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Lecture I

1. Quarkonium dissociation

2. Static quarks in real time and £nite T

3. Momentum regions of the static potential



In medium quarkonium dissociation

• Thermal medium induces color screening.

• Color screening of the heavy quark potential, may induce quarkonium dissociation.
Quarkonium dissociation may be a clear signature of quark-gluon plasma
formation.

◦ Matsui Satz PLB 178(86)416

In-medium string breaking through recoupling:



Color singlet QQ̄ free energy

The basic quantity for a canonical ensemble at temperature T is the partition function

Z =
∑

n

〈n|e−H/T |n〉 = e−F/T

where F is the free energy.

We may de£ne the color singlet QQ̄ free energy as the projection of F on the Fock
space containing a static QQ̄ pair at distance r in a color singlet con£guration:

e−F (r,T )/T =
∑

n

〈(QQ̄)1 n|e
−H/T |(QQ̄)1 n〉

◦ McLerran Svetitsky PRD 24(81)450



Color singlet QQ̄ free energy

The color singlet QQ̄ free energy F (r, T ) vs. r at different T .
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Charmonium spectra at different temperature
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From lattice studies: Tc = 175± 10 MeV.



Charmonium dissociation at SPS and RHIC
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The quarkonium potential at £nite T

In order to rigorously study quarkonium properties in a thermal bath at temperature T ,
the £rst quantity to determine is the quarkonium potential. The potential describes the
real-time evolution of a QQ̄ pair through the Schrödinger equation

E Φ =

(

p2

m
+ V (r, T )

)

Φ

In the full theory, it must come from

• a non-relativistic expansion in 1/m, the leading term being the static potential;

• an expansion in the energy E.

We will exploit these expansions either by direct computation over momentum regions
(Lecture I) or by conctructing a suitable hierarchy of EFTs (Lecture II).

• Note that the free energy is a thermodynamical quantity, whichy may serve as a guide
on what the quarkonium potential at £nite temperature may be, but it is NOT the potential
we are looking for.



Static limit of QCD

In order to calculate the static QQ̄ potential, the fundamental theory is

L = −
1

4
Fa
µνF

aµν +

nf
∑

i=1

q̄i iD/ qi + ψ†iD0ψ + χ†iD0χ

ψ (χ) is the field that annihilates (creates) the static (anti)quark.

• This may be also seen as the LO EFT Lagrangian that follows from QCD by
expanding in 1/m under the condition that mÀ any other scale in the problem.

• The relevant scales for static QQ̄ pairs at £nite T are: 1/r, E, ... T , mD , ...

• Only longitudinal gluons couple to static quarks.



Propagators at £nite T

• 〈O〉T =

∑

n〈n|e
−H/T O|n〉

Z
=

Tr {e−H/T O}

Z
=

∫

p./antip.DφO e
−

∫ 1/T
0

dt
∫

d3xL

Z

• φ ∈ {A,ψ, χ, qi} is a bosonic/fermionic field, we de£ne the following propagators

D>(x) = 〈φ(x)φ(0)〉T , D<(x) = ±〈φ(0)φ(x)〉T

D(x) = θ(x0)D>(x)± θ(−x0)D<(x)

• From the equal-time canonical commutation relation it follows the sum rule
(in momentum space)

∫

dk0

2π

(

D>(k)−D<(k)
)

= 1

• The spectral density ρ is de£ned as ρ(x) = D>(x)−D<(x)



Kubo–Martin–Schwinger formula

• From the cyclicity of the trace it follows that (for bosons/fermions)

D>(x) =
Tr {e−H/T φ(x) eH/T e−H/T φ(0)}

Z
=

Tr {φ(x0 + i/T, ~x) e−H/T φ(0)}

Z

= ±
Tr {e−H/T φ(0)φ(x0 + i/T, ~x)}

Z
= ±D<(x0 + i/T, ~x)

which in momentum space reads D<(k) = ±e−k0/TD>(k)

