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Outline
• Lecture 1:

– Yukawa couplings, CKM matrix, unitarity triangle
– Effective weak Hamiltonian (I)

• Lecture 2:
– Effective weak Hamiltonian (II)
– B-B mixing amplitude

• Lecture 3:
– Inclusive processes: OPE and applications (B→Xc,ulν, B→Xsγ)

• Lecture 4:
– Exclusive processes: trees and penguins, CP violation, searches for

New Physics
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Flavor physics
• What is “flavor”?
• Generations: triplication of

fermion spectrum without
obvious necessity

• Dynamical explanation of flavor?
(new quantum number?)

• Equally mysterious as dynamics
of electroweak symmetry
breaking

• Connection between 
two phenomena?
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Flavor physics
• Hierarchies in fermion mass spectrum:

• Likewise, hierarchies in quark mixings

Masses of quarks and leptons
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Flavor physics
• Quark masses relative to ΛQCD≈0.5 GeV:

0.002 GeV
0.005 GeV

0.1 GeV

175 GeV

1.5 GeV

4.8 GeV

For light quarks:
•  approximate SU(nq) flavor
symmetry
•  spontaneously broken
chiral symmetry
•  chiral perturbation theory

For heavy quarks:
•  approximate SU(2nQ) spin-
flavor symmetry
•  heavy-quark effective
theory
•  soft-collinear effective
theory (large energy release
in decays)
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Flavor physics
• Flavor physics studies communication between

different generations
• Standard Model: present only in charged-current

interactions

(uL,cL,tL)i

(dL,sL,bL)k

W

Vik

Cabibbo-Kobayashi-Maskawa
matrix elements
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Yukawa Couplings, CKM Matrix and
Unitarity Triangle
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Yukawa couplings
• Most general, gauge invariant and renormalizable

interactions of Higgs and matter fields:
SU(2)L    U(1)Y

2           -1/2

2           +1/6

1             -1

1           +2/3

1           -1/3

generation index
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Yukawa couplings
SU(2)L    U(1)Y

2           ±1/2

• Yukawa couplings:

• Ye,Yd,Yu:  arbitrary complex 3x3 matrices
• Electroweak symmetry breaking:  <φ2

0> = v/√2

Y:     1       -1/2 -1/2     1/3    -1/2 +1/6     -2/3    +1/2 +1/6
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Yukawa couplings
• Gauge principle allows arbitrary generation-

changing interactions, since fermions of different
generations have equal gauge charges!

• Usually such couplings are eliminated by field
redefinitions:

• Always possible for kinetic terms in Lagrangian

ψi → Uij ψj

unitary (i.e., probability preserving) “rotation” in
generation space
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Yukawa couplings
• Diagonalize Yukawa matrices using biunitary

transformations, e.g.:

• Then perform field redefinitions:
eL → Ue eL ,   eR → We eR

uL → Uu uL ,   uR → Wu uR

dL → Ud dL ,   dR → Wd dR

• This diagonalizes the mass terms, giving masses 
mf = yf (v/√2) to all fermions
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CKM matrix
• Effect of field redefinitions on weak interactions

in the mass basis (QCD and QED invariant)
• Charged currents:

– generation changing couplings proportional to Vij:

dL
i → uL

j + W-  ∝ Vji uL
i → dL

j + W+  ∝ Vij
* 

(Cabibbo-Kobayashi-Maskawa matrix)



Matthias Neubert Benasque Summer School, July 2008 13

• Neutral currents:

– no generation-changing interactions! 
(at level of elementary vertices)

– GIM mechanism (Glashow-Iliopoulos-Maiani, 1970)
– led to prediction of charm quark (K-K mixing)

cancel each other

CKM matrix
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CKM matrix
• Unitary 3x3 matrix V can by parameterized by

3 Euler angles und 6 phases
• Not all phases are observable, since under phase

redefinitions qL→eiϕq qL of the quark fields:

