Soft - Collinear Effective Theory

An effective field theory for energetic hadrons \& jets

$$
E \gg \Lambda_{\mathrm{QCD}}
$$

Lecture 4

Iain Stewart MIT

Benasque Flavor School, July 2008

So far

Lecture I

- Introduction to SCETi, SCETir
- Collinear \& Soft degrees of freedom
- Construction of HQET

Lecture II

- SCETI propagators, field power counting
- Leading Lagrangian and heavy-light current
- Gauge symmetry and reparameterizations in SCET

Lecture III

- Wilson coefficients \& hard-collinear factorization
- Field redefinition \& ultrasoft-collinear factorization
- One-Loop ultrasoft and collinear graphs, IR divergences
- Renormalization group evolution \& Sudakov logs

Lecture 4 Outline

- $B \rightarrow X_{s} \gamma$ Factorization Theorem
- More on large logs, Evolution with Convolutions
- SCETir, building blocks, exploiting SCETı
- Factorization for $B \rightarrow D \pi, B \rightarrow \pi \ell \bar{\nu}$
- eg. of power corrections in SCETI
- Jet Production $e^{+} e^{-} \rightarrow J_{n} J_{\bar{n}} X$

SCET $_{\text {I }}$

Construction of operators (using power counting, ultrasoft \& collinear gauge invariance, RPI)

We built gauge invariant operators with nice power counting:
eg. LO heavy-to-light current

$$
J^{(0)}=\int d \omega C(\omega, \mu)\left[\left(\bar{\xi}_{n} W\right) \delta\left(\omega-\overline{\mathcal{P}}^{\dagger}\right) \Gamma\left(Y_{n}^{\dagger} h_{v}\right)\right]=\int d \omega C(\omega, \mu) \bar{\chi}_{n, \omega} \Gamma \mathcal{H}_{v}^{n}
$$

eg. a subleading current suppressed by λ

$$
\begin{aligned}
J^{(1)}=\int d \omega d \omega^{\prime} C^{(1)}\left(\omega, \omega^{\prime}, \mu\right) \bar{\chi}_{n, \omega} & i g \boldsymbol{\phi}_{\omega^{\prime}}^{\perp} \Gamma \mathcal{H}_{v}^{n} \\
i g \mathcal{B}_{\omega^{\prime}}^{\perp \mu} & =\frac{1}{\overline{\mathcal{P}}} W\left[i \bar{n} \cdot D_{n}, i D_{n}^{\perp \mu}\right] W^{\dagger} \delta\left(\omega^{\prime}-\overline{\mathcal{P}}^{\dagger}\right) \\
& =g A_{n, \omega^{\prime}}^{\perp \mu}+\ldots
\end{aligned}
$$

Endpoint $B \rightarrow X_{s} \gamma$

Optical Thm: $\quad \Gamma \sim \operatorname{Im} \int d^{4} x e^{-i q \cdot x}\langle B| T\left\{J_{\mu}^{\dagger}(x) J^{\mu}(0)\right\}|B\rangle$

	$P_{X}^{2}=$
standard OPE	$m_{B}\left(m_{B}-2 E_{\gamma}\right)$
endpoint region	$\sim m_{B}^{2}$
resonance region	$\sim m_{B} \Lambda_{Q C D}$
($\sim \Lambda_{Q C D}^{2}$

For EndPoint: $\quad E_{\gamma} \gtrsim 2.2 \mathrm{GeV}, X_{s}$ collinear, B usoft, $\quad \lambda=\sqrt{\frac{\Lambda_{Q C D}}{m_{B}}}$
We want to prove that the
Decay rate is given by factorized form

$$
\frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=H\left(m_{b}, \mu\right) \int_{2 E_{\gamma}-m_{b}}^{\bar{\Lambda}} d k^{+} S\left(k^{+}, \mu\right) J\left(k^{+}+m_{b}-2 E_{\gamma}, \mu\right)
$$