• Since D> and D< are related, we may express them in term of ρ:

D>(k) = (1 + nB(k
0))ρ(k), D<(k) = nB(k

0)ρ(k) for bosons

D>(k) = (1− nF(k
0))ρ(k), D<(k) = −nF(k

0)ρ(k) for fermions

where

nF(k
0) =

1

ek
0/T + 1

, nB(k
0) =

1

ek
0/T − 1



Retarded and advanced propagators at £nite T

We may express the full propagator also in terms of retarded and advanced propagators,
which for the bosonic/fermionic case read (in momentum space)

DR(k) =

∫

d4x eik·x θ(x0)〈φ(x)φ(0)∓ φ(0)φ(x)〉T

DA(k) = −

∫

d4x eik·x θ(−x0)〈φ(x)φ(0)∓ φ(0)φ(x)〉T

then we have

ρ(k) = DR(k)−DA(k),

D(k) = DR(k) +D<(k) = DA(k) +D>(k)

=
DR(k) +DA(k)

2
+

(

1

2
+ nB,F(k

0)

)

ρ(k).



Free static quark propagator

The free static quark propagators (dropping Lorentz indeces) satisfy the e.o.m.

k0S> (0)(k) = mS> (0)(k), k0S< (0)(k) = mS< (0)(k)

the Kubo–Martin–Schwinger relation

S< (0)(k) = −e−k0/TS> (0)(k)

and the sum rule
∫

dk0

2π

(

S> (0)(k)− S< (0)(k)
)

= 1

whose solution is

S> (0)(k) = (1− nF(k
0)) 2πδ(k0 −m), S< (0)(k) = −nF(k

0) 2πδ(k0 −m)

S(0)(k) =
i

k0 −m+ iε
− nF(k

0) 2πδ(k0 −m)

ρ(0)(k) = S> (0)(k)− S< (0)(k) = 2πδ(k0 −m)



Free static quark propagator

In the static limit m→∞, the propagators simplify because nF(m)→ 0; moreover we
may get rid of the explicit mass dependence by means of the field rede£nition ψ → ψe−imt

S> (0)(k) = 2πδ(k0), S< (0)(k) = 0

S(0)(k) =
i

k0 + iε

ρ(0)(k) = 2πδ(k0)

The retarded and advanced propagators read

SR(k) = −i

∫

dω

2π

ρ(0)(ω,~k)

ω − k0 − iε
, SA(k) = −i

∫

dω

2π

ρ(0)(ω,~k)

ω − k0 + iε



Real time

In order to have a perturbative expansion that involves real-time propagators, and hence
it is very close to the zero temperature case, it is convenient to modify the contour of the
time integration in the partition function in order to allow for real time:

t 0

/Τ

Im t

Re t

it 0 -

t f“1”

“2”

Green functions may be obtained from the modified partition function by the usual
functional differentiation with respect to sources j(x):

G(x1, ..., xn) =
1

Z

δnZ(j)

iδj(x1)...iδj(xn)

∣

∣

∣

∣

j=0



Real time

The price to pay is that the degrees of freedom double (“1” and “2”)

D11(x) = D(x)

D22(x) = D(x)∗

D12(x) = D<(x)

D21(x) = D>(x)

This is an alternative approach to the equivalent calculations in imaginary time formalism
+ analytical continuation in real time, the possible advantages being that

• the framework becomes very close to the one for T = 0;

• in the static quark sector, the second degrees of freedom, labeled “2”, decouple
from the physical degrees of freedom, labeled “1”.



Real-time static quark propagator

• Free static quark propagator:

S
(0)
Q (p) =







i

p0 + iε
0

2πδ(p0)
−i

p0 − iε







Since [S
(0)
Q (p)]12 = 0, the static quark fields labeled “2” never enter in any

physical amplitude, i.e. any amplitude that has the physical fields, labeled “1”, as
initial and £nal states.



