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HUM

Q Introduction: The Hilbert Uniqueness Method
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HUM

An abstract control problem

Let A be a skew-adjoint operator defined on a Hilbert space X.

Consider the following model:

Y(t)=Ayt)+Bv(t), y(0)=y°€x,

where B € £(),D(A)*) and v € L2(0, T; ).

Assumption

For all v € L?(0, T; ), solutions can be defined in the sense of
transposition in C°([0, T]; X).

| A

Goal : Exact controllability

Fix atime T > 0 and y° € X. Can we find v € L?(0, T; ) such
that y(T) =0 ?
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HUM

Hypotheses

@ A:D(A) — X is a skew-adjoint operator.
— The energy Hz(z‘)H?€ of solutions is constant.

@ A has compact resolvent.
= Its spectrum is discrete.

~+ Spectrum of A:
o(A) = {itd : je N},

where (1/)jey is an increasing sequence of real numbers,
corresponding to an orthonormal basis (W/);cn

AV = i,
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Examples

@ Wave equation in a bounded domain+ BC with distributed
control

U — Au=y,v, (t,x)eRxQ,
{ Upa = 0,
(u(0), u(0)) = (uo, ur) € HJ(Q) x LA(Q),

A= <g ld > X =H(Q) x L3(Q),

0
0 2
B= , = L%(w).
() v=r2
@ Wave equation in a bounded domain+ BC with boundary

control

@ Schrédinger equation A = —iA + BC, Linearized KdV
A = Oxxx + BC, Maxwell equation,. ..
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BIVEILY

Use the adjoint system to characterize the controls !

For all z solution of

we have
)
W(T), 2(T))x — (y°, 2%)x = /0 (1), B 2(t))y ot.

In particular, v is a control if and only if vz € X

)
0:/ (V(t), B Z(t))y dt + (y°, 20 x.
0
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HUM

Fundamental hypotheses

e B*:D(A) — ), B* € £(D(A),)).

(Definiton

B* is admissible if VT > 0,3K7 > 0,

/T 1B 2(1)|2, dt < K HZOHZ v 2% € D(A)
0 yE S x’ '

B* is exactly observable at time T* > 0 if 3k, > 0,

k.

2 T
ZOHXS/O 1B z(t)|Zat, VX ex
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HUM

The Hilbert Uniqueness Method (Lions '86)

Let T > T*.
Define, for 20 € x,

1

)
S =5 | 1B dt+ 5.2,

where z satisfies 2/ = Az, z(0) = 2°.
Observability = Existence and Uniqueness of a minimizer Z°.
Then v = B3*Z is such that the solution y of

y'=Ay+Bv,  y(0)=y°

satisfies y(T) = 0.
Besides, v is the control of minimal L2(0, T; Y)-norm.
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HUM

A regularity problem

On the regularity
If y° € D(A),
@ Does the function Z° computed that way belongs to D(A) ?

@ Is the controlled solution (y, v) a strong solution ?
i.e. y € C'([0, T]; X)

General Answer : NO |
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HUM

Consider the wave equation

Wi — Wxx = 0, O0<x<1,0<t<T,
w(0,t) =0, w(1,t) = v(t), 0<t<T,
(w(x,0), we(x,0)) = (WO(x), w'(x)) € L3(0,1) x H7(0,1).

The adjoint problem is
d—Gx =0, q(0,1) =q(1,1) =0, (g% q") € H}(0,1)xL?(0, 1),
and the solutions write

g=v2)" (e;,? cos(kmt) + i sin(kﬂ)) sin(krx),

K
k>1

Controllability intime T =4 :
If (WO(x), w'(x)) = V23 4=q (W0, W}) sin(kmx),
M W e W
K™ 4k2p2 kT4
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HUM

In particular, the HUM control can be computed explicitly

v(t) = Q(1,1)

_ fz <A1 cos(krt) — kf (kﬂ)>

k>1

- § o

k>1

= If w® € H}(0, 1), the controlled solution is not a strong
solution in general because of the failure of the compatibility
conditions w%(1) = v(0) = 0.
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HUM

Main question

Main question
How to construct a control method which respects the regularity
of the solutions ?
If y© € D(A), we want
@ Z°c D(A)
@ the controlled equation y’ = Ay + By is satisfied in the
strong sense.

Related result - Dehman Lebeau 2009:

The wave equation with distributed control B = x,, where x,, is
smooth, and where the HUM operator is modified by a function
n(t) vanishing at t € {0, T}.
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e An alternate HUM type method
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The modified HUM method

Let y0 € X,and § > O such that T — 25 > T*, where T* is the
time of observability. Define, for 20 € X,

i
I =5 [ 152Dl dt+ (.2,

where z satisfies 2/ = Az, z(0) = z° and

o 0 on(—oco0,0lU|T,
n € C*(R), n={1 OnféoTo_E;][ ) n > 0.

