





### **Baryon Chiral Perturbation Theory**

**Bastian Kubis** 

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

Universität Bonn, Germany

School on Flavour Physics, Benasque July 13–25, 2008



Baryon Chiral Perturbation Theory – p. 1

# **Outline** (1)

#### Part I: Basics

- construction of the meson-baryon Lagrangian
- power counting and its failure
- heavy-baryon ChPT and infrared regularisation

#### Part II: $\pi N \sigma$ -term and strangeness in the nucleon (1)

- quark mass dependence of the nucleon mass
- sigma term and  $\pi N$  scattering

# **Outline** (2)

#### Part III: Strangeness in the nucleon (2)

- Strangeness form factors and parity-violating  $e^-p$  scattering
- Chiral perturbation theory: a failure

#### Part IV: Isospin-violating form factors

- Why? isospin violation and strangeness
- Chiral perturbation theory: a success

#### Part V: Crimes and omissions

- The role of the  $\Delta(1232)$  resonance
- Two- and more-nucleon systems

# Part III: Strangeness in the nucleon (2)

• naive quark model of the proton:



• virtual quark–antiquark pairs:



• virtual strange quark-antiquark pairs:



- virtual strange quark-antiquark pairs:
- How "strange" is the nucleon?

s s u u eeeo d

 $\begin{array}{l} \langle N | \bar{s}s | N \rangle & \text{contribution to mass} \Rightarrow \sigma \text{-term} \\ \langle N | \bar{s}\gamma_{\mu}\gamma_{5}s | N \rangle & \text{contribution to spin} \\ \langle N | \bar{s}\gamma_{\mu}s | N \rangle & \text{contribution to magnetic moment} \end{array}$ 

• vector form factors:



- electric + magnetic form factors
- contribution of the three lightest quarks

u, d, s:



### **Reminder: nucleon vector form factors**

• definition of nucleon vector form factors:

$$\langle N(p')|\bar{q}\gamma_{\mu}q|N(p)\rangle = \bar{u}(p')\left\{\underbrace{F_{1}^{q}(t)}_{\text{Dirac}}\gamma_{\mu} + \frac{i}{2m_{N}}\sigma_{\mu\nu}(p'-p)^{\nu}\underbrace{F_{2}^{q}(t)}_{\text{Pauli}}\right\}u(p)$$

momentum transfer  $t = (p' - p)^2 = -Q^2 < 0$ 

### **Reminder: nucleon vector form factors**

• definition of nucleon vector form factors:

$$\langle N(p')|\bar{q}\gamma_{\mu}q|N(p)\rangle = \bar{u}(p')\left\{\underbrace{F_{1}^{q}(t)}_{\text{Dirac}}\gamma_{\mu} + \frac{i}{2m_{N}}\sigma_{\mu\nu}(p'-p)^{\nu}\underbrace{F_{2}^{q}(t)}_{\text{Pauli}}\right\}u(p)$$

momentum transfer  $t = (p' - p)^2 = -Q^2 < 0$ • Sachs form factors:

$$\begin{aligned} G_{E}^{q}(t) &= F_{1}^{q}(t) + \frac{t}{4m_{N}^{2}}F_{2}^{q}(t) &= Q^{q}\left\{1 + \frac{1}{6}\langle r_{E}^{2}\rangle t + \mathcal{O}(t^{2})\right\}\\ G_{M}^{q}(t) &= F_{1}^{q}(t) + F_{2}^{q}(t) &= \mu^{q}\left\{1 + \frac{1}{6}\langle r_{M}^{2}\rangle t + \mathcal{O}(t^{2})\right\}\end{aligned}$$