Real-time gluon propagator

• Free gluon propagator in Coulomb gauge:

D
(0)
00 (~k) =

i

~k2





1 0

0 −1





D
(0)
ij (k) =

(

δij −
kikj

~k2

)

















i

k2 + iε
θ(−k0) 2πδ(k2)

θ(k0) 2πδ(k2) −
i

k2 − iε







+2πδ(k2)nB(|k
0|)





1 1

1 1











In Coulomb gauge, only transverse gluons carry a thermal part.



Gluon self energy

• We only need Π00;

• We only need [Π00]11 (for short Π00 from now on);

• We only need Π00(k) in some speci£c momentum regions.



Π00(k) for k0 ¿ T ∼ |~k|

Re
[

ΠR
00(k)

]

thermal
= Re

[

ΠA
00(k)

]

thermal
=

g2 TF nf

π2

∫ +∞

0
dq0 q0 nF(q

0)

[

2 +

(

|~k|

2q0
− 2

q0

|~k|

)

ln

∣

∣

∣

∣

∣

|~k| − 2q0

|~k|+ 2q0

∣

∣

∣

∣

∣

]

+
g2Nc

π2

∫ +∞

0
dq0 q0 nB(q

0)

[

1−
~k2

2(q0)2
+

(

−
q0

|~k|
+
|~k|

2q0
−
|~k|3

8(q0)3

)

ln

∣

∣

∣

∣

∣

|~k| − 2q0

|~k|+ 2q0

∣

∣

∣

∣

∣

]

Im
[

ΠR
00(k)

]

thermal
= −Im

[

ΠA
00(k)

]

thermal
=

2 g2 TF nf

π

k0

|~k|

∫ +∞

|~k|/2
dq0 q0 nF(q

0)

+
g2Nc

π

k0

|~k|

[

~k2

8
nB(|~k|/2) +

∫ +∞

|~k|/2
dq0 q0 nB(q

0)

(

1−
~k4

8(q0)4

)]



Π00(k) for k0 ∼ |~k| ¿ T

In this limit, we obtain the hard thermal loop (HTL) expression for the longitudinal gluon
polarization tensor,

Re
[

ΠR
00(k)

]

thermal
= Re

[

ΠA
00(k)

]

thermal
= m2

D

(

1−
k0

2|~k|
ln

∣

∣

∣

∣

∣

k0 + |~k|

k0 − |~k|

∣

∣

∣

∣

∣

)

Im
[

ΠR
00(k)

]

thermal
= −Im

[

ΠA
00(k)

]

thermal
= m2

D

k0

|~k|

π

2
θ(−k2)

where mD is the Debye mass:

m2
D =

g2T 2

3

(

Nc +
nf

2

)

◦ Braaten Pisarski NPB 337(90)569



• The Debye mass mD is a dynamically generated, temperature dependent, scale.
In the weak-coupling regime (g ¿ 1), mD is smaller than T . It effectively plays the
role of a screening mass for the longitudinal gluons. This can be better seen under
the condition k0 ¿ |~k| ∼ mD ¿ T ; in this case, the gluon polarization diagrams
need to be resummed, giving the HTL resummed propagator

−iDR,A
00 (k) =

1

~k2 +m2
D

∓ i
π

2

k0

|~k|

m2
D

(

~k2 +m2
D

)2

The Fourier transform of the real part of the propagator is the Yukawa potential
∼ e−mDr/r.

• The gluon polarization and therefore the gluon propagator develops an imaginary
part. This may be traced back to the scattering of particles in the medium carrying
momenta of order T with space-like gluons, a phenomenon also known as Landau
damping.



Π00(k) for |~k| À T À k0

[

ΠR
00(k)

]

thermal
=
[

ΠA
00(k)

]

thermal
= −

Nc g2 T 2

18

At leading order, the result is real and does not depend on k.



Tree level potential

• QQ̄ bound states for in£nitely heavy quarks in a thermal bath are characterized by
the scales: 1/r, E, T , mD , ...

