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An abstract control problem

Let A be a skew-adjoint operator defined on a Hilbert space X.

Consider the following model:

y ′(t) = A y(t) + Bv(t), y(0) = y0 ∈ X,

where B ∈ L(Y,D(A)∗) and v ∈ L2(0,T ;Y).

Assumption

For all v ∈ L2(0,T ;Y), solutions can be defined in the sense of
transposition in C0([0,T ]; X).

Goal : Exact controllability

Fix a time T > 0 and y0 ∈ X. Can we find v ∈ L2(0,T ;Y) such
that y(T ) = 0 ?
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Hypotheses

A : D(A)→ X is a skew-adjoint operator.
=⇒ The energy ‖z(t)‖2X of solutions is constant.
A has compact resolvent.
=⇒ Its spectrum is discrete.

 Spectrum of A:

σ(A) = {iµj : j ∈ N},

where (µj)j∈N is an increasing sequence of real numbers,
corresponding to an orthonormal basis (Ψj)j∈N

AΨj = iµjΨj .
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Examples

Wave equation in a bounded domain+ BC with distributed
control

u′′ −∆u = χωv , (t , x) ∈ R× Ω,
u|∂Ω = 0,
(u(0), u̇(0)) = (u0,u1) ∈ H1

0 (Ω)× L2(Ω),

A =

(
0 Id
∆ 0

)
, X = H1

0 (Ω)× L2(Ω),

B =

(
0
χω

)
, Y = L2(ω).

Wave equation in a bounded domain+ BC with boundary
control
Schrödinger equation A = −i∆ + BC, Linearized KdV
A = ∂xxx + BC, Maxwell equation,. . .
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Duality

Use the adjoint system to characterize the controls !

For all z solution of

z ′ = A z, z(0) = z0 ∈ X,

we have

〈y(T ), z(T )〉X − 〈y0, z0〉X =

∫ T

0
〈v(t),B∗z(t)〉Y dt .

In particular, v is a control if and only if ∀z0 ∈ X

0 =

∫ T

0
〈v(t),B∗z(t)〉Y dt + 〈y0, z0〉X.
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Fundamental hypotheses

• B∗ : D(A)→ Y, B∗ ∈ L(D(A),Y).

Definition
B∗ is admissible if ∀T > 0,∃KT > 0,∫ T

0
‖B∗z(t)‖2Y dt ≤ KT

∥∥∥z0
∥∥∥2

X
, ∀ z0 ∈ D(A).

Definition
B∗ is exactly observable at time T ∗ > 0 if ∃k∗ > 0,

k∗
∥∥∥z0
∥∥∥2

X
≤
∫ T∗

0
‖B∗z(t)‖2Y dt , ∀ z0 ∈ X.
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The Hilbert Uniqueness Method (Lions ’86)

Let T ≥ T ∗.
Define, for z0 ∈ X,

J(z0) =
1
2

∫ T

0
‖B∗z(t)‖2Y dt + 〈y0, z0〉,

where z satisfies z ′ = Az, z(0) = z0.
Observability⇒ Existence and Uniqueness of a minimizer Z 0.
Then v = B∗Z is such that the solution y of

y ′ = Ay + Bv , y(0) = y0,

satisfies y(T ) = 0.
Besides, v is the control of minimal L2(0,T ; Y )-norm.
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A regularity problem

On the regularity

If y0 ∈ D(A),
Does the function Z 0 computed that way belongs to D(A) ?
Is the controlled solution (y , v) a strong solution ?
i.e. y ∈ C1([0,T ]; X)

General Answer : NO !
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Consider the wave equation
wtt − wxx = 0, 0 < x < 1, 0 < t < T ,
w(0, t) = 0, w(1, t) = v(t), 0 < t < T ,
(w(x ,0),wt (x ,0)) = (w0(x),w1(x)) ∈ L2(0,1)× H−1(0,1).

The adjoint problem is

qtt−qxx = 0, q(0, t) = q(1, t) = 0, (q0,q1) ∈ H1
0 (0,1)×L2(0,1),

and the solutions write

q =
√

2
∑
k≥1

(
q̂0

k cos(kπt) +
q̂1

k
kπ

sin(kπt)

)
sin(kπx),

Controllability in time T = 4 :
If
(
w0(x), w1(x)

)
=
√

2
∑

k≥1
(
ŵ0

k , ŵ1
k
)

sin(kπx),

Q̂0
k =

ŵ1
k

4k2π2 , Q̂1
k = −

ŵ0
k

4
.
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In particular, the HUM control can be computed explicitly

v(t) = Qx (1, t)

=
1
4

∑
k≥1

(−1)kkπ

(
ŵ1

k
k2π2 cos(kπt)−

ŵ0
k

kπ
sin(kπt)

)
.

