}}{m_{p} x}-\frac{n^{\mu}}{2} m_{p} x+\cdots & \\
P_{x}^{\mu}=\operatorname{sum} & \text { "collineon" } P_{x}^{2} \wedge Q^{2}
\end{array}
$$

Like $B \rightarrow x_{c} e v$ we con write cross - section in term of leptonic $\$$ hadronic tensors

$$
d \sigma=\frac{d^{3} k^{\prime}}{2\left|k^{\prime}\right|} \frac{e^{4}}{5 Q^{4}} L^{\mu \nu}\left(k, k^{\prime}\right) \omega_{\mu \nu}(P, 8)
$$

we'll look at spintaug. case

$$
\begin{aligned}
W_{\mu \nu}=\frac{1}{\pi} & I_{m} T_{\mu \nu} \\
T_{\mu \nu} & =\frac{1}{2} \sum_{S_{p i n}}\left\langle T_{p}\right| \hat{T}_{\mu \nu}(8)|p\rangle \\
\hat{T}_{\mu \nu} & =i \int d^{4} x e^{i s \cdot x} T\left[J_{\mu}(z\rangle J_{u}(0)\right] \\
e & \text { eim. currents }
\end{aligned}
$$

$$
T_{\mu \nu}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{0}}{q^{2}}\right) T_{1}\left(x, a^{2}\right)+\left(p_{\mu}+\frac{q_{\mu}}{2 x}\right)\left(p_{u}+\frac{q_{0}}{2 x}\right) T_{2}\left(x, Q^{2}\right)
$$

Satifies current conseruation, $P, C, T$, etc.

Want inaginory part of forward scattering

egluan initiates

$$
\hat{T}^{\mu \nu}=\frac{g_{1}^{\mu \nu}}{Q}\left(O_{1}^{(i)}+\frac{O_{1}^{9}}{Q}\right)+\frac{\left(n^{\mu}+n^{\mu}\right)\left(n^{\nu}+\bar{n}^{j}\right)}{Q}\left(O_{2}^{(i)}+\frac{O_{2}^{9}}{Q}\right)
$$

$O\left(\lambda^{2}\right)$ operators $\quad \downarrow^{\text {flawor }=u, d, \ldots}$

$$
\begin{aligned}
& O_{j}^{(i)}=\bar{p}_{n, p}^{(i)} \cdot \omega \frac{\not D}{2} C_{j}^{(i)}\left(\bar{p}_{+}, \bar{p}_{-}\right) \omega^{+} \varphi_{n, p}^{(i)} \\
& O_{j}^{(9)}=\operatorname{tr}\left[\omega^{+} B_{+}^{\lambda} \omega C_{j}^{g}\left(\bar{p}_{+}, \bar{p}_{-}\right) \omega^{+} B_{+\lambda} \omega\right]
\end{aligned}
$$

Where ig $B_{\perp}{ }^{\lambda} \equiv\left[i \bar{n} \cdot D_{c}, i D_{\perp c}{ }^{\lambda}\right] \sim \lambda \sim Y_{n}$

$$
\bar{P}_{ \pm}=\bar{P}^{+} \pm \bar{P}
$$

O:(i) will laad to guark, anti-guank p.d.f.'s
$0 j^{9}$
u
い gloon

$$
p \cdot d \cdot f \cdot ' s
$$

Quork contribution in detail:

$$
\left.\begin{array}{c}
O_{j}^{(i)}=\int d \omega_{1} d \omega_{2} \quad C_{j}^{(i)}\left(\omega_{+}, \omega_{-}\right)
\end{array} \begin{array}{ccc}
\left(\bar{\varphi}_{n} \omega\right)_{\omega_{1}} \frac{\not \partial}{2} & \left(\omega^{+} \varphi_{n}\right)_{\omega_{2}}
\end{array}\right]
$$

- coord $f\left(/ p(z)=\int d y e^{-i \partial z \bar{n} \cdot p y}\langle p| \bar{\xi}(y) \omega(y,-y) \nexists \xi(y)|p\rangle\right.$ space porter distr for sQuall $i$ in footer $p$

$$
\bar{f}_{i / p}(z)=-f_{i / p}(-z) \text { for anti-buork }
$$

mom.
space $\left\langle p_{n}\right|\left(\bar{\xi}_{n} \omega\right)_{\omega_{1}} \bar{\nabla}\left(\omega^{+} \xi_{n}\right)_{u_{2}}\left|p_{n}\right\rangle=4 \bar{n} \rho_{0}^{1} d \xi \delta\left(\omega_{-}\right)$

$$
*\left[\delta(\omega+-2 \xi \bar{n} \cdot p) f_{i / p}(\xi)-\delta(\omega++2 \xi \bar{n} \cdot p) \overline{f_{i} / p}(\xi)\right]
$$

recall positive $\omega_{1}=\omega_{2}$ gives
particles
A
negative $\omega_{1}=u_{k}$
gives anti-porticles
$\left(\bar{q}_{n} \omega\right)_{\omega} \overline{\vec{x}}\left(\omega^{+} \xi_{n}\right)_{\omega}$ is a number operator for collinear quarks with momentum $w$ a parton
$\left[\begin{array}{c}\text { If we tried to couple usoft or soft glow to this op. } \\ \text { its a singlet so they decouple, roue toter }\end{array}\right]$ Charge Conjugation

$$
c_{j}^{(i)}\left(-\omega_{+}, \omega_{-}\right)=-c_{j}^{(i)}\left(\omega_{+}, \omega_{-}\right)
$$

