Benasque Summer School on Flavor Physics, July 2008

1. Yukawa couplings, CKM matrix, and unitarity triangles:

a) Show that flavor non-diagonal kinetic terms in the Standard Model Lagrangian can always be diagonalized and brought into standard form by field redefinitions. To this end, study the Lagrangian

$$\mathcal{L}_{\text{kinetic}} = \bar{Q}_L Z_Q \, i \not\!\!\!D \, Q_L + \bar{u}_R Z_u \, i \not\!\!\!D \, u_R + \bar{d}_R Z_d \, i \not\!\!\!D \, d_R \,,$$

where all fields are 3-component vectors in generation space, and Z_A are non-negative, hermitian 3×3 matrices.

b) Show that an arbitrary complex matrix Y can be diagonalized by a biunitary transformation:

$$W^{\dagger} Y U = \lambda$$

where U, W are unitary matrices, and λ is a real, diagonal matrix with non-negative eigenvalues. (*Hint:* Consider the matrices YY^{\dagger} and $Y^{\dagger}Y$.)

c) Derive the number of mixing angles and physical (i.e., observable) phases of the CKM matrix for the Standard Model with N fermion generations.

d) Show that the Jarlskog determinant J defined as

$$\operatorname{Im}\left(V_{ij}V_{kl}V_{il}^{*}V_{kj}^{*}\right) = J\sum_{m,n} \epsilon_{ikm} \epsilon_{jln} \quad (i \neq k, \ j \neq l)$$

is invariant under phase redefinitions of the quark fields, and calculate its value in terms of the Wolfenstein parameters to leading nontrivial order in λ .

e) Show that all unitarity triangles have the same area J/2.

2. Matching of Wilson coefficients in the effective weak Hamiltonian:

Assume that, in addition to its standard interactions, the Z^0 boson has a small flavorchanging coupling to left-handed b and s quarks:

$$\mathcal{L}_{Z} = \frac{g_{2}}{\cos\theta_{W}} Z^{\mu} \left\{ \sum_{f} \bar{f} \gamma_{\mu} \left(T_{f}^{3} \frac{1 - \gamma_{5}}{2} - Q_{f} \sin^{2}\theta_{W} \right) f + \left(\varepsilon_{bs} \bar{s} \gamma_{\mu} \frac{1 - \gamma_{5}}{2} b + \text{h.c.} \right) \right\},$$

where $|\varepsilon_{bs}| \ll 1$. The sum in the first term is over all Standard Model fermions. T_f^3 is the third component of weak isospin, Q_f the electric charge in units of e, g_2 the SU(2) gauge coupling, and θ_W the weak mixing angle.

Calculate the contributions to the Wilson coefficients C_{3-10} in the effective weak Hamiltonian for $b \to s\bar{q}q$ transitions arising from tree-level Z-boson exchange, working to first order in ε_{bs} . Recall that $m_Z \cos \theta_W = m_W$ and $G_F/\sqrt{2} = g_2^2/8m_W^2$. Use the fact that $T_f^3 = 0$ for right-handed quarks, while $T_f^3 = Q_f - Y$ with Y = 1/6 for left-handed quarks.

3. OPE for inclusive *B*-meson decays:

Calculate the leading contribution (in powers of α_s and $1/m_b$) to the inclusive $\bar{B} \rightarrow X_s \gamma$ decay rate using the optical theorem,

$$\Gamma(\bar{B} \to X_s \gamma) = \text{Disc} \, \frac{\langle \bar{B} | \, \boldsymbol{T} \, | \bar{B} \rangle}{2m_B} \,, \qquad \boldsymbol{T} = i \int d^4 x \, T \left\{ \mathcal{H}_{\text{eff}}(x) \, \mathcal{H}_{\text{eff}}(0) \right\} \,,$$

by evaluating the discontinuity of the one-loop diagram with two insertions of the dipole operator $Q_{7\gamma}$ in the effective weak Hamiltonian.

a) Show that the Feynman rule (in momentum space) for the dipole operator

$$Q_{7\gamma} = -\frac{em_b}{4\pi^2} \,\bar{s} \,\sigma_{\mu\nu} \,\frac{1+\gamma_5}{2} \,F^{\mu\nu} \,b$$

is

where q is the outgoing photon momentum and μ its polarization index.