=⇒ v(0) =
1
4

∑
k≥1

(−1)k ŵ1
k

kπ
6= 0 !

=⇒ If w0 ∈ H1
0 (0,1), the controlled solution is not a strong

solution in general because of the failure of the compatibility
conditions w0(1) = v(0) = 0.
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Main question

Main question
How to construct a control method which respects the regularity
of the solutions ?
If y0 ∈ D(A), we want

Z 0 ∈ D(A)

the controlled equation y ′ = Ay + Bv is satisfied in the
strong sense.

Related result - Dehman Lebeau 2009:
The wave equation with distributed control B = χω where χω is
smooth, and where the HUM operator is modified by a function
η(t) vanishing at t ∈ {0,T}.

Sylvain Ervedoza August 2009 Convergence rates of discrete controls



HUM Our method Application

1 Introduction: The Hilbert Uniqueness Method

2 An alternate HUM type method

3 Application: the order of convergence of discrete controls

Sylvain Ervedoza August 2009 Convergence rates of discrete controls



HUM Our method Application

The modified HUM method

Let y0 ∈ X, and δ > 0 such that T − 2δ ≥ T ∗, where T ∗ is the
time of observability. Define, for z0 ∈ X,

J(z0) =
1
2

∫ T

0
η(t) ‖B∗z(t)‖2Y dt + 〈y0, z0〉,

where z satisfies z ′ = Az, z(0) = z0 and

η ∈ C∞(R), η =

{
0 on (−∞,0] ∪ [T ,∞)
1 on [δ,T − δ]

η ≥ 0.

Observability⇒ Existence and Uniqueness of a minimizer Z 0.
Then v = ηB∗Z is such that the solution y of

y ′ = Ay + Bv , y(0) = y0,

satisfies y(T ) = 0.
Besides, v is the control of minimal L2((0,T ),dt/η; Y )-norm.
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Main result

Theorem (SE Zuazua)
Assume that admissibility and observability property hold.
If y0 ∈ D(A), then the minimizer Z 0 computed by the above
method and the control function v = ηB∗Z are more regular:

Z 0 ∈ D(A),
v ∈ H1

0 (0,T ;Y).
In particular, the controlled solution y with control v is a strong
solution of the controlled equation.
Moreover, there exists a constant C = C(η) such that∥∥∥Z 0

∥∥∥
D(A)

+ ‖v‖H1
0 (0,T ;Y) ≤ C

∥∥∥y0
∥∥∥
D(A)

.
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Before the proof

First remark that, due to the classical observability property,∥∥∥Z 0
∥∥∥

X
+ ‖v‖L2(0,T ;Y) ≤ C

∥∥∥y0
∥∥∥

X
.

Also remark that admissibility and observability properties yield

k
∥∥∥z0
∥∥∥
D(A)

≤
∫ T

0
η(t)

∥∥B∗z ′(t)∥∥2
Y dt ≤ K

∥∥∥z0
∥∥∥
D(A)

.

−→ It is sufficient to prove that∫ T

0
η(t)

∥∥B∗Z ′(t)∥∥2
Y dt <∞.

Indeed, this implies Z 0 ∈ D(A) and v ∈ H1
0 (0,T ;Y).
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Idea of the proof

Write the characterization of the control v = ηB∗Z :

0 =

∫ T

0
η(t)〈B∗Z (t),B∗z(t)〉Y dt + 〈y0, z0〉X,

for all z solution of z ′ = Az, z(0) = z0.
Then take formally z = Z ′′ = A2Z :∫ T

0
η(t)

∥∥B∗Z ′(t)∥∥2
Y dt = −〈Ay0,AZ 0〉X

−
∫ T

0
η′(t)〈B∗Z ′(t),B∗Z (t)〉Y dt .

Using observability,∫ T

0
η(t)

∥∥B∗Z ′(t)∥∥2
Y dt ≤ C(

∥∥η′∥∥∞)
∥∥∥y0

∥∥∥2

DA)
.
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The 1d wave equation


wtt − wxx = 0, 0 < x < 1, 0 < t < T ,
w(0, t) = 0, w(1, t) = v(t), 0 < t < T ,
(w(x ,0),wt (x ,0)) = (w0(x),w1(x)) ∈ L2(0,1)× H−1(0,1).

