ABSORPTION SPECTRA FROM TDDFT: DO HYBRID FUNCTIONALS ACCOUNT FOR EXCITONIC EFFECTS?

J. Paier, M. Marsman, G. Kresse, <u>Kerstin Hummer</u>

Computational Materials Physics Faculty of Physics University of Vienna

Funded by the Austrian FWF

MOTIVATION

- Accurate calculation of optical absorption and electron energy loss spectra of extended systems
- Still a challenging task in solid state theory
- Hybrid functionals yield truly impressive band gaps
- Do hybrid functionals improve the description of the optical absorption spectra and related properties?
- Time-dependent HSE approach

OVERVIEW

- Limitations of ab initio methods
- Introduction of hybrid functionals
- Assessment of hybrid functionals

- Theoretical approaches for calculating excitation spectra:
 - MBPT (GW and the Bethe-Salpeter euqation)
 - TD-DFT
 - TD-HSE
- TD-HSE results for Si, GaAs, C, SiC, and LiF
 - Absorption spectra
 - Static dielectric constants

AB INITIO MODELING

- Density functional theory (DFT)
 - Ground state properties with good precision
 - KS-DFT is highly efficient (up to 1000 atoms possible)
- Limitations stemming from (semi)-local density functionals LDA & GGA:
 - Thermochemistry: up to 1 eV error
 - Structural properties: 2-3% error
 - Elastic constants: 10%
 - Strongly correlated systems (transition metal oxides)
 - Van der Waals bonding missing
 - Band gap problem
 - Description of electronic excitations

THE BAND GAP PROBLEM

- When the Kohn-Sham (KS) eigenvalue differences are interpreted as excitation energies
- The band gap is a well defined ground state property
 wrong using local and semi-local DFT
- Fundamental gap

$$E_g = (E[N+1] - E[N]) - (E[N] - E[N-1])$$

= $-A + I$
= $E_{\text{CBMIN}}[N] - E_{\text{VBMAX}}[N] \dots \text{ in LDA/GGA}$

 Lack of Integer-discontinuity in the LDA/GGA/HF

ALTERNATIVES

- Quantum Monte Carlo
- Post-Hatree-Fock methods (MP2, CI, CC)
- Many-body perturbation theory
 - *GW* approximation
 - Bethe-Salpeter Equation (BSE)
- Time-dependent density functional theory
- Hybrid density functionals
 - Have been verz successful in quantum chemistry for small molecules
 - E.g., polarizability and magnetic properties (NMR, etc.)

HYBRID FUNCTIONALS

- Characterized by the admixture of a certain amount of nonlocal Fock exchange energy to a part of (semi)local density functional exchange energy.
- Two groups:
 PBE-based
 B3-based^[3]
 B3-based^[3]
 PBE0^[1] (parameter-free) HSE03^[2] (one-parameter) B3LYP B3LYP B3PW91
- 1. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
- 2. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- 3. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

PERDEW-BURKE-ERNZERHOF HYBRID: PBE0^[1,2]

- Fraction of ¼ non-local Fock exchange rationalized by the adiabatic connection theorem^[3].
- Remainder of ³/₄ is PBE exchange.
- PBE correlation is straightforwardly added.

$$\mathsf{E}_{xc}^{\mathsf{PBE0}} = \frac{1}{4}\mathsf{E}_{x}^{\mathsf{HF}} + \frac{3}{4}\mathsf{E}_{x}^{\mathsf{PBE}} + \mathsf{E}_{c}^{\mathsf{PBE}}$$

- 1. M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
- 2. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
- 3. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

HEYD-SCUSERIA-ERNZERHOF HYBRID: HSE^[1,2]

$$E_{xc}^{HSE} = \frac{1}{4} E_x^{HF,SR}(\mu) + \frac{3}{4} E_x^{PBE,SR}(\mu) + E_x^{PBE,LR}(\mu) + E_x^{PBE,LR}(\mu)$$

Screened Coulomb –kernel (µ= range separation)

$$\frac{1}{r} = S_{\mu}(r) + L_{\mu}(r) = \frac{\operatorname{erfc}(\mu r)}{r} + \frac{\operatorname{erf}(\mu r)}{r} \quad \text{where} \quad r = |r - r'|$$

 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. **118**, 8207 (2003).
 A. V. Krukau, O.A. Vydrov, A. F Izmaylov, and G.E. Scuseria, J. Chem. Phys. **125**, 224106 (2006).

