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Original cosmic strings, in gauge theory :

Spontaneously broken U(1) symmetry, 
has magnetic flux tube solutions 
(Nielsen-Oleson vortices).

Network would form in early universe phase transitions where 
U(1) symmetry becomes broken. Higgs field roles down the 

potential in different directions in different regions (Kibble 76).

String tension : µ  Dimensionless coupling to gravity : G µ
GUT scale strings : G µ ~ 10-6 -- size of string induced metric 

perturbations. 
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Initial Scaling

Length scales on networks

- persistence length of string
- interstring distance

- small scale 
structure on 

network

[Vincent et al]

€ 

3×109  lightyears



06/23/2008 4

Observational consequences : 1980’s and 90’s

Single string networks evolve with Nambu-Goto action, decaying 
primarily by forming loops through intercommutation and 

emitting gravitational radiation and possibly particles.

For gauge strings, 
reconnection 

probability P~1

Scaling solutions are reached where energy density in strings 
reaches constant fraction of background energy density:

[Albrecht &Turok; Bennett &  Bouchet; Allen & Shellard]

Density increases as P decreases because takes longer for network to lose energy to 
loops. Recent re-analysis of loop production mechanisms suggest two distributions of 

long and small loops.
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Unfortunately they didn’t do the full job!

CMB power spectrum

WMAP data

strings
Albrecht, Battye, Robinson 1997

Acoustic peaks come from temporal coherence.  Inflation has it, 
strings don’t.  String contribution < 13% implies Gµ < 10−6.

E.g. Pogosian et al 2004, Bevis et al 2004.



06/23/2008 6

They may not do the full job but they can still contribute

Hybrid Inflation type models
String contribution < 11% implies Gµ < 0.7 ∗ 10−6.

Bevis et al 2007.
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Pulsar bounds on gravitational wave emission 
could also be problematic for GUT scale strings:

Strings produce stochastic GW, ΩGW ~ 10−1.5 Gµ .
(Allen ’95, Battye, Caldwell, Shellard ’97)

Kaspi, Taylor, Ryba ‘94:  ΩGW < 1.2 x 10−7,  Gµ < 10−5.5 

Lommen, Backer ‘01:      ΩGW < 4 x 10−9,     Gµ < 10−7 

In relevant frequency range ~ 0.1 inverse year 

Need to reduce string tension although 
uncertainty in string calculation.

Siemens et al 07 -- very tight constraint on strings 
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Any smoking guns?

Possibly through strong non-gaussian nature of stochastic 
gravitational wave emission from loops which contain kinks 

and cusps. [Damour & Vilenkin 01 and 04]

Cusp: x’=0 for 
instant in an 
oscillation

Kink: x’ 
discontinuous, 
occurs every 

intercommuting -- 
common

Both produce beams of GW, cusps much more 
powerful

[Blanco-Pillado and 
Olum]
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In loop network, if only 10% of loops have cusps, bursts of GW 
above `confusion’ GW noise could be detected by LIGO and 

LISA for Gµ ~10-12 !

LIGO I 

LIGO II Noise levels

10 10 10 10

[Damour & 
Vilenkin 04]

log10h

strain

Bursts emitted by cusps in LIGO frequency range fligo=150 Hz



06/23/2008 10

In 1980’s Fundamental (F) strings excluded as being 
cosmic strings [Witten 85]:

1. F string tension close to Planck scale (e.g. Heterotic)

Cosmic strings deflect light, hence constrained by CMB:

Consequently, cosmic strings had to be magnetic or electric 
flux tubes arising in low energy theory

2. Why no F strings of cosmic length?

a. Diluted by any period of inflation as with all defects.

b. They decay ! (Witten 85) 
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1990’s: along came branes --> new one dimensional 
objects:

1. Still have F strings

2. D-strings

3. Higher dimensional D-, NS-, M- branes partly 
wrapped on compact cycles with only one non-

compact dimension left. 

4. Large compact dimensions and large warp factors 
allow for much lower string tensions. 

5. Dualities relate strings and flux tubes, so can consider 
them as same object in different regions of parameter 

space. 

What do they imply for cosmic strings?
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D-brane-antibrane inflation leads to formation of D1 branes in 
non-compact space [Burgess et al; Majumdar & Davis; Jones, Sarangi &Tye; 

Stoica & Tye]

Form strings, not domain walls or monopoles. 

In general for cosmic strings to be cosmologically interesting 
today we require that they are not too massive (from CMB 

constraints), are produced after inflation (or survive inflation) 
and are stable enough to survive until today [Dvali and Vilenkin 

(2004); EJC,Myers and Polchinski (2004)]. 

Strings surviving inflation:
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What sort of strings? 

Expect strings in non-compact dimensions where reheating will 
occur: F1-brane (fundamental IIB string) and D1 brane localised 

in throat. [Majumdar & Davis, Jones,Stoica & Tye, Dvali & Vilenkin]  

D1 branes - defects in tachyon field describing D3-anti D3 
annihilation, so produced by Kibble mechanism.

