
QCD at finite T and µ
Mikko Laine (Bielefeld, Germany)

1. Static thermodynamics

→ Euclidean, “understood” up to non-perturbative level,

but only a limited class of observables

2. Real-time observables

→ Minkowskian, even leading-order perturbative

computations very hard, but simple physical interpretations

3. Finite baryon density
→ adventurous, “condensed matter physics” of QCD,

but largely model computations so far
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2. Real-time observables

Ô ≡ spatial component of a conserved current (T̂ µi, Ĵ i).

Heisenberg picture:

Ô(t) = e
iĤt
Ô(0)e

−iĤt
.

Spectral function:

ρ(ω) =

Z ∞

−∞
dt e

iωt 1

Z
Tr



e
−βĤ1

2

h

Ô(t), Ô(0)
i

ff

.

Transport coefficient: limω→0
ρ(ω)
ω .

This yields heat conductivity (T̂ 0i), electrical conductivity (Ĵ iem),

shear viscosity (T̂ ji), bulk viscosity (T̂ ii), flavour diffusion

coefficient (Ĵ if), particle production rate (Ĵ iem), . . .
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Phenomenological motivation: Heavy Ion Collisions

Hydrodynamics

⇒

Expansion due to peff(T ) = preal(T )− ζ∇ ·v +O(∇2),
where ζ = “bulk viscosity” [in cosmology, ∇ ≈ 0!].

Hard Probes

q

q̄

µ
+

µ
−

γ

⇒
q

q̄
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We rather consider a theoretical challenge today

At zero temperature, there is no structure at small ω.

For example, massive elementary scalar field:

G =
i

p2
0 − E2

p

⇒ ρ(ω) =
π

2Ep

[δ(ω − Ep) − δ(ω + Ep)] .

Or a composite object, say ˆ̄ψγiψ̂ (quark mass M):
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So, the claim is that new structure emerges
around ω = 0 at T > 0:

What is the physics responsible for this?
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To get a first idea, consider a conserved charge in
Euclidean spacetime, with temporal extent β = 1/T .

Then the correlator is a constant:

∂τ

〈∫

d3x Ĵ0(τ,x)Ĵ0(0,0)

〉

= 0 .

In fact, for Ĵ0 = ˆ̄ψγ0ψ̂, T ≪M , g = 0 (free limit),

∆E
00(τ) ≡

〈∫

d3x Ĵ0(τ,x)Ĵ0(0,0)

〉

≈ −4Nc

(
MT

2π

)3/2

e−βM .
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The Fourier transform:
∫ β

0
dτ eiωnτ∆E

00(τ) ∝ δωn,0.

The spectral function is a certain analytic continuation
hereof; in fact (Exercise 4):

ρ00(ω)

ω
= ∆E

00(0)βπδ(ω) .

So, even for a conserved charge, there is a peak near
the origin, it is just infinitely narrow!

With interactions turned on, the peak remains infinitely
narrow, because the current is exactly conserved.
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Consider then the correlator of the spatial components:

∆
E
ii(τ) ≡

fiZ

d
3
x Ĵi(τ, x)Ĵi(0, 0)

fl

.

It turns out that in the free theory, , this again
contains a τ -independent “zero-mode”:

∆
E
ii(τ) = 4Nc

T

M

„

MT

2π

«3/2

e
−βM

+ (τ − dep.) .

However, now interactions can smoothen δ(ω) from ρ(ω)/ω.

This yields the “transport peak” that we saw before.

Transport coefficient ≡ intercept of ρ(ω)/ω at origin.
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In order to understand what interactions do, let us
start with first quantized quantum mechanics.

To learn something about Ĵ i, let us give the quark
a non-zero initial momentum, 〈p̂i(t)〉non-eq 6= 0. In
equilibrium, 〈p̂i(t)〉eq = 0, so the system should relax:

d

dt
〈p̂i(t)〉non-eq = −ηD 〈p̂i(t)〉non-eq + O(〈p̂i(t)〉

2
non-eq) .

Here ηD = “drag coefficient” = “relaxation rate”.
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Once t is so large that 〈p̂i(t)〉non-eq ∼ [〈p̂2
i 〉eq]

1/2,
Brownian motion sets in. The time scales we are
interested in are slow, so let us assume that this
can be described “classically” by Langevin-dynamics
[though we may lose O(g2) corrections]:

〈p̂i(t)〉non-eq → pi(t) ,

d

dt
pi(t) = −ηD pi(t) + ξi(t) ,

〈ξi(t)ξj(t
′)〉 = κ δijδ(t− t′) , 〈ξi(t)〉 = 0 .

Here κ = “momentum diffusion coefficient”.
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Now, we can solve for the time evolution:

pi(t) = pi(0)e−ηDt +

∫ t

0

dt′ eηD(t′−t)ξi(t
′) .