COULOMB INTERACTION

Screened Coulomb kernel accelerates the convergence of two-electron integrals!

"BECKE 3-PARAMETER" HYBRIDS: B3LYP^[1]

$$E_{xc}^{B3LYP} = 0.80 E_x^{LDA} + 0.20 E_x^{HF} + 0.72 \Delta E_x^{B88} + 0.81 E_c^{LYP} + 0.19 E_c^{LDA}$$

- Favorite hybrid functional in quantum chemistry.
- A three parameter functional fitted to atomization energies, ionizaton potentials, proton affinities of the G2 test set of molecules.
- Does not fulfill the uniform electron gas limit (failure of the LYP-correlation energy functional).
- 1. P. J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, J. Phys. Chem. 98, 11623 (1994).

ASSESSMENT OF HYBRIDS: ATOMIZATION ENERGIES OF MOLECULES^[1,2]

Agreement between PAW and GTO calc. for both, PBE and PBE0 is excellent: difference < 1.5 kcal/mol. Compared to EXPT.: PBE: MAE = 8.6kcal/mol **PBE0: MAE=3.7** kcal/mol

M.Ernzerhof and J.P. Perdew, J. Chem. Phys. **110**, 5029 (1999).
 J. Paier *et al.*, J. Chem. Phys. **122**, 234102 (2005).

ASSESSMENTS HYBRIDS: ATOMIZATION ENERGIES OF SOLIDS^[1,2]

- PBE outperforms HF/DFT hybrid functionals!
- MARE of 3.4% (PBE) compared to 7.4% (PBE0), 6.3% (HSE), and 17.6% (B3LYP).
- 1. J. Paier et al., J. Chem. Phys. 124, 154709 (2006).
- 2. J. Paier, M. Marsman, and G. Kresse J. Chem. Phys. 127, 24103 (2007).

ATOMIZATION ENERGIES OF SOLIDS

Increasing band gaps

HF exchange causes an overestimation of the exchange splitting in d elements increase in spin-polarization energy

underestimation of the atomization energy

ATOMIZATION ENERGIES OF SOLIDS

Increasing itinerant character

B3LYP performs badly for all metals

2/3 are related to the LYP correlation energy

1/3 due to the choice of the three parameters

ASSESSMENTS HYBRIDS: LATTICE CONSTANTS^[1]

- Overall agreement between PBE and experiment is satisfactory
- PBE0 and HSE significantly improve upon PBE
- B3LYP performs equally well as PBE, except for d metals
- 1. M. Marsman et al., J. Phys.: Condens. Matter 20, 64201 (2008).

ASSESSMENTS HYBRIDS: BULK MODULI^[1]

- Very sensitive to the calculated equilibrium volume
- Underestimation of bulk moduli due to overestimation of the lattice constants.
- Best description by PBE0 closely followed by HSE
- 1. M. Marsman et al., J. Phys.: Condens. Matter 20, 64201 (2008).

ASSESSMENTS HYBRIDS: TMOs^[1]

		LDA	HSE	B3LYP	EXPT.
MnO	a_{o}	4.31	4.44	4.50	4.45
	M _s	4.14	4.52	4.73	4.58
	E_{a}	0.4	2.8	3.92	3.9
FeO	a_o	4.17	4.33	4.37	4.33
	M.	3.26	3.63		3.32/4.2
	E_{z}	0	2.2	3.7	2.4
CoO	a_o	4.10	4.26	4.32	4.25
	M _a	2.23	2.67	2.69	3.35/4.0
	E_{s}	0	3.4	3.63	2.5
NiO	a_o	4.06	4.18	4.23	4.17
	M _s	1.06	1.65	1.67	1.64
	E_{a}	0.4	4.2	4.10	4.0

Hybrids substantially improve upon LDA

- HSE latt. const. and local spin mag. moments are excellent
- CoO: much too small *M*_s due to neglect of SOC (no contribution from the orbital moment)

1. M. Marsman *et al.*, J. Phys.: Condens. Matter **20**, 64201 (2008).

ASSESSMENTS HYBRIDS: BAND GAPS^[1,2]

- Usual underestimation by PBE
- PBE0 and HSE yield improved band gaps
- HSE performs best for small- to medium-gap systems
- In large-gap systems (week dielectric screening) 25% of HF exchange is not enough!
- 1. J. Paier et al., J. Chem. Phys. 124, 154709 (2006).
- Y. M. Marsman et al., J. Phys.: Condens. Matter 20, 64201 (2008).