 $Q^{q}$ : charge,  $\mu^{q}$ : magnetic moment

### **Reminder: nucleon vector form factors**

• definition of nucleon vector form factors:

$$\langle N(p')|\bar{q}\gamma_{\mu}q|N(p)\rangle = \bar{u}(p')\left\{\underbrace{F_{1}^{q}(t)}_{\text{Dirac}}\gamma_{\mu} + \frac{i}{2m_{N}}\sigma_{\mu\nu}(p'-p)^{\nu}\underbrace{F_{2}^{q}(t)}_{\text{Pauli}}\right\}u(p)$$

momentum transfer  $t = (p' - p)^2 = -Q^2 < 0$ • Sachs form factors:

$$\begin{aligned} G_{E}^{q}(t) &= F_{1}^{q}(t) + \frac{t}{4m_{N}^{2}}F_{2}^{q}(t) &= Q^{q}\left\{1 + \frac{1}{6}\langle r_{E}^{2}\rangle t + \mathcal{O}(t^{2})\right\}\\ G_{M}^{q}(t) &= F_{1}^{q}(t) + F_{2}^{q}(t) &= \mu^{q}\left\{1 + \frac{1}{6}\langle r_{M}^{2}\rangle t + \mathcal{O}(t^{2})\right\}\end{aligned}$$

 $Q^q$ : charge,  $\mu^q$ : magnetic moment

• Fourier transform  $G_E$ ,  $G_M$ : charge/magnetisation distributions interpretation of  $\sqrt{\langle r_{E/M}^2 \rangle}$  as charge/magnetisation radii

- wanted: flavour decomposition of the vector current  $\Rightarrow G_{E/M}^{s}$
- electromagnetic current:  $J_{\mu}^{\mathsf{EM}} = \frac{2}{3} \bar{u} \gamma_{\mu} u \frac{1}{3} \bar{d} \gamma_{\mu} d \frac{1}{3} \bar{s} \gamma_{\mu} s \Rightarrow$

$$G_{E/M}^{\gamma,p} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} \left( G_{E/M}^{d} + G_{E/M}^{s} \right)$$

- wanted: flavour decomposition of the vector current  $\Rightarrow G_{E/M}^{s}$
- electromagnetic current:  $J_{\mu}^{\mathsf{EM}} = \frac{2}{3} \bar{u} \gamma_{\mu} u \frac{1}{3} \bar{d} \gamma_{\mu} d \frac{1}{3} \bar{s} \gamma_{\mu} s \Rightarrow$

$$G_{E/M}^{\gamma,p} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} \left( G_{E/M}^{d} + G_{E/M}^{s} \right)$$

• different linear combination: weak vector current

$$G_{E/M}^{Z,p} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_{E/M}^{u} - \left(1 - \frac{4}{3}\sin^2\theta_W\right)\left(G_{E/M}^{d} + G_{E/M}^{s}\right)$$



parity violating electron scattering! SAMPLE@MIT-Bates, HAPPEX@JLab, A4@MAMI, G0@JLab



• Measure the helicity-dependent interference; asymmetry:

$$A = \frac{d\sigma_R - d\sigma_L}{d\sigma_R + d\sigma_L} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$
$$\tau = \frac{Q^2}{4m_N^2} , \quad \epsilon = \left(1 + 2(1 + \tau)\tan^2\frac{\theta}{2}\right)^{-1} , \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)}$$

• also depends on axial form factor of the nucleon:

$$\langle N(p')|\bar{q}\gamma_{\mu}\gamma_{5}q|N(p)\rangle = \bar{u}(p')\Big\{G_{A}(t)\gamma_{\mu}\gamma_{5}+\ldots\Big\}u(p)$$

 $G_A(0) = 1.26$  (from neutron decay, neutrino scattering)

$$A = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^{\gamma} G_E^Z + \tau G_M^{\gamma} G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$
$$\tau = \frac{Q^2}{4m_N^2} , \quad \epsilon = \left(1 + 2(1 + \tau)\tan^2\frac{\theta}{2}\right)^{-1} , \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)}$$

• order of magnitude:

$$A \propto rac{Q^2}{M_Z^2} \propto \mathcal{O}(10^{-4}) \qquad {
m for} \qquad Q^2 pprox 1 \ {
m GeV}^2$$

$$A = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^{\gamma} G_E^Z + \tau G_M^{\gamma} G_M^Z - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$
$$\tau = \frac{Q^2}{4m_N^2} , \quad \epsilon = \left(1 + 2(1 + \tau)\tan^2\frac{\theta}{2}\right)^{-1} , \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)}$$