Match: $\quad \bar{s} \Gamma_{\mu} b \rightarrow e^{i\left(m_{b} v-\mathcal{P}\right) \cdot x} C(\overline{\mathcal{P}}) \bar{\xi}_{n, p} W \gamma_{\mu}^{\perp} P_{L} h_{v}$

$$
T_{\mu}^{\mu}=\int d^{4} x e^{i\left(m_{b} \frac{\tilde{n}}{2}-q\right) \cdot x}\langle B| T J_{\mathrm{eff}}^{\dagger}(x) J_{\mathrm{eff}}(0)|B\rangle
$$

label conservation $\overline{\mathcal{P}} \rightarrow m_{b}$

Factor usoft: $\quad \bar{\xi}_{n} W \Gamma_{\mu} h_{v} \rightarrow \bar{\xi}_{n} W \Gamma_{\mu} Y_{n}^{\dagger} h_{v}$

$$
\begin{aligned}
T_{\mu}^{\mu}= & \left|C\left(m_{b}\right)\right|^{2} \int d^{4} x e^{i\left(m_{b} \frac{\bar{n}}{2}-q\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times\langle 0| T\left[W^{\dagger} \xi_{n}\right](x)\left[\bar{\xi}_{n} W\right](0)|0\rangle \times\left[\Gamma_{\mu} \otimes \Gamma^{\mu}\right] \\
= & \left|C\left(m_{b}\right)\right|^{2} \int d^{4} x \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i\left(m_{b} \frac{\bar{n}}{2}-q-k\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times J_{P}(k) \times\left[\Gamma_{\mu} \otimes \Gamma^{\mu}\right]
\end{aligned}
$$

Convolution $\quad J_{P}(k)=J_{P}\left(k^{+}\right)$

$$
\begin{aligned}
\operatorname{Im} T_{\mu}^{\mu}= & \left|C\left(m_{b}\right)\right|^{2} \int d^{4} x \int \frac{d^{4} k}{(2 \pi)^{4}} e^{i\left(m_{b} \frac{\bar{\pi}}{2}-q-k\right) \cdot x}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle \\
& \times \operatorname{Im} J_{P}\left(k^{+}\right) \\
= & \left|C\left(m_{b}\right)\right|^{2} \int d k^{+}\left[\int \frac{d x^{-}}{4 \pi} e^{i\left(m_{b}-2 E_{\gamma}-k^{+}\right) x^{-} / 2}\langle B| T\left[\bar{h}_{v} Y\right](x)\left[Y^{\dagger} h_{v}\right](0)|B\rangle\right] \\
& \times \operatorname{Im} J_{P}\left(k^{+}\right) \\
= & \left|C\left(m_{b}\right)\right|^{2} \int d k^{+} S\left(2 E_{\gamma}-m_{b}+k^{+}\right) \operatorname{Im} J_{P}\left(k^{+}\right)
\end{aligned}
$$

as desired
calculable calculable
nonpert. shape function

$$
\begin{aligned}
& \frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=H\left(m_{b}, \mu\right) \int d k^{+} J\left(k^{+}, \mu\right) \\
& p^{2} \sim m_{b}^{2} \quad p^{2} \sim m_{b} \Lambda_{\mathrm{QCD}} \\
& \sim \mu_{h}^{2} \quad \sim \mu_{J}^{2}
\end{aligned}
$$

To minimize large logs we want to evaluate these functions at different μ 's
-/ our result from last lecture for the RGE for C, allows us to write $H\left(m_{b}, \mu_{J}\right)=H\left(m_{b}, \mu_{h}\right) U_{H}\left(m_{b}, \mu_{h}, \mu_{J}\right)$