ASSESSMENTS HYBRIDS: CONCLUSIONS

• HSE:

- Lattice constans & bulk moduli are clearly improved for insulators and semiconductors.
- Band gaps are excellent for wide range of semiconductors, except for very large gap systems.
- Transition metals are problematic, at least in terms of bulk moduli.
- Atomization energies not improved compared to PBE.

B3LYP:

- The structural properties are slightly worse than PBE.
- Atomization energies extremely poor for metals (HEG limit not fulfilled!)

MANY-BODY PERTURBATION TECHNIQUES^[1]

Hedin's equations:

$$\begin{split} &\Sigma(1,2) = i \int G(1,3) \,\Gamma(3,2\,;4) \,W(4,1) \,d(3,4) \\ &W(1,2) = v(1,2) + \int v(1,3) \,P(3,4) \,W(4,2) \,d(3,4) \\ &\chi(1,2) = -i \int G(1,3) \,G(4,1) \,\Gamma(3,4\,;2) \,d(3,4) \\ &\Gamma(1,2\,;3) = \delta(1,2) \,\delta(1,3) + \int \frac{\delta \Sigma(1,2)}{\delta G(3)} \,G(4,5) \,G(7,5) \,\Gamma(6,7\,;3) \,d(4,5\,;6,7) \end{split}$$

• **Dyson equation:** Links G and Σ $G(1,2) = G_0(1,2) + \int G_0(1,3)\Sigma(4,3)G(4,2)d(3,4)$

Interacting Green's function

motion of free electrons in the electro-static Hartree potential

1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

MANY-BODY PERTURBATION TECHNIQUES^[1]

- Hedin's equations together with the Dyson's equation form a set that in principles must be solved self-consistently for G.
- Can be omitted in GW approximation: G₀W₀ and GW₀ calculations.
- *GW* approximation: $\Sigma(1,2) = iG(1,3)W(3,1)$ $W(1,2) = v(1,2) + \int v(1,3)P(3,4)W(4,2)d(3,4)$ $\chi(1,2) = -iG(1,2)G(2,1^{+})$ RPA for the polarization χ ! $\Gamma(1,2;3) = \delta(1,2)\delta(1,3)$
- 1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

THE GW APPROXIMATION^[1]

- Vertex corrections are neglected
- Simple expression for the self-energy Σ , that allows to calculate the interacting Green's function *G* from an independent-particle system G_{ρ} .
- Extends the Hartree-Fock approximation by replacing the bare Coulomb v potential by the dynamically screened one W. $\sum_{x} = iGv \longrightarrow \sum_{GW} = iGW$
- Static approximation of the GW self-energy: COHSEX
 - Coulomb hole term (local): $\frac{1}{2}v(\epsilon^{-1}-1)$
 - Screened exchange term: $W(\mathbf{r},\mathbf{r}') = \varepsilon^{-1}v$
- 1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

GWHISTORY AND CHALLENGES:

- *GW* is a rather "old" method but computationally very demanding
- Foundation of *GW*:
 L. Hedin, Phys. Rev. **139**, A796 (1965)
- First Pseudopotential GW using LDA wavefunctions
 - + 1st order perturbation theory using GW

 $G = G_{\text{LDA}}$ $W = \varepsilon_{\text{LDA}} v$

M. S. Hybertsen, S. G. Louie, Phys. Rev. B **34**, 5390 (1986), Sham and Schlüter

- Efficient implementations using pseudo-potentials Rojas, Godby, and Needs, Phys. Rev. Lett. **74**, 1827 (1995)
- Full potential (all electron) + self-consistency Faleev, van Schilfgaarde, Kotani, Phys. Rev. Lett. 93, 126406 (2004)
- Excitons taken into account for construction of W Bruneval, Sottile, Olevano, Del Sole, and Reining, Phys. Rev. Lett. 94, 186402-1 (2005)