• order of magnitude:

$$A \propto rac{Q^2}{M_Z^2} \propto \mathcal{O}(10^{-4}) \qquad {
m for} \qquad Q^2 pprox 1 \ {
m GeV}^2$$

• backward direction:  $\theta = \pi \Rightarrow \epsilon = 0$ , no contribution of  $G_E^Z$ 

$$A = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$
$$\tau = \frac{Q^2}{4m_N^2} , \quad \epsilon = \left(1 + 2(1 + \tau)\tan^2\frac{\theta}{2}\right)^{-1} , \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)}$$

• order of magnitude:

$$A \propto rac{Q^2}{M_Z^2} \propto \mathcal{O}(10^{-4})$$
 for  $Q^2 pprox 1 \ {
m GeV}^2$ 

- backward direction:  $\theta = \pi \Rightarrow \epsilon = 0$ , no contribution of  $G_E^Z$
- forward direction:  $\theta = 0 \Rightarrow \epsilon' = 0$ , no contribution of  $G_A$

$$A = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_W)\epsilon' G_M^{\gamma} G_A}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$
$$\tau = \frac{Q^2}{4m_N^2} , \quad \epsilon = \left(1 + 2(1 + \tau)\tan^2\frac{\theta}{2}\right)^{-1} , \quad \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^2)}$$

• order of magnitude:

$$A \propto \frac{Q^2}{M_Z^2} \propto \mathcal{O}(10^{-4}) \qquad \text{for} \qquad Q^2 \approx 1 \; \text{GeV}^2$$

- backward direction:  $\theta = \pi \Rightarrow \epsilon = 0$ , no contribution of  $G_E^Z$
- forward direction:  $\theta = 0 \Rightarrow \epsilon' = 0$ , no contribution of  $G_A$
- assume  $G_{E/M}^{\gamma}$ ,  $G_A$  as known
  - $\Rightarrow$  extract  $G_{E/M}^Z$  from measured asymmetry!

• two linear combinations

$$G_{E/M}^{\boldsymbol{\gamma},\boldsymbol{p}}, \quad G_{E/M}^{\boldsymbol{Z},\boldsymbol{p}}$$

depend on three flavour form factors  $G_{E/M}^{u,d,s}$ 

• need third linear combination: isospin-(charge-)symmetry!

$$u \leftrightarrow d + p \leftrightarrow n$$
, i.e.  $G^{u,n}_{E/M} = G^{d,p}_{E/M}$  etc.

 $\Rightarrow$  use the neutron form factor as third input

$$G_{E/M}^{\mathbf{Z},\mathbf{p}} = \left(1 - 4\sin^2\theta_W\right)G_{E/M}^{\boldsymbol{\gamma},\mathbf{p}} - G_{E/M}^{\boldsymbol{\gamma},\mathbf{n}} - G_{E/M}^{\boldsymbol{s}}$$

• measured 
$$G_{E/M}^{\mathbb{Z},p}$$
 allow to extract  $G_{E/M}^{s}$ 

### **Model predictions for strangeness form factors**



- models all over the place; sizeable!
- $G_M^s$  tends to be negative

#### Armstrong, Talk at MENU 07

### **ChPT: Generic power counting for nucleon form factors**

Sachs form factors:

$$G_{E}(t) = F_{1}(t) + \frac{t}{4m_{N}^{2}}F_{2}(t) = Q + \frac{1}{6}\langle r_{E}^{2}\rangle t + \dots$$
  

$$\mathcal{O}(p) + \mathcal{O}(p^{3})$$
  

$$G_{M}(t) = F_{1}(t) + F_{2}(t) = \mu + \frac{1}{6}\langle r_{M}^{2}\rangle t + \dots$$
  

$$\mathcal{O}(p^{2}) + \mathcal{O}(p^{4})$$

 polynomial contributions (i.e. counterterms) to the electric/magnetic radii appear at leading/subleading one-loop order

