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Mikko Laine (Bielefeld, Germany)

1. Static thermodynamics

→ Euclidean, “understood” up to non-perturbative level,

but only a limited class of observables

2. Real-time observables

→ Minkowskian, even leading-order perturbative

computations very hard, but simple physical interpretations

3. Finite baryon density
→ adventurous, “condensed matter physics” of QCD,

but largely model computations so far
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1. Static thermodynamics

Let Ĥ be the Hamiltonian corresponding to LQCD. We would

like to compute the partition function

Z = Tr e
−β(Ĥ−µQ̂)

= e
−βΩ(V,T,µ)

= e
βV p(T,µ)

, β ≡
1

T
,

where Q̂ is the quark number, and p(T, µ) is the pressure.

We also consider equal-time 2-point functions like

D

Ô(x)Ô(0)
E |x|≫β

≈ A|x|
α
e
−m(T )|x|

,

with 〈...〉 ≡ Z−1 Tr[e−β(Ĥ−µQ̂)(...)], where

m(T ) = “screening mass” ≡ [correlation length]−1.
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Phenomenological motivation: Cosmology

In the Early Universe, µ
T ≈ 10−10, so set µ = 0, and

denote p(T ) ≡ p(T, 0) − p(0, 0).

The cooling rate of the Universe is

1

T

dT

dt
= −

√
24π

mPl

√

e(T )s(T )

c(T )
,

where s = p′(T ), e = Ts(T ) − p(T ), c = e′(T ).

Cosmological relics (dark matter, etc) are born when
some reaction time τ(T ) becomes longer than the time
period tnow − t(T ) ⇒ need to know p(T )!
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A lot of the structure in p(T ) comes from QCD
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Laine, Schröder, hep-ph/0603048
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... however, let us “simplify” the task a bit, and rather pose a ...

Theoretical challenge for today

Asymptotic freedom
⇒ effective coupling is small at T ≫ 1 GeV
⇒ long-distance properties become more tractable
⇒ can we learn something about confinement?

This can only be possible if there is no phase transition,
so that our low-T world and the asymptotically free
high-T world are analytically connected.
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For physical quark masses, there is no order parameter
and no spontaneously broken global symmetry (µ = 0).
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⇒ in principle we can use high T as a theoretical tool!
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Concrete task

Assuming T ≫ 1 GeV, so that αs(T )/π ≪ 1, can we
understand the fact that there is a mass gap, i.e. that
the screening masses are positive, m(T ) > 0, for any
local operator Ô?

〈

Ô(x)Ô(0)
〉 |x|≫β

≈ A|x|αe−m(T )|x| .
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The basic formula of finite-temperature field theory:

Z(V, T, µ) =

∫

b.c.

D[Aa
µ, ψ̄, ψ] exp (−SE) ,

SE ≡
∫ β

0

dτ

∫

V

d3xLE ,

LE ≡ −LM(t→ −iτ) ,

where b.c. are periodic (Aa
µ) or anti-periodic (ψ̄, ψ)

over τ , and integral is over all fields with these b.c.’s.

The Euclidean path integral works for any equal-time

correlator, such as that needed for m(T ).
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Given that by assumption αs(T )/π ≪ 1, we analyse
the system in simple-minded perturbation theory. [In
principle it could also be treated on the lattice!]

Fourier decomposition:

φ(τ) = T
∑

n

eiωnτ φ̃(ωn) , φ ∈ {Aa
µ, ψ, ψ̄}

where the possible values of ωn are discretised:

Aa
µ(β,x) = Aa

µ(0,x) ⇒ eiωnβ = 1 ⇒ ω b
n = 2πnT ,

ψ(β,x) = −ψ(0,x) ⇒ ω f
n = 2π(n+

1

2
)T .

These are called “Matsubara frequencies”.
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So, any line with fermions is “massive”, and displays
exponential decay with m(T ) ≥ πT .

In fact, fermions can be “integrated out”, without
encountering infrared problems.

The same holds for non-zero bosonic modes.

The result: a “dimensionally reduced” effective field
theory for hot QCD (or for the Standard Model).

P. Ginsparg, Nucl. Phys. B 170 (1980) 388;

T. Appelquist and R.D. Pisarski, Phys. Rev. D 23 (1981) 2305;

K. Kajantie et al, hep-ph/9508379;

E. Braaten and A. Nieto, hep-ph/9510408.
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Cartoon of the general procedure

QCD ≡ 4d YM + quarks; ωn ∼ πT

⇓ perturbation theory (1)

EQCD ≡ 3d YM + A0; mE ∼ gT

⇓ perturbation theory (2)

MQCD ≡ 3d YM; g2
M ∼ g2T

⇓ non-perturbative computation (3)

PHYSICS

Expansion parameter: ǫ(i) ∼ g2T/4π|k|(i).
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To be more specific, start at tree-level

LQCD =
1

4

N2
c−1
∑

a=1

F a
µνF

a
µν +

Nf
∑

i=1

ψ̄i[γµDµ +mi]ψi .

Given that we can write

F a
0i = ∂0A

a
i −Dab

i A
b
0 , Dab

i ≡ ∂iδ
ab − gfabcAc

i ,

the static limit yields F a
i0 = Dab

i A
b
0, so that

L(n=0)
QCD =

1

4
F a

ijF
a
ij +

1

2
(Dab

i A
b
0)(Dac

i A
c
0) .
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The Euclidean action in the path integral reads

SE =

∫ β

0

dτ

∫

V

d3xL(n=0)
QCD =

1

T

∫

V

d3xL(n=0)
QCD .

If we rescale the fields as

Aa
i → T 1/2Aa

i , Aa
0 → T 1/2Aa

0 ,

and the coupling as

g = T−1/2gE , [gE] = GeV1/2 ,

then 1/T disappears from in front of the action.
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What kind of operators are generally allowed?

