Observation of Fractional Quantum Hall effect in suspended graphene

Xu Du, Ivan Skachko,

Fabian Duerr, Adina Luican

Eva Y. Andrei

Benasque-09

- 1'st report: May, 2009 (Science brevia submission)
- reported June 25, 09, EPQHS3 Lucca, Italy
- reported July 1,09, "Recent Progress in Graphene", Seoul, Korea
- reported July 28, 09 "Graphene 2009", Benasque, Spain

AM-I2CAM

Interaction and correlation effects in suspended graphene using STM and Transport

Transport in Suspended graphene

Reduced potential fluctuations

B finite

- Quantum Hall effect
- v=0 insulating phase

STM in suspended graphene

- Structure
- Density of States

B finite

- Landau levels
- Fermi Velocity
- e-ph interactions
- e-e interactions

 Rotated graphene
 Tunable Van-Hove singularities see talk by J. Lopes dos Santos

IQHE v=1,3,4 FQHE v=1/3

Graphene – the hallmarks

Density of states

STM - Graphene on insulating substrates (SiO₂, SiC)

Graphene on SiO₂ : e-h puddles and

n_{min} minimum carrier density

 $\Delta V_g \sim 1-10V$ $n_{min} \sim 10^{11}-10^{12} cm^{-2}$ $(\Delta E_F \sim 30-100 meV)$

Interaction and correlation effects in suspended graphene using STM and Transport

Transport in Suspended graphene

- Reduced potential fluctuations
- higher mobility
- lower density

B finite

- Quantum Hall effect
- v=0 insulating phase

STM in suspended graphene

- Structure
- Density of States

B finite

- Landau levels
- Fermi Velocity
- e-ph interactions
- e-e interactions

Rotated graphene

Benasque-09

- Tunchle Van Heye eingularities

Transport: graphene on SiO₂

Benasque-09

Transport: graphene on SiO₂

Conductivity and scattering

σ =	$e^2 v_F^2 N(E_F) \tau(k_F)$
	2

scattering	Source	Contributions	
Long range	Charged impurities	$\sigma \sim n$ $\mu \sim const$ $I_m \sim n^{1/2}$	S. Adam et al 2007 $E_n = \hbar v_n k_n \sim n^{1/2}$
Short-range	atomic roughness Neutral impurities	$\sigma \sim \text{const}$ $\mu \sim n^{-1}$ $I_m \sim n^{-1/2}$	$\sigma = ne\mu$ $l = v_F \tau$
Midgap states	Vacancies boundaries corrugations	$\sigma \sim n [\ln(n^{1/2}R_0)]^2$ $\mu \sim [\ln(n^{1/2}R_0)]^2$ $I_m \sim n^{1/2} [\ln(n^{1/2}R_0)]^2$	Peres et al PRB 2006 T. Stauber, et al (2007).
Ballistic		$\sigma \sim n^{1/2}$ $\mu \sim n^{-1/2}$ $I_m = L/2$	

Suspended Graphene

2-terminal technique : X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008) Substrate roughness Trapped charges Quench condensed ripples Get rid of the substrate! SiO_2 Si

4-terminal Bolotin et al, Solid State Communications (2008)

Benasque-09

4-terminal (Hall bar)

Suspended Graphene: T dependence

2-terminal technique :

X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

Benasque-09

ShdH and QHE – density calibration

2-terminal technique X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

 $\alpha_{sG} = n/V_o$

Suspended Graphene: reduced residual carriers

2-terminal technique :

X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

Suspended Graphene: approaching ballistic transport

2-terminal technique :

X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

suspended

 $n_{sat} \sim 10^{9} \text{ cm}^{-2}$ $\sigma \sim n^{1/2}$ Ballistic $\mu \sim n^{-1/2}$ $\mu_{sat} \sim 2 \times 10^{5} - 10^{6} \text{ cm}^{2}/\text{V s}$

Non suspended

$$\begin{split} n_{sat} &\sim 10^{11}\,\text{cm}^{-2} \\ \sigma &\sim n-\text{Long range scatterers} \\ \mu &\sim 1\text{-}~2\,\text{x}10^4\,\text{cm}^2\text{/V s} \end{split}$$

Suspended Graphene: T dependence

2-terminal technique :

X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

Interaction and correlation effects in suspended graphene using STM and Transport

Transport in Suspended graphene

- Reduced potential fluctuations
- higher mobility
- Iower density

B finite

- Quantum Hall effect
- Fractional Quantum Hall effect
- v=0 insulating phase

STM in suspended graphene

- Structure
- Density of States
- B finite
 - Landau levels
 - Fermi Velocity
 - e-ph interactions
 - e-e interactions

Benasque-0

Quantum Hall Effect

Each filled Landau level contributes *g* quanta of Hall conductance (g = degeneracy)

 $\sigma_{vv} = v \frac{e^2}{e^2}$ $v = g_s g_v (n+1/2) = \pm 2, \pm 6$

Landau level at E=0 :

no QHE plateau at 0.

$$\frac{1}{h} \quad g = 4$$

$$\frac{1}{h} \quad g = 2$$

Novoselev et al Nature 2005 Zhang et al Nature 2005

non-interacting sequence

Benasque-09

QHE: 2-terminal versus 4-terminal

supended graphene with 2-terminal technique X. Du, I. Skachako, A. Barker, E. Y. A. Nature Nanotech. 3, 491 (2008)

 $\alpha_{SG} = n/V_{\sigma}$

QHE: v=2

• well defined QHE plateaus clearly visible at low density $n \sim 2 \times 10^{10} \text{ cm}^{-2}$.

compare:

supended graphene with 4-terminal technique Bolotin et al, Solid State Communications (2008)

- No evidence of QHE plateaus!
- even at higher density $n \sim 10^{11} \text{ cm}^{-2}$. !