ONE-ELECTRON THEORIES

Density functional theory

$$\left(-\frac{\hbar^2}{2m_e}\Delta + V^{\text{ion}}(r) + V^{\text{el}}(r) + V^{\text{xc}}(r)\right)\varphi_n(r) = E_n\varphi_n(r)$$

Hartree Fock theory

$$-\frac{\hbar^2}{2m_e}\Delta + V^{\text{ion}}(r) + V^{\text{el}}(r) \bigg| \varphi_n(r) + \int V^x(r,r') \varphi_n(r') d^3r' = E_n \varphi_n(r)$$

• **GW**
$$\left(-\frac{\hbar^2}{2m_e}\Delta + V^{\text{ion}}(r) + V^{\text{el}}(r)\right)\varphi_n(r) + \int \Sigma^{xc}(r, r', \omega)\varphi_n(r')d^3r' d\omega = E_n\varphi_n(r)$$

GWESSENTIALS

Hartree-Fock: bare nonlocal Fock exchange

$$V^{x}(r,r') = \sum_{\text{occ}} \varphi_{m}(r) \varphi_{m}^{i}(r') \times -\frac{e}{|r-r'|}$$

 GW: replace bare 1/|r-r'| by dynamically screened Coulomb operator

$$\Sigma^{xc}(r,r',E) = \int_{-\infty}^{\infty} d\omega \sum_{\text{all}} \frac{\varphi_m(r)\varphi_m(r')}{\omega - E - E_m + i\delta \operatorname{sgn}[E_m - E_{Fermi}]} \times i$$

$$i - e^2 \int dr' \frac{\varepsilon^{-1}(r,r'',\omega)}{|r'' - r'|} W$$

THE GWAPPROXIMATION APPLIED

• $G_0 W_0$ calculations:

- Start with KS-LDA/GGA wavefunctions and eigenvalues to construct G₀
- Determine χ^{0} , ϵ^{-1} within RPA and W_{o}
- Calculate $\Sigma_{GW} = i G_0 W_0$
- Determine the first-order change of energies, i.e., quasiparticle energies $\langle \varphi_n | -\frac{\hbar^r}{r_m} \Delta + V^{ion} + V^{el} + \Sigma^{xc}(E_n) | \varphi_n \rangle = E_n$
- GW_0 calculations: partial self-consistency in G: $G(r, r') = \sum_m \frac{\varphi_m(r)\varphi_m(r')}{\omega - E - E_m + i\delta \operatorname{sgn}[E_m - E_{Fermi}]} \quad W_0$ is kept fixed!
 - Self-consistent GW calculations: Inclusion of electron-hole (e-h) attraction by to $\delta \Sigma / \delta G$

COMPARISON HSE AND GW: BAND GAPS^[1,2]

- G₀W₀ gaps are larger
 than PBE ones, but
 consistently
 underestimated
 compared to EXPT.
- *GW*₀ further increases the gaps (roughly 7%)
- Throughout the series more accurate gaps than HSE
 - $G_0 W_0$ MARE: 8.5%
 - *GW*₀MARE: 4.5%
 - HSE MARE: 21%
- 1. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
- 2. M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).

WHY IS THIS NOT GOOD ENOUGH?

- Screening properties are calculated using density functional theory
 - In some cases DFT is utterly wrong

ZnO: $\epsilon_{\text{DFT}} \approx 5.2$ $\epsilon_{\text{EXP}} \approx 3.5$

Wavefunctions are from density functional theory

- DFT always yields too weak localization due to Coulomb selfinteraction (electrons experience their own electrostatic potential)
- Not able to predict localization versus dislocalization
- Much too shallow d states in ZnO and GaAs with wrong hybridization between d states and conduction band electrons

SELF-CONSISTENT QPGW BAND GAPS^[1,2]

- scQPGW(no e-h): Significant overestimation
- Much worse than GW_o
- Static dielectric constants are now 20% too small
- Inclusion of vertex corrections (electronhole interaction) in W required
- 1. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
- Y. M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).