Observability = Existence and Uniqueness of a minimizer Z°.
Then v = nB*Z is such that the solution y of
y'=Ay+Bv,  y(0)=y"

satisfies y(T) = 0.
Besides, v is the control of minimal L2((0, T), dt/y; Y)-norm.
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Our method

Main result

Theorem (SE Zuazua)

Assume that admissibility and observability property hold.
If y© € D(A), then the minimizer Z° computed by the above
method and the control function v = nB*Z are more regular:
@ Z° € D(A),
e veHIO,T; ).
In particular, the controlled solution y with control v is a strong
solution of the controlled equation.
Moreover, there exists a constant C = C(n) such that

+ IVl < €|V

1’|
D(A) D(A)
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Before the proof

First remark that, due to the classical observability property,
0 0
2]+ < 7

Also remark that admissibility and observability properties yield

el < ) w0l 200 at< ],

— It is sufficient to prove that

T 2
/O n(t)|B*Z'(1)]|5 dt < oc.

Indeed, this implies Z° € D(A) and v € H{(0, T; ).
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|dea of the proof

Write the characterization of the control v = nB*Z:

i}
0= /o DB Z(1), B*z())y dt + (y°, 2% x,

for all z solution of z/ = Az, z(0) = 2°.
Then take formally z = Z" = A%Z:

T
520 ot = ~(4y°, 420z

)
- /0 0 (1)(B*Z(8), B*Z(1))y c.

Using observability,

/Orn(t)HB*Z’(t)Hy dt < (|| Hy HDA)
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Application

Q Application: the order of convergence of discrete controls

Sylvain Ervedoza August 2009 Convergence rates of discrete controls



Application
The 1d wave equation

Wi — Wxx = 0, O<x<1,0<t<T,
w(0,t) =0, w(1,f) = v(t), O0<t<T,
(w(x,0), wi(x,0)) = (WO (x),w'(x)) € L?(0,1) x H~1(0,1).

The adjoint problem is

qt—qx =0, q(0,8) =q(1,t) =0, (¢°,q") € H}(0,1)xL?(0,1),
Controllability is OK for T > T* = 2.
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Computation of the control

Hilbert Uniqueness Method, cf J.-L. Lions.
Assume T > T* = 2 and n vanishing att =0, T.
Initial data to be controlled: (W% w') € H=1(Q) x L?(Q).

Minimize the functional
1 T
H.q) =5 [ 0a0 0 ot + W o)y — [ WG
0 Q
over (q° q') € HI(Q) x L3(R), g solution of the adjoint problem.
Minimizer = (Q°, Q").

Then v = 70,Q(1, t) is the control of minimal L?((0, T), dt/n)
-norm.
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Application

Our result

Theorem

If (w® w') € H}(0,1) x L2(0,1), then

(@%, Q") € H2N HI(0,1) x H{(0,1) and v € H{(0, T).
Besides, there exists a constant C independant of (w®, w')
such that

fer. a1

elwn.w)

H2NH (0,1)x H{ (0,1) H1(0,1)xL2(0,1)

IA

elwn.w)

v :
IVllkgo.m) H(0,1)x12(0,1)
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Application
The 1-d discrete case

Space semi-discretization (finite difference, h = ﬁ)

1 .
w/' = 5 (W1 + wjr —2w) =0, je{1,--- N}, 1>0,

wo(t) =0, wniq(t)=v(t), t>0.

15 0.4

1 0.2

% 0.5 £ o

0 -0.2
05 0.2 0.4 . 0.6 0.8 1 -04 1 % 3 4

Figure: Left, the initial data u(0). Right, the HUM control for the
continuous system for initial data (u(0), 0).
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Application

Numerical experiments

N=20 N=40
0.4 0.4
0.2 f 4 /\/ W 0.2
E o \fw f\f\/\/\/ LVV\, M f% 0
-0.2 V\MA/ \/W\/ 0.2 A(L,
oo 1 2 3 4 )
s N=‘100
Tl I

Vi)

=
5
>

—0.40

-0.2

}I | | I W -
. LU
1 3 4 0 % 3 4

t

Figure: Discrete controls for different values of N.
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Application

Spectral explanation

Discrete schemes are not uniformly observable

—— Spectre Disret
Specire continy

Figure: Discrete Spectrum vs Continuous Spectrum.

~ Filtering techniques are needed.
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Application

Results (Infante Zuazua 99)

Spectrum of the discrete Laplace operator:
—App =Ap, @0 =¢Nt1 =0

is given by the sequence (o, \k(h)) (k € {1,--- , N}):

4 ., (krh
ol = V2 sin(kmjh), je{1,--- N}, M(h)= ﬁsm? <Z> .