• we assume the following hierarchy: 1/r À T À mD À E;

• under this condition the momentum regions ∼ 1/r, T and mD all contribute to the
potential;

• it is convenient to perform the calculation in Coulomb gauge.

Vs ≡ [Vs(r)]11 = −CF
αs

r



One-loop thermal corrections to the potential
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� � � �� � � �� � � �� � � �� � � �� � � �� � � �

The one-loop correction to the potential is

δVs ≡ [δVs(r)]11 = µ4−d

∫

dd−1k

(2π)d−1
e−i~k·~r g2 CF

[

iδD00(0, ~k)
]

11

where

[δD00(k)]11 =
δDR

00(k) + δDA
00(k)

2
+

(

1

2
+ nB(k

0)

)

(

δDR
00(k)− δD

A
00(k)

)

δDR,A
00 (k) = −

i

~k4
ΠR,A
00 (k)



One-loop thermal corrections to the potential
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The one-loop correction to the potential is

δVs ≡ [δVs(r)]11 = µ4−d

∫

dd−1k

(2π)d−1
e−i~k·~r g2 CF

[

iδD00(0, ~k)
]

11

• The fourth-component of the momentum in the longitudinal gluon has been set to
zero because we expand in E: E does not identify a momentum region that
contributes to the potential.



One-loop thermal corrections to the potential
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The one-loop correction to the potential is

δVs ≡ [δVs(r)]11 = µ4−d

∫

dd−1k

(2π)d−1
e−i~k·~r g2 CF

[

iδD00(0, ~k)
]

11

Momentum regions that contribute to the potential are

(1) |~k| ∼ 1/r; h.o. corrections are suppressed by Tr, mDr, Er

(2) |~k| ∼ T ; h.o. corrections are suppressed by mD/T , E/T

(3) |~k| ∼ mD ; h.o. corrections are suppressed by E/mD .



|~k| ∼ 1/r

The £rst momentum region is |~k| ∼ 1/r. The relevant thermal contribution to the
longitudinal gluon polarization tensor comes from the region |~k| À T À k0, which,
substituted in the expression of the potential, gives

δVs =

∫

d3k

(2π)3
e−i~k·~r

(

−CF
4παs
~k4

)

Nc g2 T 2

18
=
π

9
NcCF α

2
s r T

2



|~k| ∼ T

The second momentum region is |~k| ∼ T . Since T ¿ 1/r, we may expand e−i~k·~r

δVs = µ4−d

∫

dd−1k

(2π)d−1

(

1−
(~k · ~r)2

2
+ . . .

)

g2 CF

[

iδD00(0, ~k)
]

11
.

• The £rst term in the expansion is a mass correction and cancels against twice

� � � �� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �

• The second term gives

δVs =

[

−
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α

2
s r

2 T 3

]

+ i

[

CF

6
αs r

2 T m2
D

(

1

ε
+ γE + lnπ − ln

T 2

µ2
+

2

3
− 4 ln 2− 2

ζ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α

2
s r

2 T 3

]



|~k| ∼ mD

The third momentum region is |~k| ∼ mD . The contribution to the potential is like the
previous one, but now |~k| ∼ mD ¿ T and the correct expression for the longitudinal
gluon propagator is the HTL resummed propagator.

• The £rst term in the expansion corresponds to a mass correction, which this time
comes from the scale mD and cancels against twice the contribution of the static quark
self energy, when the loop momentum is of order mD and a HTL resummed gluon
propagator is used.

• The second term gives

δVs =
CF

6
αs r

2m3
D − i

CF

6
αs r

2 T m2
D

(

1

ε
− γE + lnπ + ln

µ2

m2
D

+
5

3

)



The potential for 1/r À T À mD À E

The £nal expression of the potential reads

Vs(r) = −CF
αs(1/r)

r

+
π

9
NcCF α

2
s r T

2 −
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α

2
s r

2 T 3

+
CF

6
αs r

2m3
D + . . .