SELF-CONSISTENT QPGWTC-TC BAND GAPS[1,2]

- scQP*GW*(with e-h): excellent results across all materials MARE: 3.5%
- Further slight improvement over *GW_o*
- Too expensive for large scale applications, but fundamentally important
- 1. M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
- 2. M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).

OPTICAL PROPERTIES OF SOLIDS

• Linear Response Theory^[1,2]:

- Field strength of the incident radiation is weak
- The induced polarization is linearly dependent on the electric field
- Linear response functions χ(ω) and ε(ω) describe the linear responses of a medium to an external field

- 1. S. L. Adler, Phys. Rev. **126**, 413 (1962).
- 2. N. Wiser, Phys. Rev. 129, 62 (1963).

DIELECTRIC MATRIX

• Random phase approximation (RPA)^[1]:

- electrons and holes move independently in a selfconsistent potential: $V_{tot}(r,t) = V_{ext}(r,t) + V_{ind}(r,t)$
- Exchange and correlation effects on the response are neglected
- Polarizability χ_0 directly yields the dielectric matrix ϵ : $V_{tot}(r) = \int dr' \epsilon^{-1}(r,r') V_{ext}(r')$ with $\epsilon_{RPA} = 1 - v \chi_0$

Dielectric response within DFT^[2]:

 $V_{tot} = V_{ext} + V_{ind} + V_{XC} \implies \varepsilon_{LDA} = 1 - v \chi_0 (1 - f_{XC} \chi_0)^{-1}$

1. H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

2. S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).

DIELECTRIC MATRIX

Irreducible polarizability matrix:

$$\chi^{0}_{\mathrm{G,G'}}(q,\omega) = \frac{1}{\Omega} \sum_{n,n',k} 2\mathbf{w}_{k}(f_{n',k+q} - f_{n,k}) \times \frac{\langle \Psi_{n',k+q} | e^{i(q+G)r} | \Psi_{n,k} \rangle \langle \Psi_{n,k} | e^{-i(q+G')r'} | \Psi_{n',k+q} \rangle}{E_{n',k+q} - E_{n,k} - \omega - i\eta}$$

Microscopic dielectric matrix:

$$\varepsilon_{G,G'}(q,\omega) = \delta_{G,G'} - \frac{4\pi e^2}{|G+q||G'+q|} \chi^0_{G,G'}(q,\omega)$$

• Macroscopic dielectric matrix:

$$\varepsilon_{\infty}(q, \omega) = \lim_{q \to 0} \frac{1}{\varepsilon_{00}^{-1}(q, \omega)}$$

A) Calculation of the irreducible polarizability in RPA

- B) Calculation of the microscopic DMC) Inversion of the microscopic DM
- 1. H. Ehrenreich and M. H. Cohen, Phys. Rev. **115**, 786 (1959).
- Y. S. L. Adler, Phys. Rev. 126, 413 (1962); N. Wiser, Phys. Rev. 129, 62 (1963).

LOCAL FIELD EFFECTS (LFE)^[1,2]

- The system is non-homogeneous on the microscopic scale (the total perturbing potential $V_{tot}(\mathbf{r},t)$ varies, since $V_{ind}(\mathbf{r},t)$ varies on the atomic scale)
- Thus: the microscopic DM is not diagonal in reciprocal space (depends explicitely on r and r', and not simply on |r-r'|: $\epsilon_{G,G'}(q,\omega) = \delta_{G,G'} v(q+G')\chi^0_{G,G'}(q,\omega)$
- Neglecting the LFE (G=G'=0 component of χ only): $\varepsilon_{\infty}(q, \omega) = \lim_{q \to 0} \varepsilon_{G=0,G'=0}(q, \omega)$ No matrix inversion required!
- 1. S. L. Adler, Phys. Rev. **126**, 413 (1962).
- 2. N. Wiser, Phys. Rev. 129, 62 (1963).

