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• Problem 1
Prove that

N2
−1
∑

a=1

taijt
a
lk =

1

2

(

δikδjl −
1

N
δijδkl

)

. (1)

where ta are the SU(N) generators in the fundamental representation, nor-
malized as follows:

Tr
(

tatb
)

= TRδab ≡
1

2
δab . (2)

• Problem 2
The parameter ΛQCD is defined as follows:

log
Q2

Λ2
QCD

= −
∫

∞

αS(Q2)
da

1

β(a)
, (3)

with
β(αS) = −β0α

2
S

(

1 + b′αS + b′′α2
S

+ O(α3
S
)
)

. (4)

i) Express αS(Q
2) as a function of ΛQCD at one loop (i.e. neglecting the

contributions of b′ and of b′′) and at two loops (i.e. neglecting the contribution
of b′′).

ii) If A and B denote two renormalization schemes such that

αB
S

= αA
S

{

1 + c1α
A
S

+ c2

(

αA
S

)2
+ O

(

(

αA
S

)3
)}

(5)

prove that the parameters ΛQCD in the two schemes are given by

ΛB
QCD

= ΛA
QCD

exp

(

c1

2β0

)

(6)

and that β0 and b′ are scheme independent.

• Problem 3
Consider the processes

uū −→ γγ , (7)

uū −→ gg . (8)

i) Draw the corresponding Feynman diagrams (in QED and QCD respec-
tively), and using Feynman rules write down the amplitudes for all diagrams.
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ii) Prove, at the level of amplitudes (i.e., without squaring them), that
the non-transverse polarization degrees of freedom of the photons and of
the gluons do not give contributions to the cross sections. Compare the
cases of QED and QCD and discuss the differences. [Hint: contract with
the photon/gluon four-momenta; what happens if the polarization of the
gluon whose four-momentum is not contracted is not transverse? Why is the
situation different wrt QED?].

iii) Compute the matrix element squared for the QCD process, eq. (8). In
doing so, express the colour factors in terms of Nc (i.e., do not use Nc = 3 in
the computation). In the Nc → ∞ limit, discuss the pattern of interference
among Feynman diagrams.

• Problem 4
Using the definition of the plus prescription, prove that the regularized lowest
order Altarelli-Parisi qq kernel obeys:

P (0)
qq (z) ≡ CF

(

1 + z2

1 − z

)

+

= CF

1 + z2

(1 − z)+
+

3CF

2
δ(1 − z) . (9)

Furthermore, using the definition

γ(0)
qq (j) =

∫ 1

0
dzzj−1P (0)

qq (z) (10)

prove that

γ(0)
qq (j) = CF







−
1

2
+

1

j(j + 1)
− 2

j
∑

i=2

1

i







. (11)

• Problem 5
Consider the branching

q(E) → q(Eq, θq) + g(Eg, θg) (12)

with θq and θg the polar angles wrt the direction of flight of the quark that
splits. Introducing z such that

Eq = zE , Eg = (1 − z)E (13)
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prove that the leading behaviour (for θq, θg → 0) of the matrix element
squared relevant to the branching with the gluon polarized in the plane de-
termined by the two quarks is

|Ain|
2 →

(1 + z)2

1 − z

1

Q2
, (14)

with Q2 the invariant mass squared of the qg pair emerging from the branch-
ing. Prove also that, if the gluon is polarized out of the plane

|Aout|
2 → (1 − z)

1

Q2
, (15)

and therefore that, putting together eqs. (14) and (15), one recovers the usual
Altarelli-Parisi qq (unpolarized) kernel.

• Problem 6
Consider a system S of mass Ms produced in the collisions of two incoming
partons:

a + b −→ S . (16)

Keeping in mind the definitions of rapidity and pseudorapidity:

y =
1

2
log

k0 + k3

k0 − k3
, η = − log tan

θ

2
, (17)

with θ the polar angle of the four-momentum k wrt to the axis parallel to
k3.

i) Express (in an arbitrary frame) the pseudorapidity ηS of S as a function

of its rapidity yS and its transverse momentum p
(S)
T .

ii) Denoting by E the total collider c.m. energy, and the four-momenta
of partons a and b by

pa = x1
E

2
(1, 0, 0, 1) , pb = x2

E

2
(1, 0, 0,−1) (18)

in the incoming hadron c.m. frame, express x1 and x2 as a function of the
variables of the system S.