# Why ChPT cannot predict $\mu^s$ and $\langle (r^s_E)^2 angle$

Musolf, Ito 1997

• Three diagonal vector currents in SU(3):

$$\begin{split} J_{\mu}^{(3)} &= \bar{q} \frac{\lambda^3}{2} \gamma_{\mu} q \propto \text{ isovector el.magn. current }, \ \lambda^3 = \text{diag}(1, -1, 0) \\ J_{\mu}^{(8)} &= \bar{q} \frac{\lambda^8}{2} \gamma_{\mu} q \propto \text{ isoscalar el.magn. current }, \ \lambda^8 = \frac{1}{\sqrt{3}} \text{ diag}(1, 1, -2) \\ J_{\mu}^{(0)} &= \bar{q} \frac{\lambda^0}{2} \gamma_{\mu} q \propto \text{ baryon number current }, \quad \lambda^0 = \sqrt{\frac{2}{3}} \text{ diag}(1, 1, 1) \end{split}$$

• The "physical" currents are

$$J_{\mu}^{\mathsf{EM}} = J_{\mu}^{(3)} + \frac{1}{\sqrt{3}} J_{\mu}^{(8)} \qquad \qquad J_{\mu}^{\mathsf{s}} = \sqrt{\frac{2}{3}} J_{\mu}^{(0)} - \frac{2}{\sqrt{3}} J_{\mu}^{(8)}$$

# Why ChPT cannot predict $\mu^s$ and $\langle (r^s_E)^2 angle$

- Consequence: wherever the electromagnetic current matrix elements have low-energy constants, there is a new one for the strange current matrix elements!
- Example: magnetic moments

$$\mathcal{L}^{(2)} = \frac{b_6^{D/F}}{8m_N} \langle \bar{B}\sigma^{\mu\nu} \left[ F_{\mu\nu}^+, B \right]_{\pm} \rangle + \frac{b_6^0}{8m_N} \langle \bar{B}\sigma^{\mu\nu}B \rangle \langle F_{\mu\nu}^+ \rangle$$

- $b_6^{D/F}$  can be fitted to  $\mu_p$ ,  $\mu_n$  or the octet magnetic moments, but  $b_6^0$  appears only in the strange magnetic moment!
- Same pattern for all other low-energy constants
   ⇒ need to fit these to experimental results

# A low-energy theorem for $\langle (r_M^s)^2 angle$

- How can there possibly be a low-energy theorem??
- Answer: leading non-analytic loop effects!



• diagram of  $\mathcal{O}(p^3)$  generates

$$\left\langle (r_M^s)^2 \right\rangle = -\frac{5D^2 - 6DF + 9F^2}{48\pi F_K^2} \frac{m_N}{M_K}$$

• remember: low-energy constant only at  $\mathcal{O}(p^4) \Rightarrow$  "suppressed"

Hemmert, Meißner, Steininger 1998

# A low-energy theorem for $\langle (r_M^s)^2 angle$

• Known in the isovector magnetic radius since long:



 $\Rightarrow \quad \langle r_{M,v}^2 \rangle \;=\; \frac{g_A^2}{8\pi F_\pi^2 \mu_v} \frac{m_N}{M_\pi}$ 

Bég, Zapeda 1972

#### • Physical picture:

pion-/kaon-cloud becomes infinite-ranged in the chiral limit  $M_{\pi}, M_K \rightarrow 0$ .

• masses, coupling constants known  $\Rightarrow$  parameter-free prediction

$$\langle (r_M^s)^2 
angle = -0.115 \; \mathrm{fm}^2$$

• use this to extrapolate measurement of  $G_M^s(Q^2)$  at finite  $Q^2 = -t$  to the strange magnetic moment  $\mu_s$ 

# A low-energy theorem for $\langle (r_M^s)^2 angle$

How stable is the low-energy theorem for  $\langle (r_M^s)^2 \rangle$ ?

 $\Rightarrow$  Next-to-leading order corrections ( $\mathcal{O}(p^4)$ ):



Hammer, Puglia, Ramsey-Musolf, Zhu 2003 BK 2002, 2005

### **Conclusion on strangeness:**

... let the experimenters do their job!



