Chun Ning Lau (Jeanie)

UNIVERSITY of CALIFORNIA **Riverside**

Graphene's Double Identity

Extraordinary Conductor

Novoselov *et al Nature* 2005;

Zhang *et al*, Nature 2005.

2D Elastic Membrane

New model system for condensed matter research and electronic materials

Linear dispersion, tunable carrier, surface 2DEG, high thermal and electrical conductivity

Thinnest isolated membrane with exceptional mechanical properties

. . . .

Outline

- Quantum Transport of charges
 - Tunable *pn* junctions
- Graphene as a 2D membrane
 - A new wrinkle

Extraction of Single- and Bi-Layer Graphene

Optical Microscope

AFM

Single-layer graphene Bi-layer graphene

- Mechanical exfoliation -- rub graphite flakes onto SiO₂ substrates
- Identify the number of layers by
 - Raman spectroscopy
 - Transport measurement
 - Color contrast in an optical microscope
- AFM images reveal mesoscopic features

Graphene Supercurrent Transistor

•Supercurrent carried by electrons, holes and in nominally undoped regimes.

•Critical current depends on gate voltage.

Miao, Bao, Zhang, CNL, Solid State Comm.(2009)

Graphene *p-n* **Junctions**

- Unique advantage: local control of charge density and type
- Graphene p-n junctions with top gate(s):
 - •allow in situ tuning of junction polarity and dopant levels
- Application
 - Klein tunneling

(perfect transmission of relativistic particles across high barrier) recent evidence: Kim's group, Goldhaber-Gordon's group, & Savchenko's group.

- Veselago lensing (optics-like focusing of electron rays)
- Band gap engineering of bi-layer graphene
- Particle collimation
- Valley polarization

Theories: Abanin *et al* 2006, 2007; Fogler *et al* 2007; Shytov *et al* 2007; Katsnelson *et al* 2006; Beenakker group, Cheianov *et al* 2006, 2007 Experimental demonstration: Huard *et al* 2007; Williams *et al* 2007, Ozyilmaz *et al* 2007, Oostinga *et al* 2007

Klein Tunneling

Relativistic charged particles at normal incidence has perfect transmission across a high barrier ($V_0 > 2mc^2$).

Cheianov and Falko, PRB (2006). Katsnelson et al, Nature Physics (2006).

- Thought to be realizable at the edge of blackholes
- Graphene: electrons in conduction band \rightarrow holes in valence band
- Transmission probability depends on incidence angle

Graphene p-n Junctions

- Challenge deposition of top gate tends to dope or damage the atomic layer
- Innovation: Suspended, contactless top gate
 - •Gentle process
 - •Graphene can be annealed to improve mobility and contact

Conductance of *p***-***n***-***p* **Junctions**

see also Gorbachev et al, Nano Letter (2008).

Fabry Perot Interference

Benasque Workshop

Quantum Hall States in graphene p-n-p Junctions

8 10

- Quantum Hall plateau at fractional values of e^2/h
- Edge state equilibration, full mixing of propagation modes at interfaces
- Full and partial edge state equilibration

Future Work

- Spin transport in p-n junctions
- Junction shape
- Veselago Lensing (requires extremely clean devices →suspended graphene + suspended gate?)
- Supercurrent in p-n junctions

Abanine & Levitov, PRB, 2008; Cheianov *et al* 2006, 2007, Fogler et al, 2008; Zhang & Fogler, 2008.

Graphene's Double Identity

Extraordinary Conductor

Novoselov *et al Nature* 2005;

Zhang *et al*, Nature 2005.

New model system for condensed matter research and electronic materials

Linear dispersion, tunable carrier, surface 2DEG, high thermal and electrical conductivity

The Softer Side of Graphene

Collaborator: Chris Dames, ME@UCR

Thinnest isolated membrane with exceptional mechanical properties

. . . .

Ripples in Graphene

- Presence of ripples in suspended graphene
- *inferred* from electron diffraction patterns
- Significant implication on electrical transport properties
 - induce local gauge field
 - change local chemical potential
 - ultimate bottleneck for mobility?

(Theories by Louie, Castro Neto, Katnelson, Guinea, Herbut *et al*, Juan *et al*...)

Meyer et al, Nature (2007)

No direct observation of ripples

(Attempts to) Fabricate Suspended Graphene Devices

Successful Technique (Kim and Andrei groups, 2008)

- Exfoliate graphene onto substrates
- Deposit electrodes
- Release completed devices from SiO₂ using HF etching
- Anneal
- Observed much higher mobility (up to 250,000)

Our technique

- Etch trenches on substrates
- Directly exfoliate graphene sheets across trenches
- Deposit electrodes
- Anneal
- Initial test: very low mobility (~100-500)

our typical substrate-supported devices: ~ 2,000-10,000

Du et al, *Nature Physics* (2008)

Huh?