The adjoint problem is

qtt−qxx = 0, q(0, t) = q(1, t) = 0, (q0,q1) ∈ H1
0 (0,1)×L2(0,1),

Controllability is OK for T ≥ T ∗ = 2.
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Computation of the control

Hilbert Uniqueness Method, cf J.-L. Lions.

Assume T > T ∗ = 2 and η vanishing at t = 0,T .

Initial data to be controlled: (w0,w1) ∈ H−1(Ω)× L2(Ω).

Minimize the functional

J(q0,q1) =
1
2

∫ T

0
η|∂xq(1, t)|2 dt + 〈w1,q0〉H−1×H1

0
−
∫

Ω
w0q1.

over (q0,q1) ∈ H1
0 (Ω)× L2(Ω), q solution of the adjoint problem.

Minimizer = (Q0,Q1).

Then v = η∂xQ(1, t) is the control of minimal L2((0,T ),dt/η)
-norm.
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Our result

Theorem

If (w0,w1) ∈ H1
0 (0,1)× L2(0,1), then

(Q0,Q1) ∈ H2 ∩ H1
0 (0,1)× H1

0 (0,1) and v ∈ H1
0 (0,T ) .

Besides, there exists a constant C independant of (w0,w1)
such that∥∥∥(Q0,Q1)

∥∥∥
H2∩H1

0 (0,1)×H1
0 (0,1)

≤ C
∥∥∥(w0,w1)

∥∥∥
H1

0 (0,1)×L2(0,1)
,

‖v‖H1
0 (0,T ) ≤ C

∥∥∥(w0,w1)
∥∥∥

H1
0 (0,1)×L2(0,1)

.
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The 1-d discrete case

Space semi-discretization (finite difference, h = 1
N+1 ) w ′′j −

1
h2 (wj−1 + wj+1 − 2wj) = 0, j ∈ {1, · · · ,N}, t ≥ 0,

w0(t) = 0, wN+1(t) = v(t), t ≥ 0.

Figure: Left, the initial data u(0). Right, the HUM control for the
continuous system for initial data (u(0),0).
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Numerical experiments

Figure: Discrete controls for different values of N.
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Spectral explanation

Discrete schemes are not uniformly observable

Figure: Discrete Spectrum vs Continuous Spectrum.

 Filtering techniques are needed.
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Results (Infante Zuazua 99)

Spectrum of the discrete Laplace operator:

−∆hϕ = λϕ, ϕ0 = ϕN+1 = 0

is given by the sequence (ϕk , λk (h)) (k ∈ {1, · · · ,N}):

ϕk
j =
√

2 sin(kπjh), j ∈ {1, · · · ,N}, λk (h) =
4
h2 sin2

(
kπh

2

)
.

Define, for γ ∈ (0,4),

Ch(γ) = Span
{
ϕk , λk (h) ≤ γ

h2

}
and the orthogonal projection πh

γ over Ch(γ).
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Theorem (Infante Zuazua 99), slightly revisited

Let γ ∈ (0,4) and T > 2/(1− γ/4). Consider a sequence

(w0
h ,w

1
h ) −→

h→0
(w0,w1) in L2(0,1)× H−1(0,1).

Define the functionals

Jh(q0
h ,q

1
h) =

1
2

∫ T

0
η(t)

∣∣∣qN

h

∣∣∣2 dt + 〈w1
h ,q

0
h〉H−1

h ×H1
h
−
∫

Ω
w0

h q1
h ,

where q is the solution of
q′′j −

1
h2 (qj−1 + qj+1 − 2qj) = 0, j ∈ {1, · · · ,N}, t ≥ 0,

q0(t) = 0, qN+1(t) = 0, t ≥ 0.
(qj(0),q′j (0)) = (q0

j ,q
1
j ).
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Theorem (Infante Zuazua 99), slightly revisited

The functionals

Jh(q0
h ,q

1
h) =

1
2

∫ T

0
η(t)

∣∣∣qN

h

∣∣∣2 dt + 〈w1
h ,q

0
h〉H−1

h ×H1
h
−
∫

Ω
w0

h q1
h ,

have a unique minimizer (Q0
h ,Q

1
h) on Ch(γ)2. The functions

vh(t) = −η(t)
QN(t)

h

are such that the solution yh of the discrete wave equation with
initial data (y0

h , y
1
h ) and control function vh satisfies

πh
γ(yh(T ), y ′h(T )) = (0,0).