BEYOND THE RPA:

- So far: Interaction between electrons (and holes) are lacking!
- Going beyond RPA allows for the inclusion of the electron-hole (e-h) interaction
 - Many-body perturbation techniques, in particular *GW* in combination with the Bethe-Salpeter equation (BSE)
 - Time-dependent density functional theory (TD-DFT)
 - TD-HSE approach?

OPTICAL PROPERTIES IN MBPT: BSE^[1]

- Green's function theory to study two-particle excited states (e-h pairs)
- Key quantity is the polarizability χ , where the vertex corrections Γ (e-h attraction) is included
- **BSE for the polarizability** χ : ${}^{4}\chi = {}^{4}\chi_{0} + {}^{4}\chi_{0}K^{4}\chi$ with $K(1,2;3,4) = \delta(1,2)\delta(3,4)\nu(1,3) - \delta(1,3)\delta(2,4)W(1,2)$

e-h exchange from the density variation of the Hartree term e-h attraction from the variation of the self-energy

1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

THE BETHE-SALPETER EQUATION^[1]

- Four-point kernel
- Effective two-particle equation with an effective two-particle hamiltonian with an effective potential having
 - local contributions that depend on the density
 - non-local contributions that are directly proportional to the density matrix ρ (r,r',t)

1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

TIME-DEPENDENT DFT

- Evolution of the system under influence of a time-dependent external potential
- Runge-Gross Theorem^[1]: one-one mapping between time-dependent densities and the external potentials
- **Time-dependent Kohn-Sham equations**^[2]: $\begin{bmatrix} -\frac{1}{2}\nabla^{2} + V_{eff}(r,t) \end{bmatrix} \psi_{i}(r,t) = i \frac{\partial}{\partial t} \psi_{i}(r,t)$ All many-body effects are included in the time-dependent local exchange-correlation potential $V_{XC}(\mathbf{r},t)$
- 1. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
- 2. R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).

EXCITATION ENERGIES IN TD-DFT^[1]

- Dyson-like equation for the linear density response χ of an interacting many-electron system in terms of the non-interacting KS response χ_0
- Only local potentials! Allows to work with two-point functions. $\chi(r,t;r',t') = \frac{\delta\rho(r,t)}{\delta V_{ext}(r',t')}|_{V_{ext}} = \cdot \qquad \chi_0(r,t;r',t') = \frac{\delta\rho(r,t)}{\delta V_{eff}(r',t')}|_{V_{eff}} = 0$ $\chi(r,r'\omega) = \chi_0(r,r'\omega) + \int dr_1 dr_2 \chi_0(r,r_1,\omega) K(r_1,r_2,\omega) \chi_0(r_2,r',\omega)$ $K(r_1,r_2,\omega) = \frac{1}{|r_1-r_2|} + f_{XC}(r_1,r_2,\omega)$
- 1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

ANALOGIES BETWEEN BSE & TD-DFT^[1]

$$S = S_0 + S_0 KS$$

BSE: four-point quantities

- S = two-particle
 correlation function L
- S₀ = L₀ (indep. quasiparticle response)

 $K = \mathbf{v} + F^{BSE}$ $F^{BSE}_{(n_1 n_2)(n_3 n_f)} = -\int dr dr' \psi_{n_1}(r) \psi^{\flat}_{n_3}(r)$ $W(r', r) \psi^{\flat}_{n_2}(r') \psi_{n_4}(r')$

TD-DFT: two-point quantities

- S =two-point polarizability $\chi \epsilon^{-1} = 1 + \nu \chi$
- $S_0 = \chi_0$ (indep. particle response)

$$K = \mathbf{v} + F^{TD-DFT}$$

$$F_{(n_1n_2)(n_3n_4)}^{TD-DFT} = \int dr dr' \psi_{n_1}(r) \psi_{n_2}^{i}(r)$$

$$f_{XC}(r,r') \psi_{n_3}^{i}(r') \psi_{n_4}(r')$$

1. L Reining et al., Phys. Rev. Lett. 88, 66404 (2002).

HOW TO SOLVE THE DYSON EQUATION ^[1,2]