+i

[

CF

6
αs r

2 T m2
D

(

2γE − ln
T 2

m2
D

− 1− 4 ln 2− 2
ζ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α

2
s r

2 T 3

]

+ . . .

• The potential is £nite;

• the term lnT 2/m2
D is a remenant of the fact that an IR divergence at the scale T

has canceled against an UV divergence at the scale mD ;

• the imaginary part stems from the scattering of soft space-like gluons with hard
particles, i.e. the Landau-damping phenomenon. It induces the thermal decay of
the static bound state.



Exercises

(1) Derive mD in the QED case. This corresponds to calculating the hard thermal loop
part of the photon polarization.

(2) Discuss the situation 1/r À E À T À mD .

(3) Discuss the situation 1/r À T À E À mD .



Lecture II

1. EFTs

2. pNRQCD at µ < T

3. pNRQCD at µ < mD



• Aim of the lecture is to derive the same potential of the previous one in an EFT
framework. This means making the expansions in Tr, mDr, Er, mD/T , E/T and
E/mD explicit at the Lagrangian level.



Effective Field Theories

Whenever a system H, described by L, is characterized by 2 scales ΛÀ λ, observables
may be calculated by expanding one scale with respect to the other.
An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

The EFT Lagrangian, LEFT , suitable to describe H at scales lower than Λ is de£ned by
(1) a cut off ΛÀ µÀ λ;
(2) by some degrees of freedom that exist at scales lower than µ

⇒ LEFT is made of all operators On that may be built from the effective degrees

of freedom and are consistent with the symmetries of L.



Effective Field Theories

LEFT =
∑

n

cn(Λ/µ)
On(µ, λ)

Λn

• Since 〈On〉 ∼ λn the EFT is organized as an expansion in λ/Λ.

• The EFT is renormalizable order by order in λ/Λ.

• The matching coef£cients cn(Λ/µ) encode the non-analytic behaviour in Λ. They
are calculated by imposing that LEFT and L describe the same physics at any
£nite order in the expansion: matching procedure. Since we are interested in
integrating out only the large scale, we may expand in the matching in the low
scale: the matching is a one-scale problem.

• If ΛÀ ΛQCD then cn(Λ/µ) may be calculated in perturbation theory.



Weak coupling

In the weak coupling regime:

• v ∼ αs ¿ 1; valid for tightly bound states: Υ(1S), J/ψ, ...

• T À gT ∼ mD .

Effects due to the scale ΛQCD will not be considered.



Scales for non-relativistic bound states at £nite T

Quarkonium in a medium is characterized by different energy and momentum scales:

• the scales of the bound state (v is the relative heavy-quark velocity):
•m (mass),
•mv (momentum transfer, inverse distance),
•mv2 (kinetic energy, binding energy, potential V ), ...

◦ Brambilla Pineda Soto Vairo RMP 77(05)1423

• the thermodynamical scales:
• T (temperature),
•mD (Debye mass, i.e. screening of the chromoelectric interactions), ...

If these scales are hierarchically ordered (if the bound state is non relativistic: v ¿ 1; in
the weak coupling regime T À mD) then we may expand physical observables in the
ratio of the scales. If we separate/factorize explicitly the contributions from the different
scales at the Lagrangian level this amounts to substituting QCD with a hierarchy of
EFTs, which are equivalent to QCD order by order in the expansion parameters.



EFTs

QCD

NRQCD

pNRQCD
pNRQCD

NRQCD HTL

HTL

m

1/r ∼ mv

E ∼ mv2

T
mD

We assume that bound states exist for

• T ¿ m

• 1/r ∼ mv >
∼
mD

We neglect smaller thermodynamical scales.



Scales

We will analyze

(1) the static limit: m→∞;

(2) a situation where the relevant scales, which are 1/r, T , mD and E, are
hierarchically ordered as

1/r À T À mD À E



QCD/NRQCD for m→∞

L = −
1

4
Fa
µνF

aµν +

nf
∑

i=1

q̄i iD/ qi + ψ†iD0ψ + χ†iD0χ

ψ (χ) is the field that annihilates (creates) the static (anti)quark.