In particular, letting the system thermalize by waiting,

lim
t0→∞

〈pi(t0)pi(t0 + t)〉

= lim
t0→∞

Z t0

0
dt1 e

ηD(t1−t0)
Z t0

0
dt2 e

ηD(t2−t0−t)〈ξi(t1)ξi(t2)〉

=
κ

2ηD
e
−ηD|t| ≡ 〈p2i 〉 eq e

−ηD|t|
.

(

Equipartition tells that
〈p2i 〉 eq

2M = T
2 [1 + O(g2)], i.e.

κ = 2ηDTM “fluctuation-dissipation theorem” .

)
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The quantum mechanical equivalent of the classical
correlator limt0→∞〈pi(t0)pi(t0 + t)〉 must be

∆(t) ≡

〈
1

2
{p̂i(t), p̂i(0)}

〉

eq

,

because operator ordering plays no role. We have thus
learned that, in equilibrium,

∆(t) ≃ ∆(0)e−ηD|t| .

Consequently,

∆̃(ω) ≡

∫ ∞

−∞
dt eiωt∆(t) ≃ ∆(0)

2ηD
ω2 + η2

D

.
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Let us define a spectral function corresponding to the
momentum operator:

Cρ(t) ≡
fi

1

2
[p̂i(t), p̂i(0)]

fl

eq

, ρ(ω) ≡
Z ∞

−∞
dt e

iωt
Cρ(t) .

It can be shown that ∆̃(ω) = [1 + 2nB(ω)] ρ(ω):
More generally, all of the correlation functions defined above can be related to each other. In

particular, all correlators can be expressed in terms of the spectral function, which in turn can be
determined as a certain analytic continuation of the Euclidean correlator. In order to do this, we
may first insert sets of energy eigenstates into the definitions of Π>

αβ and Π<
αβ :

Π>
αβ(Q) =

1

Z

∫

dt d3x eiQ·xTr
[

e−βĤ+iĤt 1
︸︷︷︸

P

m
|m〉 〈m|

φ̂α(0,x)e−iĤt 1
︸︷︷︸

P

n
|n〉 〈n|

φ̂†β(0,0)
]

=
1

Z

∑

m,n

∫

dt d3x eiQ·xe(−β+it)Eme−itEn〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉

=
1

Z

∫

x

e−iq·x
∑

m,n

e−βEm 2π δ(q0 + Em − En)〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉 , (0.1)

Π<
αβ(Q) =

1

Z

∫

dt d3x eiQ·xTr
[

e−βĤ 1
︸︷︷︸

P

n
|n〉 〈n|

φ̂†β(0,0)eiĤt 1
︸︷︷︸

P

m
|m〉 〈m|

φ̂α(0,x)e−iĤt
]

=
1

Z

∑

m,n

∫

dt d3x eiQ·xe(−β−it)EneitEm〈n|φ̂†β(0,0)|m〉 〈m|φ̂α(0,x)|n〉 (0.2)

=
1

Z

∫

x

e−iq·x
∑

m,n

e−βEn 2π δ(q0 + Em − En)
︸ ︷︷ ︸

En=Em+q0

〈m|φ̂α(0,x)|n〉 〈n|φ̂†β(0,0)|m〉

= e−βq
0

Π>
αβ(Q) . (0.3)

This is the Fourier-space version of the KMS relation. Consequently

ραβ(Q) =
1

2
[Π>
αβ(Q) − Π<

αβ(Q)] =
1

2
(eβq

0

− 1)Π<
αβ(Q) (0.4)

and, conversely,

Π<
αβ(Q) = 2nB(q0)ραβ(Q) , (0.5)

Π>
αβ(Q) = 2

eβq
0

eβq0 − 1
ραβ(Q) = 2[1 + nB(q0)]ραβ(Q) , (0.6)

where nB(x) ≡ 1/[exp(βx) − 1]. Moreover,

∆αβ(Q) =
1

2
[Π>
αβ(Q) + Π<

αβ(Q)] = [1 + 2nB(q0)]ραβ(Q) . (0.7)

Note that 1 + 2nB(−q0) = −[1 + 2nB(q0)], so that if ρ is odd in Q→ −Q, then ∆ is even.
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Thus, for ω ≪ T where nB(ω) = 1/(eω/T −1) ≈ T/ω,
we find that

ρ(ω) ≈
ω

2T
∆̃(ω) = ∆(0)

βωηD
ω2 + η2

D

⇔
ρ(ω)

ω
≈ ∆(0)β Im

1

ω − iηD
.

For ηD → 0+, 1
ω−i0+ = P ( 1

ω) + iπδ(ω), and we get

ρ(ω)/ω = ∆(0)βπδ(ω), like in a free theory!

Hence, it is the multiple collisions within the
plasma, leading to momentum diffusion/dissipation,
that are responsible for a finite transport peak.
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Further concepts

Apart from ηD, κ, there are two other quantities which essentially

contain the same information. If we define

xi(t) − xi(0) ≡
Z t

0

dt
′pi(t

′)

M
,

then the previous result for 〈pi(t1)pi(t2)〉 eq leads to

D

[xi(t) − xi(0)]
2
E

eq

t≫η−1
D≈ 2Dt .

