
QCD at finite T and µ
Mikko Laine (Bielefeld, Germany)

1. Static thermodynamics

→ Euclidean, “understood” up to non-perturbative level,

but only a limited class of observables

2. Real-time observables

→ Minkowskian, even leading-order perturbative

computations very hard, but simple physical interpretations

3. Finite baryon density
→ adventurous, “condensed matter physics” of QCD,

but largely model computations so far
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3. Finite baryon density

The QCD Lagrangian possesses the global UV (1) symmetry

ψA → e
iα
ψA , ψ̄A → e

−iα
ψ̄A , A = 1, . . . , Nc ×Nf .

The corresponding Noether current reads

Jµ=
X

A

∂LM

∂(∂µψA)

δψA

δα
=

X

A

ψ̄A iγµ iψA=−
X

A

ψ̄AγµψA.

The charge Q =
R

x
J0 is called the quark number (≡ Nc×

baryon number). As an operator it commutes with the

Hamiltonian, [Ĥ, Q̂] = 0. We then consider a system defined

by the density matrix

ρ̂ =
1

Z
e
−β(Ĥ−µQ̂)

.
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Phenomenological motivation: Astrophysics

The relationship between the mass and radius of compact

stars (neutron or “quark” stars) is described by the Tolman-

Oppenheimer-Volkov equations:

dp(r)

dr
= −

[p(r) + e(r)][M(r) + 4πr3p(r)]

r2m2
Pl − 2rM(r)

,

dM(r)

dr
= 4πr

2
e(r) .

Here r-dependence comes through p(r) ≡ p(T (r), µ(r)) −

p(0, 0), and one can assume T (r) ≪ µ(r).

In the core (r → 0) µ could perhaps reach values even up to

∼ 0.7 GeV, so “deconfinement” could take place.

Current status: Alford et al, astro-ph/0606524
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Many other properties of compact stars are also
measured, such as their cooling rate, dT/dt.

Vela

Yakovlev, Pethick astro-ph/0402143

This might be explained by particle production
(dominantly neutrino emissivity), in analogy with
the Hard Probes of heavy ion collisions (see below).
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Theoretical framework

We can treat the combination Ĥ−µQ̂ as an “effective”
Hamiltonian, and directly write down the corresponding
path integral, by simply adding (we leave out

∑

A)

−µQ = µ

∫

x

ψ̄Aγ0ψA

to the Euclidean action. For perturbation theory,
consider the quadratic part. In momentum space,

SE =
∑

∫

P f

˜̄ψA(P )[iγ0ω
f
n + iγipi + γ0µ+m]ψ̃A(P ) .

Therefore, the chemical potential simply shifts ω f
n →

ω f
n−iµ in the Matsubara frequencies (below ωn ≡ ω f

n).
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To understand the corresponding physics, let us compute the

conjugate variable, the quark number density:

n ≡
〈Q̂〉

V
=
∂p(T, µ)

∂µ

=
∂

∂µ

(

4Nc ×
1

2

P

Z

P f

ln[(ωn − iµ)
2
+ p

2
+m

2
]

)

= −4Nc

P

Z

P f

i(ωn − iµ)

(ωn − iµ)2 + E2
, E

2
≡ p

2
+m

2
.

Using T
P

ω f
n

1
(ωn−iµ)2+E2 = 1

2E [1−nF(E−µ)−nF(E+µ)]

(cf. Exercise 1), where nF(E) ≡ 1/(eβE + 1), it is not difficult

to show that (Exercise 5)

n = 2Nc

Z

d3p

(2π)3
[nF(E − µ) − nF(E + µ)] .
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In the zero-temperature limit:

lim
T→0

nF(E − µ) = lim
β→∞

{

1

exp[β(E − µ)] + 1

}

= θ(µ− E) .

So we get a Fermi surface:

Eµ

2 N
c

(2π)
3d n

d
3
p

_

55



The only particles free to interact are those on the
Fermi surface. In particular, there are 2→2 scatterings
with momenta (p,−p) → (k,−k), Ep = Ek = µ.

Now, if the two quarks with opposite momenta (Cooper
pair) can be arranged into any spin/colour/flavour
channel which is attractive, then the strength of the
2→2 scatterings on the Fermi surface can be argued
to become strong (in a Renormalization Group for the
scattering amplitude, a Landau pole develops).