Imaging Suspended Graphene

- Directly exfoliate graphene sheets across pre-defined trenches
- Image under SEM

Benasque Workshop

Spontaneous, Periodic Ripple Formation in Graphene

Directly exfoliate graphene sheets across pre-defined trenches

- Many graphene sheets are not flat, but spontaneously form ripples
- Almost perfectly sinusoidal profile
 - + thickness: 0.3 nm (single layer) -- 16 nm
 - amplitude: 0.7 to 30 nm

SEM

+ wavelength: 370 nm -- 5 μm

Origin of Ripples

• ripples can be induced by longitudinal strains or shears

Graphene as an Elastic Membrane

VOLUME 90, NUMBER 7 PHYSICAL REVIEW LETTERS week ending 21 FEBRUARY 2003

Geometry and Physics of Wrinkling

E. Cerda^{1,2} and L. Mahadevan^{1,*} ¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom ²Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, Casilla 307, Correo 2, Santiago, Chile (Received 25 June 2002; published 19 February 2003)

competition between bending and stretching

• ripples induced by longitudinal strains or shears

Strain-Induced Ripples in Atomic Membranes

- Membranes that are a few atomic layers thick obeys thin film mechanics
- Larger range of strains (up to 2%) observed for thinner membranes

Graphene as the World's thinnest Saran Wrap

macroscopic

mesoscopic

Device Fabrication Attempt

Ripples are the culprits for low mobility of our devices? Not so fast!

Devices were annealed to improve mobility

 \rightarrow graphene sheets collapsed

Thermal Effect on Ripples

- Ripples have larger wavelengths and amplitudes
- Membranes buckles upward or towards the bottom of the trench

In Situ SEM imaging of ripple formation

Movie of ripple formation

Mechanism of ripple formation

Graphene has a *negative* thermal expansion coefficient

Heating

graphene contracts, substrate expands → erasing pre-existing ripples

Cooling

- graphene expands, substrate contracts
- bending is easier than sliding
- \rightarrow edges remain pinned by the trench edges
- \rightarrow ripples (transverse)
 - slacks (longitudinal)

Measurement of Thermal Expansion Coefficient α

- Single layer graphene heated to 500 K and cools down slowly
- Compute $I(T)=L_g(T)/L_t(T)$ at different temperatures
- Slope $b = \frac{dl}{dT} \approx \alpha \alpha_{Si}$

Bao, Miao, Chen, Zhang, Jung, Dames and CNL, Nature Nanotechnol. (2009)

Ongoing: Cooling Suspended Graphene

Ongoing: Electrostatic Distortion of Suspended Graphene

Back to 0V

Gate voltages induces deformation in suspended graphene membranes.

Leon, Prada, San-Jose, Guinea, PRL (2009)

Lessons Learnt

- Always look at the devices
- Suspended graphene membranes are very finicky!
 - often have ripples
 - anneal with care
 - collapse graphene
 - cause ripples to form or change
 - morphology is strongly temperature dependent
 - resistance is strongly temperature dependent
 - quantum Hall plateaus disappear after annealing
 - nanoelectromechanical resonator's characteristic frequency shifts with temperature
 - shape changes with gate voltages

Graphene's Double Identity

Extraordinary Conductor

New model system for condensed matter research and electronic materials

Linear dispersion, tunable carrier, surface 2DEG, high thermal and electrical conductivity

2D Elastic Membrane

Thinnest isolated membrane with exceptional mechanical properties

Castro Neto, Guinea, Katsnelson, Brey, Louie, etc

Exploit Electrical Properties of Rippled Graphene?

superlattices, strain-based engineering...

. . . .

Coming soon -- Electrical Measurement

- Device with random or periodic ripples
- suspended and substrate supported portions of the same graphene sheet

- Despite small random ripples, suspended graphene has higher mobility
- Collapsed graphene (with very severe strain) does have very low mobility
- Ripple's *T*-dependence: relevant for suspended graphene devices

Acknowledgments

Graduate Students

Feng Miao

Wenzhong Bao

Gang Liu

Jairo Velasco

Shan-Wan Tsai, Marc Bockrath, Antonio Castro-Neto, Misha Fogler, Paco Guinea, Gil Refael, Dmitri Abanin, Philip Kim, Chandra Varma, Leonid Pryadko, Dmitri Novikov, Alex Bratkosvki, Volodya Falko, Maria A.H. Vozmediano, Misha Katsnelson

Hang Zhang

Benasque Workshop