• 1/m corrections may be systematically included in NRQCD, leading to a
Lagrangian systematically organized as a double expansion in 1/m and αs(m):

L =
∑

n

c(αs(m/µ))×On(µ, λ)/m
n. Similarly 1/m corrections may be

systematically included in pNRQCD.

• The relevant scales for static QQ̄ pairs at £nite T are: 1/r, E, ... T , mD , ...



pNRQCD for m→∞: integrating out 1/r

pNRQCD is obtained by integrating out modes associated with the scale
1

r

+ + ...
...    ...   ...

+ ...++ ...

NRQCD pNRQCD

1

E − V (r)

• The Lagrangian is organized as an expansion in r:

L =
∑

n

V (rµ′, rµ)×On(µ
′, λ) rn



• A crucial observation is that in the situation 1/r À T , we may set T = 0 in the
construction of the EFT that follows by integrating out 1/r. As a consequence, the
EFT turns out to be described by the same Lagrangian as pNRQCD at T = 0.



pNRQCD for m→∞: d.o.f. and power counting

• Degrees of freedom:

• Q-Q̄ states, with energy ∼ scales lower than 1/r and momentum <
∼

1/r

⇒ (i) singlet S (ii) octet O

• Gluons with energy and momentum ∼ scales lower than 1/r

• Power counting:

p ∼
1

r
;

all gauge fields are multipole expanded: A(R, r, t) = A(R, t) + r ·∇A(R, t) + . . .

and scale like (scales lower than 1/r)dimension.

Non-analytic behaviour in r→ matching coef£cients V



pNRQCD for m→∞: the Lagrangian

L = −
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi +

∫

d3rTr
{

S† (i∂0 − Vs) S + O† (iD0 − Vo)O
}

• LO in r

θ(T ) e−iTVs θ(T ) e−iTVo

(

e−i
∫

dtAadj
)



pNRQCD for m→∞: the Lagrangian

L = −
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi +

∫

d3rTr
{

S† (i∂0 − Vs) S + O† (iD0 − Vo)O
}

• LO in r

θ(T ) e−iTVs θ(T ) e−iTVo

(

e−i
∫

dtAadj
)

+VATr
{

O†r · gE S + S†r · gEO
}

+
VB

2
Tr
{

O†r · gEO+O†Or · gE
}

• NLO in r
O†r · gES O†{r · gE, O}

+ · · ·



pNRQCD for m→∞: matching at O(αs)

(a)

+

(b)

(a) The potentials Vs and Vo are the Coulomb potentials:

Vs(r) = −CF
αs

r
and Vo(r) =

αs

2Nc r
.

(b) VA = VB = 1.



The pNRQCD partition function

The pNRQCD partition function is

Z = Tr
{

e−HpNRQCD/T
}

=

∫

p.
DADSDO e−

∫ 1/T
0

dt
∫

d3xL

In real-time formalism the contour of the time integration is modified in order to allow for
real time; a consequence is the doubling of the fields discussed in the previous lecture.

t 0

/Τ

Im t

Re t

it 0 -

t f“1”

“2”



Real-time static quark-antiquark propagator

• Free static quark-antiquark propagator:

S
(0)

Q̄Q
(p) =







i

p0 + iε
0

2πδ(p0)
−i

p0 − iε






= U(0)







i

p0 + iε
0

0
−i

p0 − iε






U(0)

where

U(0) =





1 0

1 1





Similar to the quark propagator, but quark-antiquark fields are bosons.

Since [S
(0)

Q̄q
(p)]12 = 0, the static quark-antiquark fields labeled “2” never enter in

any physical amplitude, i.e. any amplitude that has the physical fields, labeled “1”,
as initial and £nal states.