This corresponds to the formation of a “colour
superconducting” condensate, in analogy with BCS.

Proof for QCD in weak coupling: Son hep-ph/9812287
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The problem

For realistic densities (µ<
∼

0.7 GeV), the coupling is
large. So it is very difficult to determine which channel
has the strongest attractive interaction, and what type
of a condensate forms as a result.
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In any case, interesting phenomena could arise.

The “spectrum” (in the sense of screening masses) is non-trivial:

quarks have an energy gap across the Fermi momentum; gluons

get screened by the Meissner effect (apart from confinement).

UV (1) may break spontaneously ⇒ superfluidity?

Condensate may break translational invariance ⇒ crystal?

Consequently transport properties (viscosities, conductivities,

etc) might become very exotic; these might affect compact star

phenomenology.

So, even more condensed matter and statistical physics knowledge

needed than with real-time observables!
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Theoretical challenge for today

How can a dense system lose energy through γ → νν̄?

As we saw in the first lecture, a heat bath can generate
a (Debye-type) mass (mE) for gauge fields.

The same happens for photons in a dense system,
through interactions with quarks on the Fermi surface.

meff
γ ≡ ωpl ∼ eµ

So, γ effectively becomes massive. On the other hand,
neutrinos do not take part in thermal interactions; they
remain massless, and the channel γ → νν̄ opens up.
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Process 1:

γ

ν

ν̄

e−

e+

W±

Adams, Ruderman, Woo Phys. Rev. 129(1963)1383
Braaten, Segel hep-ph/9302213

Process 2:

γ

ν

ν̄
µ

Z0

Harvey, Hill, Hill 0708.1281

For fun, consider the latter case now.
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To start with, recall the anomalous Ward identity

ν

γ5

α

γ

〈∂ν[ψ̄γνγ5ψ]〉Aaν = 2m〈ψ̄γ5ψ〉Aaν +
g2

32π2
ǫαβγδF

a
αβF

a
γδ .

Here the last term can be written as a total derivative,

g2

32π2
ǫαβγδF

a
αβF

a
γδ = ∂µKµ ,

Kµ =
g2

8π2
ǫµνλρ

[

Aaν∂λA
a
ρ +

g

3
fabcAaνA

b
λA

c
ρ

]

.

The component K0 is called the Chern-Simons density.
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On some level, this says that the “chiral charge”,
∫

d3x ψ̄γ0γ5ψ, and the Chern-Simons number,
∫

d3xK0, are related to each other (for m→ 0).

At the same time,
∫

d3xK0 is gauge invariant only
in “small” gauge transformations (in “large” ones it
changes by an integer), so the precise nature of the
relation must be subtle.

In any case, if we give a chemical potential to the
quarks (and leptons) of the Standard Model (thinking
of µψ̄γ0ψ as a “vertex”), and choose the gauge fields
on the external legs to be from SUL(2) or UY (1), then
γ5 appears in some corners, and essentially the same
graph could play a role.
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To be more concrete, let us (naively) consider

LE = ψ̄L [γνDν + µγ0]ψL ,

with ψL ≡ aLψ, aL ≡ (1 − γ5)/2. (We have set m = 0.)

Free propagator:

〈ψL(P )ψ̄L(Q)〉 = (2π)
4
δ

(4)
(P −Q) aL

−iP̃/

P̃ 2
aR ,

where P̃ ≡ (ω f
n − iµ, p), aR ≡ (1 + γ5)/2.

Interaction:

LE,I = −ig ψ̄LγνAνψL .
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Compute now the effective action for Aaµ (generating
functional of 1PI Green’s functions). Quadratic part:

S
(2)
E, eff

=
g2Nc

4

P

Z

Q
A
a
µ(Q)A

a
ν(−Q)

P

Z

P̃ f

1

P̃2(P̃ +Q)2
Tr

h

(P̃/ +Q/ )γµP̃/ γνaL

i

⇒ −
g2Nc

2

P

Z

Q
A
a
µ(Q)A

a
ν(−Q)

P

Z

P̃ f

1

P̃2(P̃ +Q)2
QαP̃βǫαµβν ,

where we inserted Tr[γ5γαγµγβγν] = 4ǫαµβν.