### **Conclusion on strangeness:**

... let the experimenters do their job!



Armstrong, Talk at MENU 07

# Part IV: Isospin-violating form factors

### **Strangeness and isospin violation**

• Remember: third linear combination: isospin symmetry!

$$u \leftrightarrow d + p \leftrightarrow n$$
, i.e.  $G^{u,n}_{E/M} = G^{d,p}_{E/M}$  etc.

 $\Rightarrow$  use the neutron form factor as third input

$$G_{E/M}^{\mathbf{Z},\mathbf{p}} = \left(1 - 4\sin^2\theta_W\right)G_{E/M}^{\boldsymbol{\gamma},\mathbf{p}} - G_{E/M}^{\boldsymbol{\gamma},\mathbf{n}} - G_{E/M}^{\boldsymbol{s}}$$

### **Strangeness and isospin violation**

• Remember: third linear combination: isospin symmetry!

$$u \leftrightarrow d \ + \ p \leftrightarrow n \ , \qquad$$
 i.e.  $G^{u,n}_{E/M} = G^{d,p}_{E/M}$  etc.

 $\Rightarrow$  use the neutron form factor as third input

$$G_{E/M}^{\mathbb{Z},p} = \left(1 - 4\sin^2\theta_W\right)G_{E/M}^{\gamma,p} - G_{E/M}^{\gamma,n} - G_{E/M}^s - G_{E/M}^{u,d}$$

• without isospin conservation:

$$G_{E/M}^{u,d} = \frac{2}{3} \left( G_{E/M}^{d,p} - G_{E/M}^{u,n} \right) - \frac{1}{3} \left( G_{E/M}^{u,p} - G_{E/M}^{d,n} \right)$$

 $\Rightarrow$  isospin violation generates "pseudo-strangeness"!

### **Isospin violation and chiral perturbation theory (1)**

- isospin violation:  $m_u \neq m_d$
- calculate pion mass difference:

$$M_{\pi^0}^2 = M_{\pi^+}^2 \left\{ 1 - \frac{(m_d - m_u)^2}{8\hat{m}(m_s - \hat{m})} + \dots \right\}$$

plug in quark mass ratios ...

$$M_{\pi^+} - M_{\pi^0} ~pprox ~0.1 \; {\sf MeV}$$
vs.  $\left( M_{\pi^+} - M_{\pi^0} 
ight)_{
m exp} ~pprox ~4.6 \; {\sf MeV}$ 

- second source of isospin violation:  $q_u \neq q_d!$
- inclusion of photon effects via minimal substitution insufficient introduce quark charge matrix  $Q = e \operatorname{diag} \left(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}\right) = \mathcal{O}(p)$
- one single term at  $\mathcal{O}(e^2) = \mathcal{O}(p^2)$ :

$$\mathcal{L}^{(2)}_{\mathsf{em}} = C \langle Q U Q U^{\dagger} \rangle$$

generates  $\left(M_{\pi^+}^2 - M_{\pi^0}^2\right)_{\rm em} = \left(M_{K^+}^2 - M_{K^0}^2\right)_{\rm em} = 2Ce^2/F^2$ 

### **Isospin violation and chiral perturbation theory (2)**

• ChPT: treat

 $m_u \neq m_d$  and  $q_u \neq q_d$ 

simultaneously and consistently

• no fixed hierarchy between both effects:

$$M_{\pi^+} - M_{\pi^0} \simeq 4.5 \text{ MeV}_{em} + 0.1 \text{ MeV}_{m_u \neq m_d}$$

$$m_n - m_p \simeq -0.8 \text{ MeV}_{em} + 2.1 \text{ MeV}_{m_u \neq m_d}$$

$$\epsilon_{\pi^0 \eta} \simeq (\epsilon_{\pi^0 \eta})_{m_u \neq m_d} \quad (\text{e.g. in } \eta \to 3\pi)$$

- much smaller effect than SU(3) breaking
- no  $m_s \Rightarrow$  better convergence behaviour expected