- relates Wilson-Coeff for quarks $\ddagger$ anti-quarks at operator level
- Only, reed matching for guorks

Relate basis

$$
\begin{aligned}
& \frac{1}{\pi} I_{m} T_{1}=\left[(\omega) \frac{-1}{Q}\left(\frac{1}{\pi} I_{m} C_{1}(\omega)\right)\left\langle O^{(i)}(\omega)\right\rangle\right. \\
& \left.\frac{1}{\pi} I_{m} T_{2}=\int[d \omega]\left(\frac{4 x}{Q}\right)^{2} \frac{1}{Q} \frac{1}{\pi} I_{m}\left(C_{2}(\omega)-\frac{C_{1}(\omega)}{4}\right)<O^{(i)}(\omega)\right\rangle
\end{aligned}
$$

Define $H_{j}(z)=\frac{I_{m}}{\pi} C j\left(2 Q z, 0, Q^{2}, M^{2}\right)$

$$
\begin{aligned}
& \omega_{+}, \omega_{-} \text {do } \omega_{ \pm} \omega_{i t h} \\
& \text { s-furctions } \\
& T_{1}\left(x, Q^{2}\right)=\frac{-1}{x} \int_{0}^{1} d \xi \quad H_{1}^{(i)}\left(\frac{q}{x}\right)\left[f_{i / p}(\eta)+\bar{f}_{i / p}(\eta)\right] \\
& T_{2}\left(x, Q^{2}\right)=\frac{4 x}{Q^{2}} \int_{0}^{1} d q\left(4 H_{2}^{(i)}\left(\frac{q}{x}\right)-H_{1}^{(i)}\left(\frac{q}{x}\right)\right)\left[f_{i / p}(\xi)+\bar{f}_{i / p}(\xi)\right]
\end{aligned}
$$

- this is factorization for DIS (to allorden in as) into computable coefficients Hi
universal nor-pert. functions fi/p, $\overline{f i / p}$ (show up in many processes)
- Coefficients $C$; were dimensionless and can only hove $\alpha s(\mu) \ln (\mu / a)$ dependence on $Q$ $\rightarrow$ Bjorken scaling

$$
\left[\text { Analysis rall to } L 0 \text { in } \frac{\Lambda^{2}}{Q^{2}}\right]
$$

- $H_{i}(\mu)$ tip $(\mu)$ traditionally, this $\mu$-dependence is called the "factorization -scale" $\mu=\mu_{F}$ a one also has "renorm. scale." $\alpha s\left(\mu=\mu_{R}\right)$
In $S C E T$ the $\mu$ is just the red scale in SCET. We have new UV, divergences associated with running of p.d.f., along with running for $\alpha s(\mu)$.
- Tree Level Matching
(upon which a lot of intuition is based)


Find just $g^{\mu \nu}$ ie $C_{2}=0$

$$
\begin{aligned}
& \rightarrow \text { Callan-Gross relation } \\
& \text { that } \omega_{1} / \omega_{2}=Q^{2} / 4 x^{2} \\
& C_{1}(\omega+)=2 e^{2} Q_{i}^{2}\left[\frac{Q}{(\omega+-2 Q)+i \epsilon}-\frac{Q}{-(\omega++2 Q)+i \epsilon}\right] \\
& \text { charges } \\
& H_{1}=-e^{2} Q_{i}^{2} \delta\left(\frac{q}{x}-1\right) \text { gives porton-model } \\
& \text { interpretation } \\
& \xi=x
\end{aligned}
$$

Combats on DIS

- contrast $\infty$ set of ops in text
- poona al SETA/ SCET TIT not reals needed, no 50 ft (think of it as sentry for example)

Soft-Collinear Interactions (ScetiI)

Recall $q=q_{s}+q_{c} \sim Q(\lambda, 1, \lambda)$

$$
q^{2}=Q^{2} \lambda \gg(Q \lambda)^{2}
$$

offshell w.r.t $s, C$
On-shell modes qu $\sim Q(\lambda, 1, \sqrt{\lambda})$ one hard-collinear compared to collinear $8^{\mu} \sim Q\left(\lambda^{2}, 1, \lambda\right)$