This corresponds to the sum

µ µ µ µ

µ

+ + + . . .
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Let us expand to leading order in Q (low-energy
expansion). The result can be non-zero only for the
index choice β = 0. The sum-integral needed (Ex. 6):

∑

∫

P̃ f

P̃0

(P̃ 2)2
= T

∑

ω f
n

∫

d3p

(2π)3
ωn − iµ

[(ωn − iµ)2 + p2]2

T≪µ
=

iµ

8π2
.

So, in configuration space,

S
(2)
E,eff ≈

µg2Nc

(4π)2

∫ β

0

dτ

∫

x

ǫijkA
a
i ∂jA

a
k .
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It turns out that the 3-point function leads to the same
integral.

µ µ µ µ

µ

+ + + . . .

Combining the two; taking both SUL(2) and UY (1)
gauge fields as external legs; and letting the loop be
either a quark (µ→ µQ) or a lepton (µ→ µLi), yields

S
(2)
E, eff ≈

3
X

i=1

(NcµQ+µLi)

Z β

0

dτ

Z

x

»

K
SUL(2)
0 −K

UY (1)
0

–

.

Redlich, Wijewardhana PRL 54(1985)970
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Note that:

• Strictly speaking, such a term should not emerge: it
is not gauge invariant (and not bounded from below).

•

∑3
i=1(NcµQ + µLi) is the chemical potential for

B + L, i.e. Baryon number + Lepton number.

• The reason for the problems: B + L is anomalous
in the Standard Model, i.e. not conserved ⇒ in field
theory no chemical potential should be assigned to it.

• It turns out, however, that the rate for B+L violation
is exponentially small at low temperatures. Therefore,
there may exist non-equilibrium situations which can
effectively be described by a conserved B + L.
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Let us now inspect the quadratic part of S
(2)
E, eff. We rewrite it in

terms of the physical fields (tan θw ≡
g1
g2

)

Zi = cos θwA
3
i + sin θwBi ,

Qi = − sin θwA
3
i + cos θwBi .

The structure is:

g
2
2(A

3
i )

2
− g

2
1B

2
i = (g2A

3
i + g1Bi)(g2A

3
i − g1Bi)

= (g
2
1 + g

2
2)

h

−ZiQi sin 2θw + Z
2
i cos 2θw

i

.

⇒

8

<

:

• ∄ K QED
0 because QED is vectorlike.

• ∃ coupling between Zi and Qi.

• ∃ new “mass term” (actually tachyonic) for Zi.
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Remark

In 0708.1281, Harvey et al reach the same conclusion
via a totally different route: they consider a gauged
WZW-action, with external SUL(2) and UY (1) gauge
fields as well as a flavour-singlet vector meson ωµ.

The field ωµ couples to a baryon density, and
integrating it out, they find a ZiQi-coupling analogous
to the one above, but with

µB ≡ NcµQ −→
g2
ω

m2
ω

nB ∼ (0.4 . . . 4.0) GeV ,

with a phenomenological coupling gω = 10 . . . 30.
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Physics consequence

From the amplitude

γ

ν

ν̄
µ

Z0

one can now estimate the “emissivity”:

dE

d3xdt
∼ −

αem

16π6
µ2
BG

2
F ω

9/2
p T 5/2e−ωp/T ,

where the “plasmon frequency” ωp plays the role of a
dynamical photon mass (T <

∼
ωp ∼ 1 MeV?).
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Summary

Despite asymptotic freedom, QCD at finite baryon
density remains an extremely complicated and difficult
system to solve (Fermi surface phenomena play a role).

Indeed, some of its properties are not properly
understood even at leading order in the gauge coupling.

Yet, there appears to be exciting physics taking place,
some of which could be relevant for astrophysics.
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Exercise 5: “Sum for particle number density”.

In analogy with Exercise 1, it can be shown that

T
P

ω f
n

1
(ωn−iµ)2+E2 = 1

2E [1 − nF(E − µ) − nF(E + µ)].

Starting from here (or elsewhere), show that

T
X

ω f
n

i(ωn − iµ)

(ωn − iµ)2 + E2
= −

1

2
[nF(E − µ) − nF(E + µ)] .

Exercise 6: “Triangle integral at finite µ”.

Show that

Z

d4P

(2π)4

p0 − iµ

[(p0 − iµ)2 + p2]2
=

iµ

8π2
.
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