Define, for v € (0, 4),

C(7) = Span {px, Ni(h) < 5 }

-y

and the orthogonal projection wg over Cp(7).
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Application

Theorem (Infante Zuazua 99), slightly revisited

Lety € (0,4)and T > 2/(1 — v/4). Consider a sequence

(Wh,wh) — (WP, w') in L2(0,1) x H (0, 1).
Define the functionals
1 /7 gn |2
b i) =5 [ 0| B[ o+ w1~ [ wha,

where q is the solution of

1 .
9~ 12(G-1+ g1 -2g) =0, je{l,--- N}Lt>0,

Q(t) =0, gn41(t)=0, t>0.
(4(0).gj(0)) = (a7 q/).
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Application

Theorem (Infante Zuazua 99), slightly revisited

The functionals
1 /7 an |2
0 1 N 1 0 0 A1
Jh(qhuqh)zz/o 77(1‘)’7) dt+<Wthh>Hh1><HA_/Qthhu

have a unique minimizer (Q2, Q}) on Cx(v)?. The functions

un(t) = —n(t) 20

are such that the solution yj, of the discrete wave equation with
initial data (y?, y;!) and control function vj, satisfies

w(ya(T), ¥4(T)) = (0,0).

Moreover, (vj,) — v strongly in L?(0, T; dt/n), where v is the
HUM control of the continuous wave equation for (w°, w').
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Application

Order of convergence

Approximation of smooth data
3C independent of h > 0 such that

v(wl, w') € HJ(0,1) x L?(0, 1), there exists a sequence
(wl, w})) of discrete data such that vh > 0,

0 1 0 1
(G ] (COT]

| wi) = (w2, W)

1
H} x L2

IA

Ch H(WO, w1)]

[2x H~1 HixL2'
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Application

Order of convergence

Theorem (SE & Zuazua)

3C independent of h > 0 such that for all

(w2, w') € H}(0,1) x L2(0,1), the discrete controls vj
computed for the discrete data (w?, w}') given above satisfy:

1Vn = Vllizo rtym < CH || (w®, )|

;
H{ x L2

First result on the order of convergence of discrete controls. |
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ldea of the proof-I

* For (w% w') € H}(0,1) x L2(0,1), the control is
v = n(t)0xQ(1, t) for a solution Q of the adjoint wave equation,
with initial data (Q°, Q") € (H? N HJ(0,1) x H}(0,1)) NCh(7)? .

% One can approximate (Q°, Q") and Q by discrete data
(Q%, Q) such that

(&, &)

N

clwn.w)

1o 1 1
H2NH] x H] H} x L2

< oo

Hixi2'
L2(0,T) 0
Q..

Set ¥ = (1)~

3 2/3 |[( 0 1p)1
1V = Vlli2(0, 7.0y < CH?/ H(W W )‘ Hix12
0
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|dea of the proof-I

% The control ¥, = n(t) Q’,V,’h is an approximate control for the
discrete equations: if Wy, denotes the solution of the discrete
equation with control vy, we have

(D). T ey -s < O/ | ()|

] .
H} x L2

% Compute the control ¥, of minimal L2(0, T; dt/n) norm such
that

P — %(qu +pj1—2p) =0, je{l,--- N}t>0,
po(t) =0, pn+1(t) = Vn(t), t=>0.
(Pn(0), PH(0)) = (0,0),  (pn(T),PH(T)) = —(Wn(T), Wp(T))

v, Qy solution of the discrete adjoint system:

= Vph=—n(t)

10liz(0, .ty < CHP || (W0, W)

HixL2
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|dea of the proof-lll

% The function v, + ¥}, is a discrete exact control which can be

written as
o o Qup
Vh+Vh=—1 h

where Qy, is a solution of the discrete adjoint system in Cx(7).
Unigueness of such exact controls — v, = v, +

IN

1Vh = VIl 20,30t/ + 1Vl 200, 70 /)
cr? |(w?, wh)|

1V = VIl 20,7t /)

IN

. .
H} x L2

Sylvain Ervedoza August 2009 Convergence rates of discrete controls



Application

Comments

About h?/3

@ Remark that \/AK(h) = 2 sin (428') ~ kr for k = o(h~2/3)
= Convergence of the eigenvalues OK at scale h—2/3.

@ See also Baker SIAM JNA 76 and Rauch SIAM JNA ’85:
Distance between the continuous and semi-discrete
semi-groups is exactly h?/3.

@ Optimality of this rate of convergence ?
@ Applications to other situations:
e Different numerical methods:
* finite element (Infante Zuazua '99, SE '09),
* mixed finite elements (Castro Micu '06, SE’09),
* bi-grid techniques (Negreanu Zuazua '04)
e Higher dimensions
— See Zuazua’s Survey '05 for extensive references)
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Thank you for your attention !
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