Real-time potential

• Static quark-antiquark potential:

V =





V 0

−2i ImV −V ∗



 = [U(0)]−1





V 0

0 −V ∗



 [U(0)]−1

Hence the sum of all insertions of a potential exchange between a free quark and
antiquark amounts to the full propagator:

U(0)







i

p0 − V + iε
0

0
−i

p0 − V ∗ − iε






U(0) = S

(0)

Q̄Q
(p)

∞
∑

n=0

[

(−iV(r))S
(0)

Q̄Q
(p)
]n



pNRQCDHTL: integrating out T

Integrating out T from pNRQCD modifies pNRQCD into pNRQCDHTL.

• In the Yang–Mills sector, the Lagrangian gets an additional hard thermal loop
(HTL) part coming from contributions of order T to the gluon self-energy:

δLHTL =
m2

D

2
Tr

{

∫

dΩk

4π
Fµα

K̂αK̂β

(K̂νDν)2
Fβµ

}

,

where K̂ = (1, k̂). This modifies the gluon propagator.

E.g. the longitudinal propagator at k0 = 0 becomes

i

~k2





1 0

0 −1



 →
i

~k2 +m2
D





1 0

0 −1



+ π
T

|~k|

m2
D

(

~k2 +m2
D

)2





1 1

1 1





◦ Braaten Pisarski NPB 337(90)569, PRD 45(92)1827



pNRQCDHTL: integrating out T

• In the singlet sector the potential gets an additional thermal correction δVs to the
Coulomb potential:

δLsinglet = −

∫

d3r Tr
{

S† δVs S
}

where

δVs ≡ [δVs(r)]11 = −ig2
TF

Nc

r2

3

∫ ∞

0
dt e−it∆V

[

〈 ~Ea(t)φ(t, 0)adjab
~Eb(0)〉T

]

11

∆V = Vo − Vs



Chromoelectric correlator

The chromoelectric correlator 〈 ~Ea(t)φ(t, 0)adjab
~Eb(0)〉T enters into the potential;

φ(t, 0)adjab is a Wilson line in the adjoint representation connecting (t, ~0) to (0,~0).

At zeroth order in αs, the thermal part of 〈 ~Ea(t)φ(t, 0)adjab
~Eb(0)〉T is

〈 ~Ea(t)φ(t, 0)adjab
~Eb(0)〉T

∣

∣

∣

thermal part
= (N2

c−1)

∫

d3k

(2π)3
2|~k| cos(|~k|t)nB(|~k|)





1 1

1 1





• The thermal contribution to the potential induced by the leading chromoelectric
correlator, which would be of order g2 r2 T 3, vanishes.

• We will consider corrections a) of order g2 r2 T 3 × V/T , b) of order
g2 r2 T 3 × (mD/T )

2. Note that corrections c) induced by higher order terms in
the multipole expansion would be of order g2 r2 T 3 × (mD/T )

2 × (rT ), hence
they are suppressed. Remember that g2(T ) ≈ (mD/T )

2.



Integrating out T : real part of δVs

a)

V

b)

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

Re δVs(r) =
π

9
NcCF α

2
s r T

2 a) ∼ g2r2T 3 ×
V

T

−
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α

2
s r

2 T 3 b) ∼ g2r2T 3 ×
(mD

T

)2

• Contribution a) corresponds to the |~k| ∼ 1/r momentum region contribution to the
static potential calculated in Lecture I;

• Contribution b) corresponds to the |~k| ∼ T momentum region contribution to the
static potential calculated in Lecture I.



Integrating out T : imaginary part of δVs

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

Landau-damping contribution

Im δVs(r) = +
CF

6
αs r

2 T m2
D

(

1

ε
+ γE + lnπ − ln

T 2

µ2
+

2

3
− 4 ln 2− 2

ζ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α

2
s r

2 T 3 ∼ g2r2T 3 ×
(mD

T

)2

• This contribution corresponds to the |~k| ∼ T momentum region contribution to the
static potential calculated in Lecture I.