- \nearrow need to be able to run the shape function up to μ_{J}

or we could run the jet and hard functions down to μ_{Λ}

Lets consider the jet function \& its RGE

The Jet Function

$$
\begin{aligned}
& \sum_{X_{n}} \frac{1}{4 N_{c}} \operatorname{tr}\langle 0| \hbar \chi_{n}(x)\left|X_{n}\right\rangle\left\langle X_{n}\right| \chi_{n, Q}(0)|0\rangle=Q \int \frac{d^{4} r_{n}}{(2 \pi)^{3}} e^{-i r_{n} \cdot x} J_{n}\left(Q r_{n}^{+}, \mu\right) \\
& J_{n}\left(Q r_{n}^{+}, \mu\right)=\frac{-1}{8 \pi N_{c} Q} \operatorname{Disc} \int d^{4} x e^{i r_{n} \cdot x}\langle 0| \mathrm{T} \bar{\chi}_{n, Q}(0) \neq \not \chi_{n}(x)|0\rangle
\end{aligned}
$$

tree level:

one loop:

a)
b)
c)
d)

®--ー--- \otimes

RGE:

$$
\mu \frac{d}{d \mu} J(s, \mu)=\int d s^{\prime} \gamma_{J}\left(s-s^{\prime}, \mu\right) J\left(s^{\prime}, \mu\right)
$$

solution $J(s, \mu)=\int d s^{\prime} U_{J}\left(s-s^{\prime}, \mu, \mu_{0}\right) J\left(s^{\prime}, \mu_{0}\right)$

$$
U_{J}\left(s-s^{\prime}, \mu, \mu_{0}\right)=\frac{e^{K}\left(e^{\gamma_{E}}\right)^{\omega}}{\mu_{0}^{2} \Gamma(-\omega)}\left[\frac{\left(\mu_{0}^{2}\right)^{1+\omega} \theta\left(s-s^{\prime}\right)}{\left(s-s^{\prime}\right)^{1+\omega}}\right]_{+}
$$

More examples which involve convolutions
twist 2 operators

$$
J^{(0)}=\int d \omega C(\omega, \mu) \underbrace{\bar{\chi}_{n, \omega} \hbar \chi_{n}}_{\mathcal{O}(\omega)}
$$

Matrix Elements

- $\pi^{\text {light-cone }}$

$$
\left\langle\pi_{n}\left(p_{\pi}^{-}\right)\right| J^{(0)}|0\rangle=\int d \omega C(\omega, \mu) \phi_{\pi}\left(\omega / p_{\pi}^{-}, \mu\right)=p_{\pi}^{-} \int_{0}^{1} d x C\left(x p_{\pi}^{-}, \mu\right) \phi_{\pi}(x, \mu)
$$

- DIS p.d.f $\left\langle p_{n}\left(p^{-}\right)\right| J^{(0)}\left|p_{n}\left(p^{-}\right)\right\rangle=\int d \omega C(\omega, Q, \mu) f_{i / p}\left(\omega / p^{-}, \mu\right) \quad p^{-}=\frac{Q}{x}$

$$
=\frac{Q}{x} \int_{x}^{1} d \xi C\left(\frac{Q \xi}{x}, Q, \mu\right) f_{i / p}(\xi, \mu)
$$

$$
\frac{1}{\Gamma_{0}} \frac{d \Gamma}{d E_{\gamma}}=H\left(m_{b}, \mu\right) \int d k^{+} J\left(k^{+}, \mu\right) S\left(2 E_{\gamma}\right.
$$

Factorization formulas of this type have also been derived for the power corrections using SCET

- So far we have considered inclusive processes with jets, or processes with only one identified hadron like DIS
- $\mathrm{SCET}_{\text {II }}$ allows us to treat cases with two or more hadrons

$$
\text { eg. } B \rightarrow D \pi, B \rightarrow \pi \ell \bar{\nu}, B \rightarrow \pi \pi
$$