### **Generic power counting revisited**

• "polynomial" isospin breaking suppressed by

$$m_d - m_u = \mathcal{O}(p^2)$$
 or  $e^2 = \mathcal{O}(p^2)$ 

• therefore leading moments:

$$\begin{aligned} G_E^{u,d}(t) &= \underbrace{\rho_E^{u,d} t}_{\mathcal{O}(p^5)} + \mathcal{O}(t^2) \\ G_M^{u,d}(t) &= \underbrace{\kappa^{u,d}}_{\mathcal{O}(p^4)} + \underbrace{\rho_M^{u,d} t}_{\mathcal{O}(p^6)} + \mathcal{O}(t^2) \end{aligned}$$

- calculate  $G^{u,d}_E$  up to  $\mathcal{O}(p^4),\,G^{u,d}_M$  up to  $\mathcal{O}(p^5)$ 

### **Isospin violating form factors in ChPT**

• (non-trivial) diagrams:



### **Isospin violating form factors in ChPT**

• (non-trivial) diagrams:



• radii: can be expressed in terms of  $\Delta m = m_n - m_p$ 

$$\rho_E^{u,d} = \frac{5\pi C}{6M_\pi m_N} , \quad \rho_M^{u,d} = \frac{2C}{3M_\pi^2} \left\{ 1 - \frac{7\pi}{4} \frac{M_\pi}{m_N} \right\} , \quad C = \frac{g_A^2 m_N \Delta m}{16\pi^2 F_\pi^2}$$

**BK, Lewis 2006** 

• missing: unknown low-energy constant in  $\kappa^{u,d}$  $\Rightarrow$  resonance saturation

#### **Resonance saturation**

 low-energy constants parameterise effects of heavy (non-Goldstone boson) states:



modern form of "vector meson dominance"

#### **Resonance saturation**

 low-energy constants parameterise effects of heavy (non-Goldstone boson) states:



- modern form of "vector meson dominance"
- here:  $\rho \omega$  mixing



• higher-order low-energy constants (in  $\rho_{E/M}^{u,d}$ ) "for free"

# **Results (1)**

#### • uncertainties in various couplings generate error bands:



- isospin breaking on the percent level
- *t*-dependence moderate
- unlike in some quark models,  $G_M^{u,d}(0) \neq 0$  !

# **Results (2)**

• compare isospin breaking to strangeness at  $Q^2 = 0.1 \text{GeV}^2$ :

| experiment | electric/magnetic  | $G^s$ (measured)                      | $G^{u,d}$ (calculated) |
|------------|--------------------|---------------------------------------|------------------------|
| SAMPLE     | $G_M$              | $0.37 \pm 0.20 \pm 0.26 \pm 0.07$     | $0.02 \dots 0.05$      |
| A4         | $G_E + 0.106  G_M$ | $0.071\pm0.036$                       | $0.004 \dots 0.010$    |
| HAPPEX     | $G_E + 0.080  G_M$ | $0.030 \pm 0.025 \pm 0.006 \pm 0.012$ | $0.004 \dots 0.009$    |

- conclusion: isospin violation for now smaller than other (experimental) uncertainties
- necessary correction for future precision determinations of strange matrix elements

# Part V: Crimes and omissions

# The role of the $\Delta(1232)$ resonance (1)

 discussed the contribution of vector mesons in LECs; there are baryon resonances, too!



• lowest-lying baryon resonance:  $\Delta(1232)$ 

$$m_{\Delta} - m_N \approx 2M_{\pi}$$

• moreover, the  $\Delta$  couples strongly to the  $\pi N$  system resonance saturation:

$$c_2^{\Delta} \approx 3.8$$
  $c_3^{\Delta} \approx -3.8$   $c_4^{\Delta} \approx 1.9$ 