Integrating out then fluctuations builds up a soft Wilson line $S_{n}$ (analogous to $Y$ (n.Aur) but with soft fields)
Toy eg. heauy-to-light soft-collin current $\bar{l}_{n} r h_{u}$

$$
\begin{aligned}
s=\text { sot t }, \quad c & =\text { collinear } \\
0 & =\text { offshall }
\end{aligned}
$$

adding more gives


$$
\begin{gathered}
\overline{\rho_{n}} S_{n}^{+} \Gamma \omega h_{v} \\
S_{n}+\left[n \cdot A_{u s}\right] \\
\omega\left[\bar{n} \cdot A_{c}\right]
\end{gathered}
$$

In QCD need 3-gluon, 4-gluon vertices too: than flip order of $s^{+} \& \omega$


this is soft - collinear factorization

Another Method

- construct SCETII operators using SCETI
i) Match $Q \subset D$ onto SCETI usoft $P_{e}^{2} \sim \Lambda^{2}$
collinear $\quad P_{c}^{2} \sim Q 人$
ii) Factorize usoft with field redefinition
iii) Match SLETI onto SLETIII
soft $\quad P_{s}^{2} \sim \Lambda^{2}$
collin $P_{c}^{2} \sim \Lambda^{2}$

Notes. this gives us a simple procedure to construct SCETII ops. (even thous thay're son-local)

- usoft fields in I ore renowned soft for II
eg.
i) $J^{I}=\left(\bar{q}_{n} \omega\right) r_{\mathrm{h}}$
ii) $J^{I}=\left(\bar{\xi}_{n}^{(0)} \omega^{(0)}\right) \Gamma\left(y^{+} h_{J}\right)$
iii) $\sigma^{\underline{I}}=\left(\bar{q}_{n} \omega\right) \Gamma\left(s^{+} h_{v}\right)$ sebefare
$\uparrow$
here all $T$-product, in SCET $\&$ SLET , match UP, so matching was trivial
"Thy". In Cases where we hove T-products in SCETI with $\geqslant 2$ operators involving both collin $\&$ usoft fields, we can generate a nor-trivial coefficient in SCETII (ie t-function J)
T. $\int d p_{-} d k_{+} J\left(p_{-}, k_{+}\right) \sqrt{(q \omega)_{p-} \Gamma\left(s^{2} q_{s}\right)_{k^{+}}}$

$$
\uparrow
$$

SLETI loops in. D's allow $P^{2} \simeq Q \wedge \quad k^{+}$dependence
sg. two operators



$c$
When we lower offs helle of ext. collin fields the intermadrat line still hoo $P^{2} \sim Q \wedge$ and must reals be integrated out

PC. $\quad T^{I} \sim \lambda^{2 k} \Rightarrow O^{I I} \sim \eta^{k+E}$

Where $\lambda^{2}=\eta=\frac{\Lambda}{Q}$,
factor $E>0$ from charming the scaly of ext. fields ag

$$
\begin{aligned}
& \eta_{I} \sim \lambda \\
& \eta_{\text {II }} \sim \eta=\lambda^{2}
\end{aligned}
$$

$\Rightarrow$ No mixed soft -collin $X$ at lady order

- after field redefn no mixed $\mathcal{L}$ ops at LO
- mixed $y_{ \pm}^{(1)}$ sim $T\left\{y_{ \pm}^{(1)}, y_{ \pm}^{(1)}\right\} \sim \lambda^{2}$ match o onto $O$ II $\sim \eta$ or higher
SCETI

$$
\begin{gathered}
\lambda^{\delta}=4+4 u+\sum_{k}(k-4) V_{k}^{c}+(k-8) V_{k}^{u} \\
4 u=1 \text { no. } V^{\text {pure soft }} \\
4 u=0
\end{gathered}
$$

SCETI

$$
\begin{aligned}
& \text { loops } \\
& \delta=5-N_{c}-N_{5}+\sum_{k}(k-4)\left(V_{k} S+V_{k}^{c}\right)+(k-3) V_{k}^{5 c}
\end{aligned}
$$

\# connected
soft, collin components
$\left[\begin{array}{c}\left.\text { in eg } \operatorname{sLE} T_{I} \quad \lambda^{3} \lambda \begin{array}{c}\frac{1}{\lambda^{2}} \lambda^{3} \lambda \sim \lambda^{6-4} \sim \lambda^{2} \\ \text { or } \lambda * \lambda \sim \lambda^{2}\end{array} \Rightarrow\left(\eta^{3 / 2} \eta\right)^{2} \frac{1}{3}=\eta^{4-3}=\eta\right]\end{array}\right]$

$$
\begin{aligned}
\mathcal{L}_{\text {SCAT }}^{I}=\mathscr{L}_{\text {soft }}^{(0)}\left[B_{s}, A_{s}\right] & +\mathscr{L}_{\text {collin-n }}^{(0)}\left[\delta_{n}, A_{n}\right] \\
& +\mathcal{L}_{\text {collin- }}^{(0)}\left[\delta_{\bar{n}}, A_{\bar{n}}\right]
\end{aligned}
$$