Constructing SCET $_{\text {II }}$ Operators

- For simplicity consider a collinear $\left(c_{n}\right)$ and a soft (s) mode We can construct operators directly from QCD by integrating out the offshell modes

$$
q=q_{s}+q_{n} \sim Q(\lambda, 1, \lambda) \quad \text { in h.c. } \quad q^{2} \sim Q \lambda \gg \Lambda^{2}
$$

builds up $\quad \bar{\xi}_{n} S_{n}^{\dagger} \Gamma W q_{s}$
soft Wilson line

Soft-Collinear Factorization

A Simpler Method: use factorization in SCETr

1) Match $Q C D$ onto $S C E T_{I}$
2) Factorize usoft with field redefinition
3) Match onto SCET $_{\text {II }}$
$\left\{\mathrm{hc}_{n}, \mathrm{us}\right\} \longrightarrow\left\{\mathrm{c}_{n}, \mathrm{~s}\right\}$

$$
\text { eg. } \begin{aligned}
J & =\left(\bar{\xi}_{n} W\right) \Gamma h_{v} \\
& =\left(\bar{\xi}_{n} W\right) \Gamma\left(Y_{n}^{\dagger} h_{v}\right) \\
\longrightarrow J & =\left(\bar{\xi}_{n} W\right) \Gamma\left(S_{n}^{\dagger} h_{v}\right)
\end{aligned}
$$

In this matching, the power of λ can only increase and does so due to change in scaling to uncontracted fields

Exclusive Example $\quad B \rightarrow D \pi^{-}$

Steps

- Match at $\mu^{2} \sim Q^{2}$ onto SCET $_{\text {I }} \quad$ [Decouple $\xi \rightarrow Y \xi^{(0)}$]

$$
\left.\begin{array}{c}
{[\bar{c} b][\bar{d} u]} \\
{\left[\bar{c} T^{A} b\right]\left[\bar{d} T^{A} u\right]}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
{\left[\bar{h}_{v^{\prime}}^{(c)} h_{v}^{(b)}\right]\left[\bar{\xi}_{n, p^{\prime}}^{(0)} W^{(0)} C_{0}\left(\overline{\mathcal{P}}_{+}\right) W^{(0) \dagger} \xi_{n, p}^{(0)}\right]} \\
{\left[\bar{h}_{v^{\prime}}^{(c)} Y T^{A} Y^{\dagger} h_{v}^{(b)}\right]\left[\bar{\xi}_{n, p^{\prime}}^{(0)} W^{(0)} C_{8}\left(\overline{\mathcal{P}}_{+}\right) T^{A} W^{(0) \dagger} \xi_{n, p}^{(0)}\right]}
\end{array}\right.
$$

- Match at $\mu^{2} \sim Q \Lambda$ onto SCET $_{\text {II }}$

$$
\begin{array}{rlr}
{\left[\bar{h}_{v^{\prime}}^{(c)} h_{v}^{(b)}\right]\left[\bar{\xi}_{n, p^{\prime}} W C_{0}\left(\overline{\mathcal{P}}_{+}\right) W^{\dagger} \xi_{n, p}\right]} & \text { Factorizec } \\
{\left[\bar{h}_{v^{\prime}}^{(c)} S T^{A} S^{\dagger} h_{v}^{(b)}\right]\left[\bar{\xi}_{n, p^{\prime}} W C_{8}\left(\overline{\mathcal{P}}_{+}\right) T^{A} W^{\dagger} \xi_{n, p}\right]} & \longleftarrow \begin{array}{c}
\text { octet m.elt. } \\
\text { will vanish }
\end{array}
\end{array}
$$

will vanish

- Take matrix elements

$$
\begin{aligned}
\left\langle\pi_{n}\right| \bar{\xi}_{n, p^{\prime}}^{(0)} W^{(0)} C_{0}\left(\overline{\mathcal{P}}_{+}\right) W^{(0) t} \xi_{n, p}^{(0)}|0\rangle & =\frac{i}{2} f_{\pi} E_{\pi} \int d x C\left[2 E_{\pi}(2 x-1)\right] \phi_{\pi}(x) \\
\left\langle D_{v^{\prime}}\right| \bar{h}_{v^{\prime}} \Gamma_{h} h_{v}\left|B_{v}\right\rangle & =F^{B \rightarrow D}(0)
\end{aligned}
$$

$$
\langle D \pi| \bar{c} b \bar{u} d|B\rangle=N F^{B \rightarrow D} \int_{0}^{1} d x T(x, \mu) \phi_{\pi}(x, \mu)
$$