- Basis transformation from space to orbital space: $r \rightarrow \psi_{n,k}(r)$ *i.e.*, a basis of pairs of occupied and empty states
- Dyson equ. can be transformed to an effective two-particle Hamiltonian equation:

$$\begin{split} H^{2p}_{(n_1n_2)(n_3n_4)} = & \left(E_{n_2} - E_{n_1} \right) \delta_{n_1n_3} \delta_{n_2n_4} + \left(f_{n_1} - f_{n_2} \right) K_{(n_1n_2)(n_3n_4)} \\ & S_{(n_1n_2)(n_3n_4)} = & \left[H^{2p} - I\omega \right]^{-1}_{(n_1n_2)(n_3n_4)} \left(f_{n_4} - f_{n_3} \right) \end{split}$$

- 1. L. Reining *et al.*, Phys. Rev. Lett. **88**, 66404 (2002).
- 2. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

OPTICAL SPECTRA FROM TD-DFT^[1-4]

- Including excitonic effects
- Without solving the BSE
- **Response function:** $\chi = \chi \cdot (\chi \cdot \chi \cdot \nu \chi_{\Box} \chi \cdot f_{XC} \chi \cdot)^{-1} \chi$.
- For vertical transitions vk to ck (t={vck}):

 $T_{GG'}(\omega) = \frac{2}{N_{k}} \sum_{t} \frac{\Phi^{\flat}(t;G) \Phi(t;G')}{(E_{ck}^{KS} - E_{vk}^{KS} - \omega)^{2}} \left[\Delta E_{ck}^{GW} - \Delta E_{vk}^{GW} \right] + \frac{2}{N_{k}^{2}} \sum_{t'} \frac{\Phi^{\flat}(t;G)}{E_{ck}^{KS} - E_{vk}^{KS} - \omega} F_{tt'}^{BSE} \frac{\Phi(t';G')}{E_{c'k'}^{KS} - E_{v'k'}^{KS} - \omega} + T_{2}^{KS} + T_{2$

- 1. L. Reining et al., Phys. Rev. Lett. 88, 66404 (2002).
- 2. G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68, 165108 (2003).
- 3. F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91, 56402 (2003).
- 4. F. Bruneval et al., Phys. Rev. Lett. 94, 186402 (2005).

T-matrix

OPTICAL SPECTRA FROM TD-DFT^[1-4]

• *T*-matrix:

$$T_{GG'}(\omega) = \frac{2}{N_{k}} \sum_{t} \frac{\Phi^{i}(t;G) \Phi(t;G')}{(E_{ck}^{KS} - E_{vk}^{KS} - \omega)^{2}} \left[\Delta E_{ck}^{GW} - \Delta E_{vk}^{GW} \right] + \frac{2}{N_{k}^{2}} \sum_{t'} \frac{\Phi^{i}(t;G)}{E_{ck}^{KS} - E_{vk}^{KS} - \omega} F_{t'}^{BSE} \frac{\Phi(t';G')}{E_{c'k'}^{KS} - E_{v'k'}^{KS} - \omega} \right]$$

- Contribution T₁ acts as an effective self-energy shift
- T₂ contains the e-h contribution by the screened Coulomb interaction W(r,r'):

$$F_{tt'}^{BSE} = -\int dr dr' \Phi(vk, v'k'; r) W(r', r) \Phi^{i}(ck, c'k'; r')$$

Inclusion of whole T yields spectra identical to BSE results^[3]

1. L. Reining *et al.*, Phys. Rev. Lett. **88**, 66404 (2002).

 T_{1}

- 2. G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68, 165108 (2003).
- 3. F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91, 56402 (2003).
- 4. F. Bruneval et al., Phys. Rev. Lett. 94, 186402 (2005).