Non-pert d.o.f in different sectors $B \rightarrow \pi \pi$

Exclusive
eg. $\gamma^{*} \gamma \rightarrow \pi^{0}$ hard -collin factorization
[Breit frons: soft modes have no active role so this does not really prole differana between SCETI \& SCETIII]
QCD has

$$
\begin{aligned}
\left\langle\pi^{0}\left(p_{\pi}\right)\right| J_{\mu}(\theta)\left|\gamma\left(p_{\gamma}, \epsilon\right)\right\rangle & =i e \epsilon^{0} \int d^{4} z e^{-i p_{\gamma}-z}\left\langle\pi^{0}\left(p_{\pi}\right)\right| T J_{\mu}(0) J_{v}(z)|0\rangle \\
& =-i e F_{\pi \gamma}\left(Q^{2}\right) \epsilon_{\mu \nu} \sigma p_{\pi} \epsilon^{e}{ }_{8}^{\sigma}
\end{aligned}
$$

e.m. counts $J^{\mu}=\bar{\Psi} \hat{Q} \gamma^{\mu} \psi, \hat{Q}=\frac{r_{3}}{2}+\frac{1}{6}=\left(\frac{2}{3}-\frac{1}{3}\right)$

For $\mathbb{Q}^{2}>\Lambda^{2} \quad$ Fir simplifies (ala Brodsky-Le, (aye)
frame ..... $q^{\mu}=\frac{Q}{2}\left(n^{\mu}-\bar{n}^{\mu}\right), \quad P_{r}^{\mu}=E \hbar^{\mu}$

$$
P_{\pi}^{\mu}=P+P_{\gamma}=\frac{Q}{2} n^{\mu}+\left(E-\frac{Q}{2}\right) \Pi^{\mu}
$$



SCET Operator at Led $\rightarrow$ ordn (for T-product) is

$$
\theta=\frac{i \epsilon_{\mu \nu}^{\perp}}{Q}\left[\bar{\varphi}_{n, p} \omega\right] \Gamma C\left(\bar{p}, \bar{p}^{+}, \mu\right)\left[\omega^{+} \varphi_{n, p}\right]
$$

order $\lambda^{2} \quad("+$ twist $-2 ")$

- obeys current conservation
- din analysis fixes $\frac{1}{\theta}$ pre-factor for $C$ dines
- Change Conj: $T\{J, J\}$ even so o even so $\quad C\left(\mu, \bar{p}, \bar{p}^{+}\right)=C\left(\mu,-\bar{p}^{+},-\bar{p}\right)$
- flavor \& spin
structure

$$
\Gamma=\underbrace{\lambda \gamma_{5}}_{\substack{\text { for } \\ \text { pion }}} 3 \sqrt{2} \underbrace{\hat{Q}^{2}}_{\substack{\text { nd ord. } \\ \text { em. }}}
$$

- color singlet, purely collinear (again) so soft gluons decouple
equate $\left.\frac{Q^{2}}{2} F_{\pi r}=\frac{i}{Q}<\pi^{\circ}\left|(\bar{q} \omega) \Gamma \subset\left(\omega^{+} \varphi\right)\right| 0\right\rangle$
write $\quad \bar{P}_{ \pm}=\bar{p}^{+} \pm \bar{P}$
now $\bar{P}_{-}$give total mon of $(\bar{\zeta} \omega) \Gamma\left(\omega^{+} L\right)$ operator ie momaten of pion
(\#) $\bar{p}_{-}=\bar{n} \cdot p_{\pi}=Q$
$\rightarrow$ total mom,

$$
\left.F_{\pi r}\left(Q^{2}\right)=\frac{2 i}{Q^{2}} \int d \omega C(\omega, \mu)<\pi\right)(q \omega) \Gamma \delta\left(\omega-\bar{p}_{+}\right)\left(\omega^{+} \xi\right)|0\rangle
$$

Non-perturbative Matrix EAt finite Wilson line (Peep is $\int_{x}^{y} d s . .$. ) position space

Fourier Transform of $\bar{\pi} \cdot p$ label

$$
\begin{aligned}
&\left\langle\pi^{0}(p)\right| \overline{\ln }(y) \vec{x} \gamma_{5} \tau^{3} \omega(y, x) \varphi_{n}(x)|0\rangle \\
& \sqrt{2}=-i f_{\pi} \pi \cdot p \int_{0}^{1} d z e^{i n \cdot p(z y+(1-z) x)} \\
& \int_{0}^{1} d z \varnothing \pi(z)=1
\end{aligned}
$$

momentum space

$$
\begin{aligned}
& \left\langle\Pi^{0}(p)\right|\left(\bar{\zeta}_{n, p} \omega\right) \frac{\not \overline{\gamma_{5}} \tau^{2}}{\sqrt{2}} \delta\left(\omega-\bar{p}_{+}\right)\left(\omega^{+} \varphi_{n, p}\right)|0\rangle \\
& =-i f_{\pi} \bar{n} \cdot p \int_{0}^{1} d z \delta(\omega-(2 z-1) \bar{n} \cdot p) \varnothing \pi(\mu, z)
\end{aligned}
$$