• Divergences appear in the imaginary part of the potential at order g2r2T 3

×
(mD

T

)2
. They cancel in physical observables against loop corrections from

lower energy scales: in our case against contributions coming from the scale mD .



pNRQCDHTL: integrating out mD

Integrating out mD from pNRQCDHTL modifies the singlet sector adding an additional
thermal correction δVs to the singlet potential

δLsinglet = −

∫

d3rTr
{

S† δVs S
}

where δVs = −ig2
TF

Nc

r2

3

∫ ∞

0
dt e−it∆V

[

〈 ~Ea(t)φ(t, 0)adjab
~Eb(0)〉T

]

11
;

the relevant diagram is now

HTL resummed propagator



Integrating out mD: δVs

Re δVs(r) ∼ g2r2T 3 ×
(mD

T

)3

Im δVs(r) = −
CF

6
αs r

2 T m2
D

(

1

ε
− γE + lnπ + ln

µ2

m2
D

+
5

3

)

• This contribution corresponds to the |~k| ∼ mD momentum region contribution to
the static potential calculated in Lecture I.



The potential for 1/r À T À mD À E

The £nal expression of the potential agrees with the one found in Lecture I:

Vs(r) = −CF
αs(1/r)

r

+
π

9
NcCF α

2
s r T

2 −
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α

2
s r

2 T 3

+
CF

6
αs r

2m3
D + . . .

+i

[

CF

6
αs r

2 T m2
D

(

2γE − ln
T 2

m2
D

− 1− 4 ln 2− 2
ζ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α

2
s r

2 T 3

]

+ . . .

• The potential is £nite;

• the term lnT 2/m2
D is a remenant of the fact that an IR divergence at the scale T

has canceled against an UV divergence at the scale mD ;

• the imaginary part stems from the scattering of soft space-like gluons with hard
particles, i.e. the Landau-damping phenomenon. It induces the thermal decay of
the static bound state.



Static quark antiquark at 1/r À T À mD À V :

energy and width

The potential is £nite because it provides the following physical observables:

δE =
π

9
NcCF α

2
s r T

2 −
3

2
ζ(3)CF

αs

π
r2 T m2

D +
2

3
ζ(3)NcCF α

2
s r

2 T 3

Γ =
CF

3
αs r

2 T m2
D

(

−2γE + ln
T 2

m2
D

+ 1 + 4 ln 2 + 2
ζ′(2)

ζ(2)

)

−
8π

9
ln 2 NcCF α

2
s r

2 T 3



Singlet to octet break up

Singlet to octet break up contribution

V V

Im δVs(r) = −
N2
cCF

6
α3s T ∼ g2r2T 3 ×

(

V

T

)2

• This contribution to the thermal width comes from the thermal break up of a
quark-antiquark color singlet state into a color octet state and it is different from
the thermal width induced by the Landau damping phenomenon discussed so far.
It is speci£c of QCD, while the Landau damping would also show up in QED.
Having assumed mD À V , the term due to the singlet to octet break up is
parametrically suppressed by (V/mD)2 with respect to the imaginary gluon
self-energy contributions.



Conclusions

• It is possible to treat the real-time evolution of a static quark-antiquark pair in a
medium of gluons and light quarks at £nite temperature in a framework that makes
close contact with modern effective field theories for non-relativistic bound states
at zero temperature. In other words, we have shown how to include/factorize
thermodynamical scales in the framework of non-relativistic EFTs.

• In the speci£c example of the weak-coupling static potential, we have shown the
equivalence of the EFT approach to a direct calculation in QCD.



Exercises

(1) Show that at one loop the HTL Lagrangian for static quarks gets contributions only
from the gluon polarization.

(2) Show that at leading order the thermal part of the gluon condensate in the
weak-coupling regime gives back the Stefan–Boltzmann law:

〈 ~Ea(0) · ~Ea(0)〉T

∣

∣

∣

thermal part
= (N2

c − 1)T 4 π
2

15





1 1

1 1





(3) Show that the thermal contribution to the potential induced by the chromoelectric
correlator at leading order vanishes.
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