T,

THE TD-HSE APPROACH^[1]

- Effective XC kernel from the frequency-dependent non-local exchange term f_{x-nl}
- Similar *T*-matrix: $T = \chi_0 f_{X-nl} \chi_0$
- The T(r',r)-matrix captures the following process:
 - Change of the external potential at r
 - Linear response of orbitals
 - Change of the non-local exchange potential
 - Linear response of orbitals and resultant charge density change at r⁴
- Hartree potential and the local XC potential are accounted for by: $\chi_0(\nu + f_{XC-l})\chi_0$

$$f_{XC-l} = \delta(r-r') \frac{\delta^2 E_{XC-l}[n(r)]}{\delta n(r) \delta n(r')}$$

1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

THE TD-HSE APPROACH APPLIED^[1]

- Neglect frequency dependence of f_{X-nl} and determine it only once at zero frequency
- Two-electron terms related to the coupling between resonant and antiresonant parts of the *T*-matrix are included
- Occupied and empty one-electron states are calculated using the HSE functional
- Screened Coulomb interaction W(r,r') as in BSE is replaced by ¼ of the non-local exchange term THUS: excitonic effects can and should be approximately capured by hybrid functionals!
- 1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

OPTICAL ABSORPTION: BULK SILICON^[1]

 $\varepsilon_{RPA}^{-1} = 1 + \nu \chi_0$

Band gap opens in the case of HSE; Similar to a scissors-corrected DFT approach!

1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

OPTICAL ABSORPTION: BULK SILICON^[1]

- Inclusion of the many-body effects via f_{X-nl} causes a red-shift of the spectrum and a pronounced increase of the cross section at low energies.
- TD-HSE improves upon IP-HSE, but fails to describe the first exciton!
- 1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

OPTICAL ABSORPTION OF SEMICONDUTORS^[1]

Limited interaction range of the HSE functional fails to account for all long-range excitonic effects?

1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

OPTICAL ABSORPTION OF SEMICONDUTORS^[1]

- Reducing the range separation parameter µ means that exchange is enhanced for small q
- This has the following effects on the spectra:
 - Slight opening of the gap resulting in a blueshift of the absorption
 - Increase of the excitonic effects through f_{X-nl}
 - Agreement with experiment is satisfactory!

1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

STATIC DIELECTRIC CONSTANTS^[1]

	LDA	TD-LDA	HSE	TD-HSE	EXPT.
	ϵ^{RPA}	3	ε	۳3	
Si	14.1	13.35	10.94	11.31	11.9
GaAs	14.81	13.98	10.64	10.95	11.1
AIP	9.12	8.30	7.27	7.35	7.54
SiC	7.29	6.96	6.17	6.43	6.52
С	5.94	5.80	5.21	5.56	5.7
ZnO (<i>c</i>)	5.31	5.15	3.39	3.55	3.78
ZnO (<i>a</i>)	5.28	5.11	3.35	3.51	3.70
LiF	2.06	2.02	1.78	1.84	1.9

- LDA:overstimates the screening in RPA; REDUCTION due to inclusion of two-particle interaction (repulsive action of the Hartree kernel v).
- HSE:red-shift of the spectra and the increase of intensity at low frequencies causes an INCREASE of the static dielectric constant.
- 1. J. Paier, M. Marsman, and G. Kresse, Phys. Rev. B 78, (in press).

CONCLUSIONS TD-HSE

- Dielectric constants remain somewhat too small.
- Average deviation between theory and EXPT.
 decreases from 10% (LDA) to 3% (TD-HSE).
- Absorption spectra show reasonable agreement with experiment.
- Not as *universal* as GW/BSE ! Works best for medium-gap semiconductors .
- Hybrid functionals are an overall better compromise for semiconductors than purely local functionals.

ACKNOWLEDGEMENT

- Funding by FWF
 - Start grant bmF
 - SFB IR-ON

The VASP group

- Prof. G. Kresse
- J. Paier
- M. Marsman
- J. Harl
- M. Shishkin

FШF

ANNOUNCEMENT MORE 2008

Meeting on Optical Response of Extended systems

November 19-21 2008

Vienna, Austria

• Scope:

- Bringing together experimentalists and theoreticians
- Form a platform for leading experts to discuss and exchange their recent results and scientific concepts
- Registration: www.physics.at
- deadline: October 19 2008

- Invited speakers:
 - C. Ambrosch-Draxl
 - F. J. Garcia de Abajo
 - R. Gomez-Abal
 - M. Kociak
 - G. Kresse
 - A. Marini
 - L. Reining
 - A. Rubio
 - P. Schattschneider
 - W. Sigle
 - J. Verbeeck
 - W. Werner
 - P. Zeppenfeld