Plug it into $F_{\pi \gamma}\left(Q^{2}\right)$ and do integral over $\omega$

$$
F_{\pi \gamma}\left(Q^{2}\right)=\frac{2 f \pi}{Q^{2}} \int_{0}^{1} d z C((2 z-1) Q, Q, \mu) \varnothing_{\pi}(z, \mu)
$$

- $\Pi_{\pi}$ is universal light. cone dist'n for pions
- $C$ is process depend. (all order factorization in $\alpha_{s}$ )
- one -din convolution again

Tree Level Match

$$
\begin{aligned}
& \text { expand }
\end{aligned}
$$

$$
\begin{aligned}
& *\left(\frac{1}{\pi^{\prime} \cdot p}-\frac{1}{\bar{n} \cdot p^{\prime}}\right)+\ldots \\
& \text { So } \quad C=\frac{1}{6 \sqrt{2}}\left(\frac{Q}{\bar{P}^{+}}-\frac{Q}{\bar{P}}\right) \\
& C(w=(2 x-1) Q)=\frac{1}{6 \sqrt{2}}\left(\frac{1}{x}+\frac{1}{1-x}\right) \\
& \text { ( } 4 \begin{array}{c}
\text { 2 mon-pion } \\
\text { terms } \\
2
\end{array} \\
& \text { with } \omega=1
\end{aligned}
$$

Charge Conj +1 for $\left|\pi^{0}\right\rangle$ give $\phi_{\pi}(x)=\theta_{\pi}(1-x)$
(Hawk.)
So only $\int_{0}^{1} d x \frac{\varnothing_{\pi t}(x, \mu)}{x}$ appears in our prediction
A integrate oven all $x$, much different them DIS $\delta(1-\xi / x) \Rightarrow f_{i / p}(x, \mu)$

Interpietation:
Naively

nom fraction -b
quarks in pion

Reall


Q mom froctions at point whe guark, are prodveced. Madranization process chages " $x$ " carried by valemee guarks which is encoded in $\nabla_{\pi}(x)$
Highan Orden Motchy
foll


SCET


Differeence will be IR finite, and gives $C$ at ome-loop

Another Exclusive Exrm'e
(hep-ph/0107002)
$B \rightarrow D \pi$
$\underbrace{m_{b}, m_{c}, E_{\pi}}_{Q} \gg$ 人Qco
OCD Operatars at $\mu=\mathrm{mb}$

$$
H_{\omega}=\frac{4 \sigma_{F}}{\sqrt{2}} V_{\text {ud }}{ }^{*} V_{c b} \quad\left[C_{0}{ }^{F} O_{0}+C_{8}{ }^{F} O_{8}\right] p_{p_{2}=\frac{1-\gamma_{5}}{2}}
$$

Whare $O_{0}=\left[\bar{c} \gamma^{\mu} P_{L} b\right]\left[d \gamma_{\mu} P_{L} u\right]$

$$
O_{8}=\left[\bar{c} \gamma^{\mu} P_{L} \tau^{0} b\right]\left[d^{d} \gamma_{L} P_{L}^{a} u\right]
$$

Wont to Factorize $<0 \pi|00,8| \mathrm{B}\rangle$
ie Thow
at 40

no gloons btwn $B, D$ and ouarks in pion

Q expect $B \rightarrow D$ form foctor EIsour-Wise $\theta_{\pi}(x)$ distn for pion
$B, D$ soft
$\pi \quad$ collinear $\left.\begin{array}{ll}p^{2} \sim N^{2} \\ p^{2} \sim N^{2}\end{array}\right\}$ SCET II
Use SCET S intermadeta step
(1). match at $\mu^{2} \simeq Q^{2}$

$$
\begin{aligned}
& \Gamma h^{1,5}=\frac{\not \partial}{2}\left\{1, \gamma_{5}\right\} \\
& 4_{\text {usoft }} \\
& \text { SCETI } \\
& \tau_{\text {collineon }} \\
& P^{2} \sim Q 1
\end{aligned}
$$

(2) Field redefinitions $\quad q_{n, p}=\psi \xi_{n i p}^{(0)}, \ldots$

$$
\begin{aligned}
& \begin{array}{lll}
\text { in } Q_{0}^{1,5} & \text { get } & \bar{q}_{n}^{(0)} \omega^{(0)} y^{t} \not Y^{1,5} \omega^{+(0)} \mathcal{l n}_{n}^{(0)} \\
Q_{8}^{1,5} & \text { get } & \bar{q}_{n}^{(0)} \omega^{(0)} Y^{+} \tau^{A} \Psi \omega^{+(0)} \mathcal{I n}^{(0)}
\end{array} \\
& V_{1} T^{a} Y^{+}=Y^{b a} T^{b} \\
& Y^{+} T^{a} Y=Y^{a b} T^{b}
\end{aligned}
$$

adjoint Wilson line
$T^{a} \otimes Y^{+} T^{a} Y=Y T^{a} Y^{+} \otimes T^{a}$
$t$ moves usoft Wilson lina next to her fields
(3) Match SLETI onto SCETII. (trivial have again)

$$
Y \rightarrow S
$$

$\varphi_{n}^{(0)} \rightarrow$ q$_{n}$ in III...ets.