b) Prove the following identity for Dirac matrices in 4 dimensions:

$$[\gamma_{\mu}, \not\!\!\!d] \gamma^{\alpha} [\gamma^{\mu}, \not\!\!\!d] = 16q^{\alpha} \not\!\!\!d - 4q^2 \gamma^{\alpha}$$

c) Evaluate the discontinuity of the partonic $b \to s\gamma$ forward scattering amplitude by using the Cutkosky rule to replace the cut propagators with

Disc
$$\frac{1}{q^2 + i\epsilon} \frac{1}{(p-q)^2 + i\epsilon} = (2\pi) \,\delta(q^2) \,\theta(q^0) \,(2\pi) \,\delta((p-q)^2) \,\theta(p^0 - q^0) \,.$$

Use Feynman gauge, set the strange-quark mass to zero, and work in the *b*-quark rest frame, where the on-shell *b*-quark momentum is $p^{\mu} = (m_b, 0, 0, 0)$. First show that

$$\int \frac{d^4q}{(2\pi)^4} (2\pi) \,\delta(q^2) \,\theta(q^0) \,(2\pi) \,\delta((p-q)^2) \,\theta(p^0-q^0) = \int \frac{d\Omega_q}{32\pi^2} \,, \qquad q^0 = |\vec{q}| = \frac{m_b}{2}$$

in that frame, where $d\Omega_q$ is the measure for the angular integration over the direction of the vector \vec{q} . Then use the results form parts a) and b).

d) Make the replacement

$$\bar{u}(p) \dots u(p) \to \frac{\langle \bar{B} | \bar{b} \dots b | \bar{B} \rangle}{2m_B}$$

for the *b*-quark spinor product and evaluate the resulting matrix element to obtain the total hadronic $\bar{B} \to X_s \gamma$ decay rate.

4. Exclusive *B*-meson decays:

The time-dependent rate for the decay of a \overline{B}^0 meson into a CP eigenstate f is

$$\Gamma_{\bar{B}^0 \to f}(t) \propto 1 + \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \cos(\Delta m t) - \frac{2 \operatorname{Im}(A^* \bar{A} e^{2i\beta})}{|A|^2 + |\bar{A}|^2} \sin(\Delta m t),$$

where A and \bar{A} are the decay amplitudes for $\bar{B}^0 \to f$ and $B^0 \to f$, respectively, and 2β is the weak phase of the $B^0-\bar{B}^0$ mixing amplitude. The rate for the decay of a B^0 meson into the same state f is given by the analogous expression with $A \leftrightarrow \bar{A}$ and $\beta \to -\beta$.

a) Show that the time-dependent CP asymmetry has the general form

$$A_{\rm CP}(t) \equiv \frac{\Gamma_{\bar{B}^0 \to f}(t) - \Gamma_{B^0 \to f}(t)}{\Gamma_{\bar{B}^0 \to f}(t) + \Gamma_{B^0 \to f}(t)} = \mathcal{C}\cos(\Delta m t) - \mathcal{S}\sin(\Delta m t) \,,$$

where the coefficient \mathcal{C} is given by the direct CP asymmetry of the decay $\bar{B}^0 \to f$.

b) The general expression for the decay rate A in the Standard Model is

$$A = A_1 e^{i\delta_1} + A_2 e^{i\delta_2} e^{-i\gamma} \propto 1 + r e^{i\delta} e^{-i\gamma},$$

where $r = A_2/A_1$ and $\delta = \delta_2 - \delta_1$. Here A_i are real amplitudes, and δ_i are CPconserving strong rescattering phases. Obtain an exact expression for the coefficient S in terms of r, δ , β , and γ .

c) In rare, penguin-dominated hadronic *B* decays the coefficient *r* is numerically very small. Expand your result from part b) to first order in *r* and simplify the answer as much as possible. Using the experimental values $\gamma \approx 68^{\circ}$ and $\beta \approx 22^{\circ}$, as well as the QCD prediction that the strong phase shift δ is small in the heavy-quark limit, show that the measured coefficient S is always larger than $\sin 2\beta$.