Gauge transformation:

A
′
µ = UAµU

−1
+

i

g
U∂µU

−1
.

Since we restrict to static fields, U should not depend on τ ,

to remain within the set. Thus, the effective theory should be

invariant under

A
′
i = UAiU

−1
+

i

g
U∂iU

−1
,

A
′
0 = UA0U

−1
.

So, the spatial components Ai remain gauge fields, while the

temporal components A0 turn into scalar fields in the adjoint

representation.
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General form of the effective theory

Respecting gauge as well as discrete symmetries,

LEQCD =
1

4
F

a
ijF

a
ij +

1

2
(D

ab
i A

b
0)(D

ac
i A

c
0)

+ m
2
E Tr[A

2
0] + λ

(1)
E (Tr[A

2
0])

2
+ λ

(2)
E Tr[A

4
0] + . . . ,

where we chose to write A0 ≡
∑N2

c−1
a=1 T aAa

0, with T a

the Hermitean generators of SU(Nc).







If µ 6= 0, C is broken, and further operators
can appear, like

δLEQCD = iγE Tr[A3
0] .
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The parameters of LEQCD can be determined by
matching suitable observables to the original theory.

To leading non-trivial order, need to consider

where the internal lines have non-zero Matsubara
modes, while the external lines can be Aa

i or Aa
0.

In case of Aa
i : result must behave as k2, yielding a

correction to the gauge coupling.

In case of Aa
0: result can remain non-zero as k → 0,

yielding a non-zero mass parameter m2
E.
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The typical sum-integral appearing:

T
X

ωn

Z

ddk

(2π)d

1

ω2
n + k2

= 2T

∞
X

n=1

1

(4π)d/2

Γ(1 − d
2)

Γ(1)

1

(2πnT )2−d

= 2T
1

(4π)d/2(2πT )2−d
Γ(1 −

d

2
)ζ(2 − d)

d=3−2ǫ
= µ

−2ǫT
2
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1

˛

˛

˛

˛

˛

˛

˛

˛

ζ(−1) = −
1

12
!

+ǫ

»

2 ln

„

µ̄eγE

4πT

«

+ 2 − 2γE + 2
ζ′(−1)

ζ(−1)

–

+O(ǫ
2
)
¯

, µ̄
2
≡ 4πµ

2
e
−γE .
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Graphs for quartic couplings:

A typical integral:

T
∑

ωn

∫

ddk

(2π)d

1

(ω2
n + k2)2

=
µ−2ǫ

(4π)2

[

1

ǫ
+ 2 ln

(

µ̄eγE

4πT

)

+ O(ǫ)

]

.

So the “thermal scale” is µ̄T ≃ 4πe−γET ≈ 7.0555T ,
and the effective coupling runs faster than expected.
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Collecting together, we have the effective theory

LEQCD =
1

4
F

a
ijF

a
ij +

1

2
(D

ab
i A

b
0)(D

ac
i A

c
0)

+ m
2
E Tr[A

2
0] + λ

(1)
E (Tr[A

2
0])

2
+ λ

(2)
E Tr[A

4
0] + . . . ,

where at 1-loop

m
2
E = g

2
T

2`Nc

3
+

Nf

6

´

,

λ
(1)
E =

g4T

4π2
, λ

(2)
E =

g4T

12π2
(Nc − Nf) ,

g
2
E = T

n

g
2
(µ̄) +

g4(µ̄)

(4π)2

h

−β0 ln
“µ̄eγE

4πT

”

+
Nc − 8Nf ln 2

3

io

.
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But now A0 is massive ⇒ it can be integrated out.

The subsequent effective theory:

LMQCD =
1

4
F a

ijF
a
ij + . . . .

The parameters are again determined by matching:

At 1-loop:

g2
M = g2

E

[

1 − 1

48

g2
ENc

πmE

]

.

A0
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Infrared problem of thermal field theory
Linde PLB 96 (1980) 289

Gross, Pisarski, Yaffe RMP 53 (1981) 43

The remaining theory has only one parameter, g2
M ≈

g2T , which is dimensionful. There is no other scale.

The theory is also confining, with the confinement
scale proportional to g2

M.

Numerically, for Nc = 3,

√
σ ≃ 0.553(2)g2

M ,

m0++ ≃ 2.39(3)g2
M .

Teper hep-lat/9804008
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So, at long distances, any correlation function decays
exponentially, with a screening mass given by that of
the lightest MQCD glueball with the correct quantum
numbers:

n 6= 0n 6= 0
n = 0

confining

dynamics

m(T ) = #non-pert g
2
M + O(g3T ) .
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Summary

Arguing that a mass gap exists is easier at finite
temperatures, since one only needs to do this for pure
Yang-Mills theory in three dimensions. But it is still a
non-perturbative problem.

A weak-coupling expansion (g ≪ 1) can still be
constructed, but it comes with in-general non-
perturbative coefficients. In other words:

weak-coupling expansion 6= loop expansion.
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Exercise 1: “Where is physics hidden?”

Show that

T

∞
X

n=−∞

Z

p

1

(2πTn)2 + p2 + m2
=

Z

p

1

E

»

1

2
+ nB(E)

–

,

where E ≡
p

p2 + m2 and nB is the Bose-Einstein distribution

function, nB(E) ≡ 1/[eβE − 1]. [The term 1
2E corresponds to

the vacuum result,
R dp0

2π
1

p2
0+E2 , the rest to thermal corrections.]

Exercise 2: “Another effect of 3d confinement”.

Consider the weak-coupling expansion for the QCD pressure,

p(T ), in the effective theory framework. At which order would

you expect a non-perturbative coefficient to first appear?
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