$$
\begin{aligned}
& Q_{0}^{1,5}=\left[\overline{h u s}_{0}^{(c)} \Gamma_{h} h_{u}^{(b)}\right]\left[\bar{\xi}_{n}^{(d)} \omega r_{A} C_{0}\left(\bar{p}_{+}\right) \omega^{+} \varphi_{n, p}^{(\omega)}\right]
\end{aligned}
$$

(4) Take Matrix Elemats

$$
\begin{aligned}
& \left\langle\pi_{n}\right| \bar{\varphi}_{n} \omega r C_{0}\left(\bar{p}_{+}\right) \omega^{+} \varphi_{n}|0\rangle=\frac{i}{2} f \pi E_{\pi} \int_{0}^{1} d x C\left(2 E_{\pi}(2 x-1)\right) \phi_{\pi}(x) \\
& \left\langle D_{0}\right| \text { hr } \Gamma \text { ho }|B\rangle=N^{\prime} \quad \xi\left(\omega_{0}, \mu\right) \\
& { }^{\uparrow} \omega_{0}=v \cdot \omega^{\prime}
\end{aligned}
$$

B.D purely soft... $\rightarrow$ no contractions with collinear fields $\pi$ " collinem $\rightarrow$ no ". " soft fields which is why it factors into tues matrix olenat
$F: 08:$

$$
\left\langle D_{r^{\prime}}\right| \underbrace{h_{r^{\prime}} Y T^{a} Y^{+} h_{r r}\left|B_{r}\right\rangle}=0
$$

Find
Factorization Formula

$$
\begin{aligned}
& \langle\pi \rho| H \omega|B\rangle=i N\left(\omega_{0}, \mu\right) \quad \int_{0}^{1} d x C\left(2 E_{\pi}(2 x-1), \mu\right) \varnothing_{\pi}(x, \mu) \\
& 4 \\
& \text { refactors } \\
& +O(\pi / Q)
\end{aligned}
$$

a $\mathcal{L}\left(\omega_{0}, \mu\right)$ is Isgur-wise function at max recoil

$$
\omega_{0}=\frac{m_{B}^{2}-m_{D}^{2}}{2 m_{B}} \quad \text { (messed in } B \rightarrow P_{e} \text { recall) }
$$

- This applies to type-I ( $:$ III) decay,

$$
\begin{array}{lll}
\bar{B}^{0} \rightarrow D^{+} \pi^{-} & \bar{B}^{0} \rightarrow D^{*}+\pi^{-}, & \bar{B}^{\circ} \rightarrow D^{+} e^{-}, \ldots \\
B^{-} \rightarrow D^{0} \pi^{-} & B^{-} \rightarrow D^{* 0} \pi^{-} & B^{-} \rightarrow D^{0} e^{-}, \ldots
\end{array}
$$

-predicts type -II de caps are suppressed by $1 / Q$

$$
\bar{B}^{0} \rightarrow D^{0} \pi^{0}, \ldots
$$

we could derive fact. the. for these too)

Arothen inclusive examle. $B \rightarrow x_{s} y$... modes matter -

Here we will reed bath usoft \& collinean d.o.f. in

$$
\text { Heff }=-\frac{-4 G_{F}}{\sqrt{2}} \quad V_{t b} V_{t s}^{*} C_{T} O_{7}, \quad O_{7}=\frac{e}{16 \pi^{2}} m_{b} \bar{S} \sigma^{\mu \nu} F_{\mu \nu} P_{R} b
$$

photon $\quad q^{\mu}=E_{\gamma} \bar{n}^{\mu}$

$$
\begin{aligned}
& \frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=\frac{4 E_{\gamma}}{m_{b}^{3}}\left(-\frac{1}{\pi}\right) I_{m} T \\
& \left.T=\frac{i}{m_{B}} \int d^{4} x e^{-i 8 \cdot x}<\bar{B}\left|T J_{\mu}^{+}(x) J^{\mu}(0)\right| \bar{B}\right\rangle
\end{aligned}
$$

$$
J^{\mu}=\bar{s}^{\mu} i \sigma^{\mu \nu} q_{v} P_{R} b
$$



Consider endpoint region

$$
\begin{aligned}
& M_{B} / 2-E_{\gamma} \leqslant \wedge_{Q C D} \\
& P_{X}^{2}=M_{B} \Lambda
\end{aligned}
$$