+ power corrections

Power Corrections \&

 Color Suppressed Decays$$
\begin{aligned}
& \bar{B}^{0} \rightarrow D^{0} \pi^{0}, \\
& \bar{B}^{0} \rightarrow D^{* 0} \pi^{0}
\end{aligned}
$$

$$
\mathcal{L}_{\xi q}^{(1)}=(\bar{q} Y) i g \boldsymbol{p}_{n, \omega^{\prime}}^{\perp} \chi_{n}
$$

$$
A_{00}^{D^{(*)}}=N_{0}^{(*)} \int d x d z d k_{1}^{+} d k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right) \phi_{M}(x)
$$

Comparison to Data

$$
\begin{aligned}
\delta(D \pi) & =30.4 \pm 4.8^{\circ} \\
\delta\left(D^{*} \pi\right) & =31.0 \pm 5.0^{\circ}
\end{aligned}
$$

Another Exclusive Example

$$
p^{2} \sim Q^{2}
$$

SCETI

needs time-ordered products of

$$
\begin{aligned}
& Q^{(0)}=\bar{\chi}_{n, \omega} \Gamma \mathcal{H}_{v}^{n} \\
& Q^{(1)}=\bar{\chi}_{n, \omega} i g \phi_{n, \omega^{\prime}}^{\perp} \Gamma \mathcal{H}_{v}^{n}
\end{aligned}
$$

with

$$
\mathcal{L}_{\xi q}^{(1)}=(\bar{q} Y) i g \|_{n, \omega^{\prime}}^{\perp} \chi_{n}, \ldots
$$

Requires a power suppressed interaction

$$
f(E)=\int d z T(z, E) \zeta_{J}^{B M}(z, E)+C(E) \zeta^{B M}(E)
$$

same functions in $B \rightarrow \pi \pi$ universality at $E \Lambda$

SCETII (further factorization)

$$
\begin{aligned}
\zeta_{J}^{B M}(z) & =f_{M} f_{B} \int_{0}^{1} d x \int_{0}^{\infty} d k^{+} J\left(z, x, k^{+}, E\right) \phi_{M}(x) \phi_{B}\left(k^{+}\right) \\
\zeta^{B M} & =? \quad \text { has endpoint singularities }
\end{aligned}
$$

eg. $\quad e^{+} e^{-} \rightarrow 2$ jets

event shapes in two jet region

$\overline{\mathrm{n}}$-collinear jet

$$
\frac{d \sigma}{d e}=\frac{1}{Q^{2}} \sum_{X} \mathrm{£}_{\mu \nu}\langle 0| J^{\dagger \nu}(0)|X\rangle\langle X| J^{\mu}(0)|0\rangle \delta(e-e(X)) \delta^{4}\left(q-p_{X}\right)
$$

$\mathrm{SCET}_{\mathrm{I}}$

$$
|X\rangle=\left|X_{n} X_{\bar{n}} X_{u s}\right\rangle
$$

What observable?

$$
\frac{d^{2} \sigma}{d M^{2} d \bar{M}^{2}}
$$

Hemisphere Invariant Masses

$$
M^{2}=\left(\sum_{i \in a} p_{i}^{\mu}\right)^{2} \bar{M}^{2}=\left(\sum_{i \in b} p_{i}^{\mu}\right)^{2}
$$

Dijet region: $M^{2}, \bar{M}^{2} \ll Q^{2}$

$$
\begin{aligned}
& \text { Let: } \\
& \mathrm{s} \equiv M^{2} \\
& \bar{s} \equiv \bar{M}^{2}
\end{aligned}
$$

In QCD: The full cross-section is

a restricted set of states: $\quad s \equiv M^{2} \ll Q^{2}$
$\sigma=\sum_{X}^{\text {res. }}(2 \pi)^{4} \delta^{4}\left(q-p_{X}\right) \sum_{i=a, v} L_{\mu \nu}^{i}\langle 0| \mathcal{J}_{i}^{\nu \dagger}(0)|X\rangle\langle X| \mathcal{J}_{i}^{\mu}(0)|0\rangle$
lepton tensor, $\gamma \& Z$ exchange
by using EFT's we will be able to move these restrictions into the operators