• 5 of 6 phases can be eliminated by suitable
choices of phase differences!
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CKM matrix
• Remaining phase δCKM is source of all CP-violating

effects in Standard Model (assuming θQCD=0)
– weak interactions couple to left-handed fermions and

right-handed antifermions
– violate P and C maximally, but 

would be invariant under CP and T 
if all weak couplings were real

– physical phase of CKM matrix  
breaks CP invariance

• Allows for an absolute distinction between matter
and antimatter!
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CKM matrix
• CP violation required to explain the different

abundances of matter and antimatter in the
universe (baryogenesis)

• CP violation in quark sector requires N≥3 fermion
generations

• Model for explanation of CP violation led to
prediction of the third generation!
Kobayashi, Maskawa (1973)
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CKM matrix
• Form of V not unique (phase conventions)
• Several parameterizations used; a very useful one

is due to Wolfenstein (1983):

• Hierarchical structure in λ≈0.22
• Remaining parameters O(1)
• Complex entries O(λ3)
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CKM matrix
• Jarlskog determinant: 

for arbitrary choice of i,j,k,l the quantity

   is an invariant of the CKM matrix (independent of
phase conventions)

• CP invariance is broken if and only if J≠0
• Wolfenstein parameterization:

Im(VijVklVil
*Vkj

*) = J ∑m,n εikm εjln

J = O(λ6) = O(10-4)  rather small
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Unitarity triangle
• Unitarity relation V† V= V V† =1 implies:

• For i≠k this gives 6 triangle relations, in which a
sum of 3 complex numbers adds up to zero:

Vji
* Vjk = δik  and  Vij

* Vkj = δik

Vui
* Vuk Vci

* Vck

Vti
* Vtk

(i≠k)
area = J/2
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Unitarity triangle
• Phase redefinitions turn triangles
• For two triangles, all sides are of same order in λ;
the unitarity triangle is:

• Graphical representation:

Vub
* Vud + Vcb

* Vcd + Vtb
* Vtd = 0

(0,0) (1,0)

(ρ,η)

α

γ β
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Unitarity triangle determinations
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Effective weak Hamiltonian
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Effective field theory
• At low energies, the exchange of heavy, virtual

particles (M»E) leads to quasi-local effective
interactions

exchange of heavy, virtual particles 
between light SM particles

M

M

M

induced, effective local interactions
at low energies
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Effective field theory
• Effective field theory offers a systematic

description of virtual heavy-particle effects (more
generally, effects of modes with large virtualities)
through an expansion in local operators

• Possible even if fundamental theory is unknown or
strongly coupled (nonperturbative)

“Theorem of modesty”:
All physical theories are 
effective (field) theories
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Effective field theory
• Standard Model is most successful effective field

theory to date, even though it leaves open some
questions:

renormalizable quantum field theories

Higgs mass (hierarchy problem)

possible effects of “new physics”, 
proton decay, flavor physics, …

cosmological constant

neutrino masses
(see-saw mechanism)
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W exchange at low energies
• Fermi theory of weak interactions describes 

W-boson exchange in terms of local 4-fermion
couplings

• Consider:

• Fermi constant:
– determines scale of weak interactions

E«MW

GF/√2 =g2
2/8MW

2

(local operator)
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W exchange at low energies
• Semileptonic decay: QCD corrections influence

both graphs in same way
• Resulting “effective” 

interaction for E«MW:

• Scaling 1/MW
2 for d=6 operators explains weakness

of “weak” interactions

C1=1
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W exchange at low energies
• W exchange between four different quark fields

(nonleptonic decays):

• At tree level, analogous treatment as before

E«MW

c s
c s
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W exchange at low energies
• Complications for loop graphs:

• Naïve Taylor expansion of W-boson propagator no
longer justified!
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W exchange at low energies
• Problem with large loop momenta:

• But no differences at low loop 
momenta!

