LHC experiments: Exercises ${ }^{0}$

David d'Enterria (School on Flavour Physics, Benasc)

July 22, 2008

Exercise 1: Higgs observation. The Compact Muon Solenoid (CMS) experiment measures a peak in the invariant-mass photon-photon spectrum at $m=120 . \mathrm{GeV} / c^{2}$ with a width of $6 \mathrm{GeV} / c^{2}$. The signal has $\mathrm{S}=25$ counts on top of $\mathrm{B}=100$ counts from the residual QCD diphoton background. In this mass range, the CMS electromagnetic calorimeter has a mass resolution for a $\gamma \gamma$ resonance of $\Delta m / m=1 \%$.
(a) What is the signal significance ? Usually, "evidence" ("discovery") for a new particle is claimed when the Gaussian probability that a local fluctuation generates such a signal is below 0.27% ($5.710^{-5} \%$). Does the CMS observation qualify as evidence/discovery for a new resonance ? For the same luminosity, ATLAS observes the same peak with a signal-to-background ratio of $\mathrm{S} / \mathrm{B}=36 / 206$. Assuming completely uncorrelated measurements, does the combined ATLAS+CMS signal qualify as "evidence" or "discovery" of a new $120-\mathrm{GeV} / c^{2}$ resonance?
(b) What is the error in the mass of the measured particle ?
(c) Explain why the decay channel indicates that such a resonance could be the Standard Model Higgs. Given the measured width, is this resonance consistent with this assumption?

Exercise 2: Cosmic rays and Greisen-Zatsepin-Kuzmin cutoff. The LHCf experiment (and other forward detectors in ALICE/ATLAS/CMS) aims at studying (neutral) particle production at zero degrees to constrain Monte Carlo models of relevance for cosmic-rays (CR) physics. Very high-energy hadronic CRs can lose energy through collisions with the cosmic microwave background (CMB) photons (black-body radiation with $\mathrm{T}=2.72 \mathrm{~K}$) in the process $p \gamma \rightarrow p \pi$ with a cross section peaked at the Δ resonance $\sigma_{p \gamma \rightarrow \Delta} \approx 0.5 \times A^{2 / 3} \mathrm{mb}$, where A is the mass-number of the CR.
(a) Give a short intuitive explanation for the mass-number dependence of the nuclear pion photoproduction cross section: $\sigma \propto A^{2 / 3}$.
(b) Determine the threshold energy ("GZK cutoff") for a CR proton and ${ }^{56} \mathrm{Fe}$ ion to photoproduce a pion in its way through the universe. $\left[m_{p}=0.938 \mathrm{GeV} / c^{2}, m_{\pi}=0.140 \mathrm{GeV} / c^{2}\right]$.

[^0](c) Determine the (black-body) CMB photon number density n_{γ} and the corresponding mean free path length l of a CR proton and a ${ }^{56} \mathrm{Fe}$ ion in the universe.
(d) Assuming the same accelerating/magnetic settings as the LHC today, what should be the radius of a proton-proton collider to deliver center-of-mass energies equal to the GZK cut-off? In such a hypothetical collider, where (around which rapidity) should one install zero-degree detectors ?

Exercise 3: Collider kinematics, pileup probability.

(a) Prove that under a boost to a frame that moves with velocity β in the z-direction, the rapidity transforms as: $y \rightarrow y-y_{\beta}$. Show that at very high energies $(\beta \rightarrow \infty$ and/or $m \rightarrow 0$), the rapidity y of a particle can be approximated by its pseudorapidity η (is that true for very low angles too ?). What is the relation between $d \sigma / d y$ and $d \sigma / d \eta$ for a particle of mass m ? (Find the Jacobian). Usually $d \sigma / d y$ is a Gaussian-like distribution peaked at $y=0$. What about $d \sigma / d \eta$?
(b) The production cross section of a particle expressed as $E d^{3} \sigma / d^{3} p$ (where E is the particle energy and $d^{3} p=d p_{x} d p_{y} d p_{z}$ its 3 -momentum in Cartesian coordinates) is Lorentz invariant. Find the corresponding Jacobians, and write the invariant cross section as a function of $\left(p_{T}, y, \phi\right)$ and (p, θ, ϕ).
(c) The number of simultaneous proton-proton inelastic interactions ("pileup") taking place in the ATLAS and CMS interaction points is given by a Poisson distribution with an average of $\langle n\rangle=\mathcal{L} \sigma_{\text {inel }} t / f \approx 25$ per bunch crossing at design luminosity $\left(\mathcal{L}=10^{34} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right)$. The focusing magnets at the LHCb interaction point are tuned to run at $\mathcal{L}=4 \cdot 10^{32} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, and yield $\langle n\rangle=1$ to minimize pileup. What is the probability of having a bunch-crossing at LHCb with two pileup collisions? and with zero collisions (empty bunch) ?

[^0]: ${ }^{0}$ Most (if not all) relevant material to answer the questions can be found in the presentation slides.