$B$-rest frome $\quad P_{B}=\frac{m B}{2}\left(n^{\mu}+\bar{n} \mu\right)=P_{X}+q$

$$
P_{x}=\frac{m_{B}}{2} n^{\mu}+\frac{\pi^{\mu}}{2} \frac{\left(m_{B}-2 E_{\gamma}\right)}{\Lambda}
$$

collineor
so guarb as glven in $X$ ore collinan with $P_{C}{ }^{2} \sim M_{B} \wedge$ $B$ has usoft light diof.
match onto LO SCET operator
边 10

$$
J_{\mu}=-E_{\gamma} e^{i\left(\bar{p}_{\frac{n}{2}}-m_{b} v\right) \cdot x} \bar{\xi} \omega \gamma_{\mu}^{+} p_{L} h_{\sigma} C\left(\bar{p}^{+}, \mu\right)
$$

i our hears-to-light
current from easier

$$
\equiv J_{\text {eff }}^{\mu}
$$

The coefficient $C\left(\bar{p}^{+}\right)$hoo $\bar{p}^{+}=m b$ since this is total moventer of $s$-quark jet in $\bar{\pi} \cdot P_{x}$

Factor with Field redefn


$$
=i \int d^{4} x e^{i()}\langle\bar{B}| T\left(\bar{h}_{\sigma} Y\right)(x)\left(Y h_{\sigma}\right)(0)|\bar{B}\rangle
$$

$$
*\langle 0| T\left(\omega^{+(0)} \varphi^{(0)}\right)(x)\left(\bar{q}^{(0)} \omega\right)(0)|0\rangle
$$

a spin $\$$ color indices \& structures $\gamma_{\mu}{ }^{+} P_{L}$ suppressed

$$
\begin{gathered}
=\frac{1}{2} \int d^{4} x \int \Phi^{4} k e^{i\left(m_{b} \frac{\pi}{2}-\xi-k\right) \cdot x}\langle\bar{B}| T\left(\bar{h}_{r} y\right)(x)\left(y^{+} h_{r}\right)(0)|\bar{B}\rangle \\
* \quad J_{p}(k)
\end{gathered}
$$

$$
* \quad J_{p}(k)
$$

$$
\langle 0| T\left(\omega^{+} Y\right)(\bar{Y} \omega)|0\rangle=i \quad \int f^{4} h e^{-i h \cdot x} J_{p}(k) \frac{\bar{\gamma}}{2}
$$

in Toff we then get
only depend on $k^{+}$! so do $k-h^{+}$integral

$$
\begin{aligned}
&-S\left(e^{+}\right)=\frac{1}{2} \int \frac{2 x^{-}}{4 \pi} e^{-i / 2 e^{+} x^{-}}\langle\bar{B}| T\left[\bar{h}_{\sigma} Y\right)\left(\frac{n}{2} x^{-}\right)\left(Y^{+} h_{\sigma}\right)(0)|\bar{B}\rangle \\
& 4 y\left(\frac{n}{2} x^{-}, 0\right)
\end{aligned}
$$

match onto LO SCET operator
边 10

$$
J_{\mu}=-E_{\gamma} e^{i\left(\bar{p}_{\frac{n}{2}}-m_{b} v\right) \cdot x} \bar{\xi} \omega \gamma_{\mu}^{+} p_{L} h_{\sigma} C\left(\bar{p}^{+}, \mu\right)
$$

i our hears-to-light
current from easier

$$
\equiv J_{\text {eff }}^{\mu}
$$

The coefficient $C\left(\bar{p}^{+}\right)$hoo $\bar{p}^{+}=m b$ since this is total moventer of $s$-quark jet in $\bar{\pi} \cdot P_{x}$

Factor with Field redefn


$$
=i \int d^{4} x e^{i()}\langle\bar{B}| T\left(\bar{h}_{\sigma} Y\right)(x)\left(Y h_{\sigma}\right)(0)|\bar{B}\rangle
$$

$$
*\langle 0| T\left(\omega^{+(0)} \varphi^{(0)}\right)(x)\left(\bar{q}^{(0)} \omega\right)(0)|0\rangle
$$

a spin $\$$ color indices \& structures $\gamma_{\mu}{ }^{+} P_{L}$ suppressed

$$
\begin{gathered}
=\frac{1}{2} \int d^{4} x \int \Phi^{4} k e^{i\left(m_{b} \frac{\pi}{2}-\xi-k\right) \cdot x}\langle\bar{B}| T\left(\bar{h}_{r} y\right)(x)\left(y^{+} h_{r}\right)(0)|\bar{B}\rangle \\
* \quad J_{p}(k)
\end{gathered}
$$

$$
* \quad J_{p}(k)
$$

$$
\langle 0| T\left(\omega^{+} Y\right)(\bar{Y} \omega)|0\rangle=i \quad \int f^{4} h e^{-i h \cdot x} J_{p}(k) \frac{\bar{\gamma}}{2}
$$

in Toff we then get
only depend on $k^{+}$! so do $k-h^{+}$integral

$$
\begin{aligned}
&-S\left(e^{+}\right)=\frac{1}{2} \int \frac{2 x^{-}}{4 \pi} e^{-i / 2 e^{+} x^{-}}\langle\bar{B}| T\left[\bar{h}_{\sigma} Y\right)\left(\frac{n}{2} x^{-}\right)\left(Y^{+} h_{\sigma}\right)(0)|\bar{B}\rangle \\
& 4 y\left(\frac{n}{2} x^{-}, 0\right)
\end{aligned}
$$

imaginal pout is in jet function let $J\left(k^{+}\right)=-\frac{1}{\pi} \operatorname{Im} J_{\rho}\left(k^{+}\right)$