Bernard, Kaiser, Meißner 1997

•  $N \text{ and } \Delta$  become degenerate in the large- $N_c$  limit

# The role of the $\Delta(1232)$ resonance (2)

- phenomenological extension of chiral perturbation theory: include the  $\Delta$ /the spin- $\frac{3}{2}$  decuplet as explicit degrees of freedom
- potentially improved convergence in some observables Jenkins, Manohar 1991 e.g. (obviously!)  $P_{33}$  partial wave in  $\pi N$  scattering Fettes, Meißner 2000
- formal development:  $\epsilon$ -expansion

$$p = \mathcal{O}(\epsilon)$$
  $M_{\pi} = \mathcal{O}(\epsilon)$   $m_{\Delta} - m_N = \mathcal{O}(\epsilon)$ 

Hemmert, Holstein, Kambor 1998

• considerable difficulties in formulating a consistent covariant theory for spin- $\frac{3}{2}$  fields Pascalutsa

# **Two- and more-nucleon systems**

• extended ChPT from  $\pi\pi$  to  $\pi N$  systems — why not NN systems, too?



- *NN* systems has bound states: the deuteron!
  - $\Rightarrow$  non-perturbative effect
  - $\Rightarrow$  cannot calculate NN amplitudes perturbatively
- the S-wave scattering lengths are unnaturally large:

 $a({}^{1}S_{0}) \approx -23.8 \, {\rm fm} \ , \ a({}^{3}S_{1}) \approx 5.4 \, {\rm fm} \ \gg \ 1/M_{\pi} \approx 1.4 \, {\rm fm}$ 

 (one) solution: solve Lippmann-Schwinger equation *exactly* calculate the potential perturbatively in the chiral expansion see E. Braaten's lectures



### **Radiative corrections to the axial form factor**

- $G_A$  suppressed by  $1 4 \sin^2 \theta_W \approx 0.08$
- radiative corrections: generate anapole moment



• relative importance: anapole form factor  $F_A$  "suppressed" by

$$\eta = \frac{8\pi\sqrt{2}\alpha}{1 - 4\sin^2\theta_W} \approx 3.45$$

• conclusion: maybe  $G_A$  not quite as well known...

### Why isospin-violating ffs. are not quite that difficult

• claim: calculate  $G_E^{u,d}$  up to  $\mathcal{O}(p^4)$ ,  $G_M^{u,d}$  up to  $\mathcal{O}(p^5)$ 

 task: calculate all possible one- and two-loop diagrams with virtual pions and photons including all possible isospin breaking

### Why isospin-violating ffs. are not quite that difficult

- claim: calculate  $G_E^{u,d}$  up to  $\mathcal{O}(p^4)$ ,  $G_M^{u,d}$  up to  $\mathcal{O}(p^5)$
- task: calculate all possible one- and two-loop diagrams with virtual pions and photons including all possible isospin breaking
- (1) no contribution from pion mass difference  $M_{\pi^+}^2 M_{\pi^0}^2 \propto e^2$ : charge symmetry:  $u \leftrightarrow d$ ,  $p \leftrightarrow n$ charge independence: general rotations in isospin space  $M_{\pi^+}^2 - M_{\pi^0}^2$  only breaks charge independence:

$$u \leftrightarrow d \Rightarrow \pi^+ \leftrightarrow \pi^-, \pi^0 \leftrightarrow \pi^0$$

### Why isospin-violating ffs. are not quite that difficult

- claim: calculate  $G_E^{u,d}$  up to  $\mathcal{O}(p^4)$ ,  $G_M^{u,d}$  up to  $\mathcal{O}(p^5)$
- task: calculate all possible one- and two-loop diagrams with virtual pions and photons including all possible isospin breaking
- (1) no contribution from pion mass difference  $M_{\pi^+}^2 M_{\pi^0}^2 \propto e^2$ : charge symmetry:  $u \leftrightarrow d$ ,  $p \leftrightarrow n$ charge independence: general rotations in isospin space  $M_{\pi^+}^2 - M_{\pi^0}^2$  only breaks charge independence:

$$u \leftrightarrow d \Rightarrow \pi^+ \leftrightarrow \pi^-, \pi^0 \leftrightarrow \pi^0$$

(2) no two-loop diagrams contribute (to  $G_M^{u,d}$ ):