In SCET:

$$
\mathcal{J}_{i}^{\mu}(0)=\int d \omega d \bar{\omega} C(\omega, \bar{\omega}, \mu) J_{i}^{(0) \mu}(\omega, \bar{\omega}, \mu)
$$

Wilson coefficient

Momentum conservation:

$$
\rightarrow C(Q, Q, \mu)
$$

SCET current

$$
\begin{aligned}
& \left(\bar{\xi}_{n} W_{n}\right)_{\omega} Y_{n}^{\dagger} \Gamma^{\mu} Y_{\bar{n}}\left(W_{\bar{n}}^{\dagger} \xi_{\bar{n}}\right)_{\bar{\omega}} \\
& \quad \equiv \bar{\chi}_{n, \omega} Y_{n}^{\dagger} \Gamma^{\mu} Y_{\bar{n}} \chi_{\bar{n}, \bar{\omega}}
\end{aligned}
$$

SCET cross-section:

$$
|X\rangle=\left|X_{n} X_{\bar{n}} X_{s}\right\rangle
$$

QCD
 1
 SCET

a)

b)

\longleftarrow one-loop
difference gives one-loop matching:

$$
C(Q, \mu)=1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[3 \log \frac{-Q^{2}-i 0}{\mu^{2}}-\log ^{2} \frac{-Q^{2}-i 0}{\mu^{2}}-8+\frac{\pi^{2}}{6}\right]
$$

Specify hemisphere invariant masses for the jets:
total soft momentum is the sum of momentum in each hemisphere

$$
K_{X_{s}}=k_{s}^{a}+k_{s}^{b} \quad \hat{P}_{a}\left|X_{s}\right\rangle=k_{s}^{a}\left|X_{s}\right\rangle, \quad \hat{P}_{b}\left|X_{s}\right\rangle=k_{s}^{b}\left|X_{s}\right\rangle
$$

hemisphere projection operators
Insert: $\quad 1=\int d s \delta\left(\left(p_{n}+k_{s}^{a}\right)^{2}-s\right) \int d \bar{s} \delta\left(\left(p_{\bar{n}}+k_{s}^{b}\right)^{2}-\bar{s}\right)$
expand:

$$
\begin{aligned}
\delta\left(\left(p_{n}+k_{s}^{a}\right)^{2}-s\right) & =\frac{1}{Q} \delta\left(k_{n}^{+}+k_{s}^{+a}-\frac{s}{Q}\right) \\
\delta\left(\left(p_{\bar{n}}+k_{s}^{b}\right)^{2}-\bar{s}\right) & =\frac{1}{Q} \delta\left(k_{n}^{-}+k_{s}^{-b}-\frac{\bar{s}}{Q}\right)
\end{aligned}
$$

... Some Algebra ...

$$
\begin{aligned}
\frac{d^{2} \sigma}{d s d \bar{s}}= & \frac{\sigma_{0}}{Q^{2}}|C(Q, \mu)|^{2} \int d k_{n}^{+} d k_{\bar{n}}^{-} d \ell^{+} d \ell^{-} \delta\left(k_{n}^{+}+\ell^{+}-\frac{s}{Q}\right) \delta\left(k_{\bar{n}}^{-}+\ell^{-}-\frac{\bar{s}}{Q}\right) \\
& \times \sum_{X_{n}} \frac{1}{2 \pi} \int d^{4} x e^{i k_{n}^{+} x^{-} / 2} \operatorname{tr}\langle 0| \not \chi^{2} \chi_{n}(x)\left|X_{n}\right\rangle\left\langle X_{n}\right| \bar{\chi}_{n, Q}(0)|0\rangle \\
& \times \sum_{X_{\bar{n}}} \frac{1}{2 \pi} \int d^{4} y e^{i k_{\bar{n}}^{-} y^{+} / 2} \operatorname{tr}\langle 0| \bar{\chi}_{\bar{n}}(y)\left|X_{\bar{n}}\right\rangle\left\langle X_{\bar{n}}\right| \nmid \chi_{\bar{n},-Q}(0)|0\rangle \\
& \times \sum_{X_{s}} \frac{1}{N_{c}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right) \operatorname{tr}\langle 0| \bar{Y}_{\bar{n}} Y_{n}(0)\left|X_{s}\right\rangle\left\langle X_{s}\right| Y_{n}^{\dagger} \bar{Y}_{\bar{n}}^{\dagger}(0)|0\rangle
\end{aligned}
$$