Moreover, (vh) −→ v strongly in L2(0,T ; dt/η), where v is the
HUM control of the continuous wave equation for (w0,w1).
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Order of convergence

Approximation of smooth data
∃C independent of h > 0 such that
∀(w0,w1) ∈ H1

0 (0,1)× L2(0,1), there exists a sequence
(w0

h ,w
1
h ) of discrete data such that ∀h > 0,∥∥∥(w0

h ,w
1
h )
∥∥∥

H1
0×L2

≤ C
∥∥∥(w0,w1)

∥∥∥
H1

0×L2∥∥∥(w0
h ,w

1
h )− (w0,w1)

∥∥∥
L2×H−1

≤ Ch
∥∥∥(w0,w1)

∥∥∥
H1

0×L2
.
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Order of convergence

Theorem (SE & Zuazua)
∃C independent of h > 0 such that for all
(w0,w1) ∈ H1

0 (0,1)× L2(0,1), the discrete controls vh
computed for the discrete data (w0

h ,w
1
h ) given above satisfy:

‖vh − v‖L2(0,T ;dt/η) ≤ Ch2/3
∥∥∥(w0,w1)

∥∥∥
H1

0×L2

First result on the order of convergence of discrete controls.
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Idea of the proof-I

F For (w0,w1) ∈ H1
0 (0,1)× L2(0,1), the control is

v = η(t)∂xQ(1, t) for a solution Q of the adjoint wave equation,
with initial data (Q0,Q1) ∈ (H2 ∩ H1

0 (0,1)× H1
0 (0,1))∩ Ch(γ)2 .

F One can approximate (Q0,Q1) and Q by discrete data
(Q̃0

h , Q̃
1
h) such that∥∥∥(Q̃0

h , Q̃
1
h)
∥∥∥

H2∩H1
0×H1

0

≤ C
∥∥∥(w0,w1)

∥∥∥
H1

0×L2∥∥∥∥∥Q̃N,h

h
+ ∂xQ(1, t)

∥∥∥∥∥
L2(0,T )

≤ Ch2/3
∥∥∥(w0,w1)

∥∥∥
H1

0×L2
.

Set ṽh = η(t)
Q̃N,h

h
:

‖ṽh − v‖L2(0,T ;dt/η) ≤ Ch2/3
∥∥∥(w0,w1)

∥∥∥
H1

0×L2
.
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Idea of the proof-II

F The control ṽh = η(t) Q̃N,h
h is an approximate control for the

discrete equations: if w̃h denotes the solution of the discrete
equation with control ṽh, we have∥∥(w̃h(T ), w̃ ′h(T ))

∥∥
L2×H−1 ≤ Ch2/3

∥∥∥(w0,w1)
∥∥∥

H1
0×L2

.

F Compute the control v̂h of minimal L2(0,T ; dt/η) norm such
that

p′′j −
1
h2 (pj−1 + pj+1 − 2pj) = 0, j ∈ {1, · · · ,N}, t ≥ 0,

p0(t) = 0, pN+1(t) = v̂h(t), t ≥ 0.
(ph(0),p′h(0)) = (0,0), (ph(T ),p′h(T )) = −(w̃h(T ), w̃ ′h(T ))

⇒ v̂h = −η(t) Q̂N
h , Q̂h solution of the discrete adjoint system:

‖v̂h‖L2(0,T ;dt/η) ≤ Ch2/3
∥∥∥(w0,w1)

∥∥∥
H1

0×L2
.
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Idea of the proof-III

F The function ṽh + v̂h is a discrete exact control which can be
written as

ṽh + v̂h = −η
QN,h

h
,

where Qh is a solution of the discrete adjoint system in Ch(γ).
Uniqueness of such exact controls −→ vh = ṽh + v̂h

‖vh − v‖L2(0,T ;dt/η) ≤ ‖ṽh − v‖L2(0,T ;dt/η) + ‖v̂h‖L2(0,T ;dt/η)

≤ Ch2/3
∥∥∥(w0,w1)

∥∥∥
H1

0×L2
.
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Comments

About h2/3

Remark that
√
λk (h) = 2

h sin
( kπh

2

)
' kπ for k = o(h−2/3)

⇒ Convergence of the eigenvalues OK at scale h−2/3.
See also Baker SIAM JNA ’76 and Rauch SIAM JNA ’85:
Distance between the continuous and semi-discrete
semi-groups is exactly h2/3.

Optimality of this rate of convergence ?
Applications to other situations:

Different numerical methods:
? finite element (Infante Zuazua ’99, SE ’09),
? mixed finite elements (Castro Micu ’06, SE’09),
? bi-grid techniques (Negreanu Zuazua ’04)
Higher dimensions

−→ See Zuazua’s Survey ’05 for extensive references)
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Thank you for your attention !
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