• Effect can be calculated and 
corrected for using perturbation 
theory, since effective coupling 
αs(MW) is small
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W exchange at low energies
• Resulting effective interaction:

   with Wilson coefficients:

→ accounts for effects of hard gluons (p~MW)
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Idea of effective field theory
• Separation of short- and long-distance effects;

schematically:

• Short-distance effects (p~MW) are
perturbatively calculable

• Long-distance effects must be treated using
nonperturbative methods

• Dependence on arbitrary separation scale µ
controlled by RG equations

MW

ΛQCD

µ

Ci(µ)

〈Oi(µ)〉
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Idea of effective field theory
• Why useful?
• Any sensitivity to high scales (including to physics

beyond the Standard Model) can be treated using
perturbative methods:

• Nonperturbative methods (operator product
expansion, lattice gauge theory, …) usually only
work at low scales (typically µ~few GeV)

Ci(µ) = Ci
SM(MW,mt,µ) + Ci

NP(MNP,gNP,µ)
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FCNC processes
• While generation-changing couplings of W bosons

to quarks exist, flavor-changing neutral currents
such as

   do not exist as elementary vertices in the Standard
Model (GIM mechanism)

b→sγ,  b→sZ0,  b→sνν,  b→sdd,  bd→db,  etc.
(and others, also for light quarks)
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FCNC processes
• But such processes can be induced at loop level,

e.g.:

b s
t t
W

Z
ν ν

loop-induced 
decay b→sνν

penguin diagram
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FCNC processes
• Effective interaction at low energies

(E«MW,MZ,mt):

Z

b s

ν ν
C(MW,MZ,mt,µ)

penguin diagram approximated
by local 4-fermion operator
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FCNC processes
• Detailed analysis (penguin autopsy) exhibits that

GIM mechanism is “incomplete” in this case:

How to kill a penguin … 
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FCNC processes
• Detailed analysis (penguin autopsy) exhibits that

GIM mechanism is “incomplete” in this case:

b s
q=

u,c,t

W

Z
ν ν

Unitarity relation:

→ residual effect due to nontrivial mass 
dependence, often ∝(mt/MW)2 or ln(mt/µ)
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FCNC processes
• Rich structure of couplings of Z0,g,γ lead to a

plethora of effective local d=6 operators
• Consider, e.g., decays of type b→s+X (or b→d+X,

s→d+X), where X is flavor neutral:

W-boson exchange penguin and box graphs
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Operator basis
• Current-current operators (W exchange):

• Results analogous to 
earlier discussion):

p=u,cb

p=u,c s

p=u,cb

p=u,c s

← results quoted at
µ=MW for simplicity
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Operator basis
• QCD penguin operators:

• Results:

sb

Loop function:
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Operator basis
• Electroweak penguin operators:

• Results:

sb sb

Loop functions:
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Operator basis
• Dipol operators:

• Results (x=mt
2/MW

2) :

chirality flip ∝ mb

That’s it !
(apart from operators 
containing leptons …)
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FCNC processes
• Consider finally B-B mixing processes mediated by

transitions bd→db (or bs→sb)
• Effective interaction:

– dominant contribution by far (∝mt
2) 

due to top-quark loop
– first hint toward very heavy top quark
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B-B Mixing
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B0, B0

BH

BL

Oscillations of neutral mesons
• Neutral mesons can be transformed into their

antiparticles by second-order weak processes
• Analogy with quantum-mechanical system of

coupled pendulums: state B0 at t=0 develops into
a superposition of states B0 and B0 with time-
oscillating amplitudes

Δm
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Quantum-mechanical treatment
• Time evolution of an initial (at t=0) B0 state:

   where:

∝ (VtbVtd
*)2 ∝ e2iβ
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Calculation of the mass difference
• Master formula:

• Discovery of B-B mixing (ARGUS experiment, 1987)
pointed to a very heavy top quark!

perturbative QCD
correction 

(from lattice QCD)
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Determination of |Vtd|

result derived from
Bd mixing alone 
(large theoretical 
uncertainties)

result derived from
ratio of Bd and Bs 
mixing frequencies  
(reduced theoretical 
uncertainties)