Factorization Theorem:

$$
\frac{d^{2} \sigma}{d s d \bar{s}}=\sigma_{0} H_{Q}(Q, \mu) \int_{-\infty}^{+\infty} d \ell^{+} d \ell^{-} J_{n}\left(s-Q \ell^{+}, \mu\right) J_{\bar{n}}\left(\bar{s}-Q \ell^{-}, \mu\right) S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)
$$

Hard Function
, $H_{Q}(Q, \mu)=|C(Q, \mu)|^{2}$

Quark Jet Anti-quark Jet Soft radiation Function Function

```
Shemi (性, , 亘,\mu)
```

$S_{\mathrm{hemi}}\left(\ell^{+}, \ell^{-}, \mu\right)=\frac{1}{N_{c}} \sum_{X_{s}} \delta\left(\ell^{+}-k_{s}^{+a}\right) \delta\left(\ell^{-}-k_{s}^{-b}\right)\langle 0| \bar{Y}_{\bar{n}} Y_{n}(0)\left|X_{s}\right\rangle\left\langle X_{s}\right| Y_{n}^{\dagger} \bar{Y}_{\bar{n}}^{\dagger}(0)|0\rangle$
a)

b)

c)

d)

Soft function is perturbative if $\ell^{+}, \ell^{-} \gg \Lambda_{\mathrm{QCD}}$ and is nonperturbative if $\ell^{+}, \ell^{-} \sim \Lambda_{\mathrm{QCD}}$

It is also universal, it appears in many different event shapes (thrust, heavy-jet mass, ...) for both massless and massive jets

A very popular event shape is thrust $\quad T=\max _{\hat{t}} \frac{\sum_{i}\left|\hat{\mathbf{t}} \cdot \mathbf{p}_{i}\right|}{Q}$

$T=\frac{1}{2}$

Insert:

$$
1=\int d T \delta\left(1-T-\frac{s+\bar{s}}{Q^{2}}\right)
$$

Factorization theorem

$$
\frac{d \sigma}{d T}=\sigma_{0} H(Q, \mu) \int d s J_{T}(s, \mu) S_{\text {thrust }}\left(Q(1-T)-\frac{s}{Q}, \mu\right)
$$

with $\quad S_{\text {thrust }}(\ell, \mu)=\int_{0}^{\infty} d \ell^{+} d \ell^{-} \delta\left(\ell-\ell^{+}-\ell^{-}\right) S_{\text {hemi }}\left(\ell^{+}, \ell^{-}, \mu\right)$

SCET is a field theory which:

- explains how soft \& collinear degrees of freedom communicate with each other, and with hard interactions
- organizes the interactions in a series expansion in λ which measures how collinear/soft the particles are

$$
\lambda=\sqrt{\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}} \quad \lambda=\frac{\Lambda_{\mathrm{QCD}}}{m_{b}} \quad \lambda^{2}=\frac{m_{X}^{2}}{Q^{2}}
$$

- provides a simple operator language to derive factorization theorems in fairly general circumstances
eg. unifies the treatment of factorization for exclusive and inclusive QCD processes
- results are constrained by symmetries
- scale separation \& decoupling

How is SCET used?

- cleanly separate short and long distance effects in QCD
\rightarrow derive new factorization theorems
\rightarrow find universal hadronic functions, exploit symmetries
\rightarrow predict decay rates and cross sections
- model independent, systematic expansion
\rightarrow study power corrections
- keep track of μ dependence
\rightarrow sum large logarithms

The End