Here the (flavour) diffusion coefficient D is given by

D =
〈p2
i 〉 eq

ηDM2

equipartition≃ T

ηDM

fluct.-dissip.≃ 2T 2

κ
(Einstein) .
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Yet another related concept is the energy loss of a
heavy quark:

dE

dx
=

dt

dx

dpi
dt

dE

dpi
≃
E

p
(−ηDpi)

pi
E

= −ηDp .

So, at least to leading order, all four quantities
(ηD, κ,D,dE/dx) are related to each other — a dear
child has many names!1

1In the case of other transport coefficients, like viscosities, there is a unique
definition, but practical computations and the related physics are harder.
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Intermediate summary

In the limit where Langevin dynamics is applicable, we
have defined four different quantities characterizing the
dissipative motion of heavy quarks within a plasma, all
of them related to each other.

If they are finite, then a genuine transport peak exists.

Remaining challenges

Which of them (if any) can be given a meaningful
(non-perturbative) definition within QCD?

How do the answers look like? gpT qMr?
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Approach 1/3

In principle the information should be extractable from
the imaginary part of the on-shell self-energy of the
heavy quark. Historically, this was first used in order
to determine dE/dx.

Braaten, Thoma PRD 44(1991)1298 & 2625

Let us use this to estimate the parametric magnitude
of the effect.

=⇒

“optical
theorem”

2

⇒ not allowed kinematically.
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At the next order:

=⇒

2

nF(1 − nF)

⇒ The effect is O(g4)!

This method cannot, however, be easily promoted to
the non-perturbative level.
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Approach 2/3

Looking at the Langevin-equation,

dpi

dt
= −ηD pi + ξi , 〈ξi(t)ξi(t′)〉 = κ δ(t− t

′
) ,

we note that κ can be obtained as

κ =

Z ∞

−∞
dt 〈ξi(t)ξi(0)〉 .

Moreover, we may identify ξi as the force acting on the heavy

quark: ξi ∼ gEi, where Ei is the colour-electric field. Hence

κ ≡ g
2

Z ∞

−∞
dt

1

Nc

Tr
D

W
†
(t, 0)Ei(t, x)W (t, 0)Ei(0, x)

E

.

Casalderrey-Solana, Teaney hep-ph/0605199
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To estimate κ, write Ei ∼ ∂iA0, and note that the t-integral

corresponds to the ω → 0 limit of a Fourier transform. So,

κ ∼ g
2
lim
ω→0

2T

ω

Z

d3
p

(2π)3
p

2
ρ00(ω, p) ,

where ρ00 is the spectral function related to A0. After (Hard

Thermal Loop) resummation,

ρ00(ω, p)
ω≪p≪T

≈ πm2
Eω

2p(p2 +m2
E)

2
, and

κ ∼ g
2
T
m2

E

2π

Z T

0

dp p3

(p2 +m2
E)

2
∼ g

4
T

3
ln

T

mE

.

Proper treatment of UV &

determination of NLO correction: Caron-Huot, Moore 0708.4232
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Approach 3/3

To obtain a definition which is guaranteed to be finite at any

order, we need to make use of the current, Ĵµ = ˆ̄ψγµψ̂.

Physically, Ĵµ ∼ nuµ ∼ M−1npµ, so in fact we can apply the

argument previously used for p̂i:

ρii(ω)

ω

ω≪T≈ ∆ii(0)
βηD

ω2 + η2
D

.

Thus, ηD can be extracted from the “line shape” around

origin. Alternatively, looking at the intercept, and adjusting the

normalizations to work correctly at leading order, we can define

D ≡
limω→0

ρµµ(ω)

ω
R β

0
dτ ∆00(τ)

.

i i

0 0

46



Summary

Note: κ ∼ g4 ln(1
g)T

3, so ηD ≃ κ/2TM ∼ g4 ln(1
g)
T2

M .

⇒ Simple textbook statistical physics is hidden in a
very far and difficult corner of quantum field theory!
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Exercise 3: “Another angle on diffusive motion”.

Solve the 1-d diffusion equation for the number density,

∂tn(t, x) = D∂
2
xn(t, x) ,

with the initial condition n(0, x) = δ(x), and show that

〈x2(t)〉 = 2Dt. [Hint: write δ(x) = limσ→0
1

σ
√
π
exp(−x2

σ2)].

Exercise 4: “Extreme form of the transport peak”.

Defining ∆̃E(ωn) =
R β

0
dτ eiωnτ ∆E(τ), and making use of

the spectral representation

∆̃E(ωn) =

Z ∞

−∞

dω

π

ρ(ω)

ω − iωn
,

argue that if ∆(τ) = ∆(0) ∀ τ , then ρ(ω)
ω = πβ∆E(0)δ(ω).
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