All ordn's foctorization

$$
\frac{1}{\Gamma_{0}} \frac{d r}{d E r}=N C(m b, \mu) \int_{2 E_{\gamma} m_{b}}^{\pi} d l^{+} s\left(l^{+}\right) J\left(l^{+}+m_{b}-2 E \gamma\right)
$$

个
stope function is seen in the data

Final example
two - jet production

How do we define a jet?

Consider $e^{+} e^{-} \rightarrow 8 \overline{8} g$

$$
\begin{aligned}
q & =p_{1}+p_{2}+p_{3} \\
2 & =x_{1}+x_{2}+x_{3}
\end{aligned}
$$

for $\quad x_{i}=\frac{2 p_{i} \cdot q}{q^{2}}$

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d x_{1} d x_{2}}=\frac{C_{F} \alpha_{s}}{2 \pi} \quad \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

Two jets along edges -Three jets in middle

$$
\begin{aligned}
& q \sim n_{1} \\
& \bar{q} \sim n_{2} \\
& g \sim n_{3}
\end{aligned}
$$


give


Sterman-Weiabery Definition of 2 -jets if gluon has $\rho_{3}{ }^{\circ}<\in Q$ or
if gluon has angle $\cos \theta_{13}>1-2 \delta^{2}$ or $\cos \theta_{23}>1-2 \delta^{2}$

$$
\begin{aligned}
& \left.\frac{d \sigma}{d e}=\frac{1}{2 Q^{2}} \sum_{N}\left|\langle N\rangle J_{\alpha}^{\mu}(0)\right| 0\right\rangle\left. L_{\mu}\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(q-\sum P_{N}\right) \delta(e-e(N)) \\
& 7 \\
& \text { event shore variable }
\end{aligned}
$$

eg jet energy $\quad E_{J}=\sum_{i \text { in }} E_{i}$
eg. Thrust $T=\max _{\hat{t}} \sum_{i=N}\left|\vec{p}_{i} \cdot \hat{t}\right| / \sum_{i=1}\left|\vec{p}_{i}\right|$
$\frac{\text { Two -jets }\left(S C E T_{I}\right)}{\text { Fr } 4 \rightarrow\left(\bar{\varphi}_{n} \omega_{n}\right)} \gamma_{\perp}^{\mu} C\left(\bar{P}, \bar{P}^{+}, \mu\right)\left(\omega_{n}^{+} \varphi_{n}\right)=J_{S C E T}^{\mu}$ matching ensures only 2 -jets


Decouple U-soft

$$
\begin{array}{lll} 
& \varphi_{n} \rightarrow Y_{n} \varphi_{n}^{(0)} & \varphi_{n}=\bar{p} \exp \\
\zeta_{n} \rightarrow Y_{\bar{n}} \xi_{n}^{(0)} & & \\
J^{\mu}= & \left(\zeta_{n} \omega_{n} Y_{n}^{+}\right) \gamma_{\perp}^{\mu} C\left(Y_{n} \omega_{n}^{+} \varphi_{n}\right)
\end{array}
$$

State: $|N\rangle=\left|X_{n} X_{\bar{A}} x_{u}\right\rangle \quad a^{\prime l}+$ the soft partiont
Q we will not botha to observe this jet, eN) indep of it.
Schematically

$$
\begin{aligned}
\sum_{x_{n} X_{n}, X_{u}} & \underbrace{\delta^{(u)}\left(p_{n}-\sum p_{x_{n}}^{i}\right)} \underbrace{\delta d^{4} x e^{i x \cdot\left(p_{n}-\sum p_{x_{n}}^{i}\right)}} \underbrace{\delta^{(4)}\left(p_{n}-\sum p_{x_{n}^{i}}^{i}\right)}\left\langle d^{4} y e^{i y \cdot\left(p_{n}-\sum p_{n}^{i}\right)}\right.
\end{aligned}\left\langle J_{(0)}^{\mu} \mid X_{n} X_{n}-X_{u}\right\rangle\left\langle X_{u} X_{n} X_{n}\right| J_{(0)}^{\mu}|0\rangle
$$

Q recall $P_{n}^{+} \sim P_{5}^{-} \sim$ soft momentum.

$$
\left(\sum_{n} \omega_{n} Y_{n}^{+}\right)_{P_{n}^{-}}(y) \gamma_{\perp}^{\mu}\left(Y_{n} \omega_{n}^{+} Y_{n}^{-}\right)(x) \quad, \ldots
$$

4
No Time for this
In lecture I defined what a jet is in terms of operators and discussed how it relates to our example of a jet in $b-38$ gamma.