Suspended Graphene: QHE 2-terminal measurement

Electron density v (B/Φ_0)

Abanin & Levitov, PRB (2008) Benasque-09

Suspended Graphene: QHE 2-terminal measurement

Suspended Graphene: QHE 2-terminal

<u>measurement</u>

1'st observation of Fractional QHE in graphene

1'st observation of Fractional QHE in graphene

FQHE **not** seen in 4-terminal measurements !!

Interaction and correlation effects in suspended graphene using STM and Transport

Transport in Suspended graphene

- Reduced potential fluctuations
- higher mobility
- Iower density

B finite

- Quantum Hall effect
- Fractional Quantum Hall effect
- v=0 insulating phase

STM in suspended graphene

- Structure
- Density of States
- B finite
 - Landau levels
 - Fermi Velocity
 - e-ph interactions
 - e-e interactions

Benasque-09

"New" Substrate - Graphite

G. Li, A. Luican, E. Y. A., PRL (2009) G. Li , E.Y. A - Nature Physics, 3, 623 (2007)

- CleanLattice matched
- Conductor
- STM –
 T=4 (2K)
 B=13 (15T)
 10⁻¹⁰ -10⁻³ m

Topography
 Spectroscopy B=0
 Spectroscopy B>0

Benasque .

GTM: Graphene on Graphite

topography

Graphite

Graphene

100 nm

B=0 spectroscopy

GRAPHITEfigure 0 GRAPHITEfigure 0 GRAPHITEfigure 0 GRAPHITEfigure 0 GRAPHITEfigure 0 GRAPHITEfigure 0 figure 0 GRAPHITEfigure 0 figure 0

B>0 spectroscopy

Finding graphene on graphite

Search on graphite surface

Macroscopic defects – Terraces, ribbons

Characterize: Landau level spectroscopy

Coupling strength and Landau levels

3-10 coupled layers 2 LL sequences: massless and massive G. Li , E.Y. A Nature Physics, 3, 623 (2007)

100 nm

Interlayer coupling

Landau level spectroscopy

G. Li, A. Luican, E. Y. A., PRL (2009) G. Li , E.Y. A - Nature Physics, 3, 623 (2007)

Massless Dirac Fermions

G. Li, A. Luican, E. Y. A., PRL (2009) G. Li , E.Y. A - Nature Physics, 3, 623 (2007)

Velocity normalization

•Zero field density of states

$$v_{F} \equiv \frac{dE}{\hbar dk} = \frac{2}{\hbar} \sqrt{\frac{A_{c}}{\pi}} \left(\int_{0}^{E} \rho(E') dE' \right)^{1/2} / \rho(E)$$

$A_c = 3\sqrt{3}a^2/2$

Electron phonon coupling

CONTRACTOR OF

High resolution STS – 4T

G. Li, A. Luican, E. Y. A., PRL (2009) G. Li , E.Y. A - Nature Physics, 3, 623 (2007)

4

16 resolved Landau Levels

Benasque-09

Quasiparticle lifetime

G. Li, A. Luican, E. Y. A., PRL (2009) G. Li , E.Y. A - Nature Physics, 3, 623 (2007)

$$\mu = \frac{ev_F l_{mfp}}{E_F} = 220,000 \ cm^2 / V \cdot sec$$
$$n = 3 \times 10^{10} \ cm^{-2}$$

$$\tau_0 = 0.7 \, ps \Longrightarrow l_{mfp} \sim v_F \tau_0 = 700 nm$$

$$\tau \propto E^{-1} \approx 9 \, ps \, / \, meV$$

Inelastic e-e interactions $\tau \sim E^{-1} \sim 18 \text{ ps/meV}$

Gonzalez et al 1993 Castro Neto al PRB 2006 Fritz et al arXiv:0802.4289

Summary

Graphene without insulating substrate: Intrinsic properties

Transport – 2-terminal

- Ballistic transport on micron length scales
- IQHE v=1,2,3,4
- FQHE v=1/3
- v=0 insulator

STM

- Honeycomb structure
- Spectroscopy
 - Linear Density of states
 - Well defined Dirac point
- Direct observation of Landau levels
 - Fermi velocity
 - e-phonon interactions
 - e-e interactions

Benasque-09

STM - Guohong Li Adina Luican

Transport - Xu Du Ivan Skachko Anthony Barker Fabian Duerr

Eva Y. Andrei

Collaborators:

J. Kong, A. Reina, A. Geim, R. Nahir, K. Novoselov

J. Lopes dos Santos, A. H. Castro Neto