Strings created at end of inflation at bottom of inflationary throat. 
Remain there because of deep pot well. Eff 4d tensions can be 

reduced because they depend on warping and 10d tension

Depending on the model considered these strings can be 
metastable, with an age comparable to age of the universe
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F1-branes and D1-branes --> also (p,q) strings for relatively 
prime integers p and q. [Harvey & Strominger; Schwarz]

Interpreted as bound states of p F1-branes and q D1-branes 
[Polchinski;Witten]

D1

F1

(1,1)
Tension in 10d theory:

µi ≡ µ(pi,qi) =
µF

gs

�
p2

i g
2
s + q2

i
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Distinguishing cosmic superstrings

1. Intercommuting probability for gauged strings P~1 
always ! In other words when two pieces of string 
cross each other, they reconnect. Not the case for 

superstrings -- model dependent probability [Jackson et al 
04].

2. Existence of new `defects’ D-strings allows for 
existence of new hybrid networks of F and D strings 
which could have different scaling properties, and 

distinct observational effects.
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(p,q) string networks -- exciting prospect.

Two strings of different type cross, can not intercommute in 
general -- produce pair of trilinear vertices connected by 

segment of string.

1+2
2-1

What happens to such a network in an expanding background? 
Does it scale or freeze out in a local minimum of its PE [Sen]?

Then it could lead to a frustrated network scaling as w=-1/3  
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Scaling achieved 
indep of initial 
conditions, and 
indep of details 
of interactions. 

Density of D1 
strings.

Density of (p,q) 
cosmic strings.

Including multi-tension cosmic superstrings [Tye et al 05, Avgoustidis and Shellard 

07, Urrestilla and Vilenkin 07, Avgoustidis and EJC 10].
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Modelling strings with junctions -- solve the modified 
Nambu-Goto equations   

EJC, Kibble and Steer: hep-th/0601153, hep-th/0611243

EJC, Firouzjahi, Kibble and Steer: arXiv: 0712.0808

Need to account for the fact that there is a constraint -- 
three strings meet at a junction and evolve with that 

junction.
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Field theory simulations of 
collapsing butterfly shape 
with two equal tensions on 
the wings. Bevis et al 09
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However - there exist some neat 
triangular instabilities -- our very own 
loop corrections - which we can explain 
with the NG equations !
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Excellent agreement between field theory (red) and NG (black)
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and, for t < 0, 

  γ
−1 = 1− v2

Take  µ1 = µ2

If 1,2 exchange partners, and are
joined by 3, it must lie on x or y
axis (for small    or large   , resp)  
Assume x-axis.  Then for t > 0, 

   x3(σ,t) = (σ,0,0),

Consider vertex X on right. Require it moves to right:

α α

12/18/07 24

Collision of straight strings

and, for t < 0, 

    
x

1,2
(!,t) = ("# "1! cos$,m# "1! sin$,±vt)

Take

If 1,2 exchange partners, and are

joined by 3, it must lie on x or y

axis (for small    or large   , resp)  

Assume x-axis.  Then for t > 0, 

Consider vertex X on right

Consider 2 strings crossing

12/18/07 26

What does it imply?

with

But              so for 3 along x axis, 
   
&s
3
> 0,

Kinematically allowed regions are:
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with  µ3 < 2µ1

But               implying 
 
α < arccos

µ3γ

2µ1

⎛

⎝⎜
⎞

⎠⎟

Kinematically allowed regions are:

12/18/07 26

What does it imply?

   

&s
3
=

2µ
1
! "1

cos# " µ
3

2µ
1
" µ

3
! "1

cos#
with

But              so for 3 along x axis, 

Kinematically allowed regions are:
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What does it imply?

with

But              so for 3 along x axis, 
   
&s
3
> 0,

Kinematically allowed regions are:
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Note: neither is possible 
unless

 
γ <

2µ1
µ3

e.g., if  µ3 = µ1,

we require 
  v <

3
2

Type I Abelian strings which 
have stable n=2 string 
solutions show similar 
features. Circles form 

junctions, crosses have 
reconnections. Solid line is 

prediction based on 
junctions-- Salmi et al 07



ρ =
µ

L2

ρ̇ = −2
ȧ

a
ρ− ρ

L
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Recap single one-scale model: (Kibble + many...)

L(t) = ξ(t)t, a(t) ∼ tβ

ξ̇

ξ
=

1
2t

�
2(β − 1) +

1
ξ

�

ξ = [2(1− β)]−1.

Infinite string density

Correlation length

Scaling solution

Scale 
factor

Loss to loopsExpansion

Need this to understand the behaviour with the CMB.



ρ̇ = −2
ȧ

a
(1 + v2)ρ− c̃ vρ

L
,
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Velocity dependent model: (Shellard and Martin)

v̇ = (1− v2)
�

k

L
− 2

ȧ

a
v

�

Both correlation length and velocity scale

k =
2
√

2
π

�
1− 8v6

1 + 8v6

�

ξ2 =
k(k + c̃)

4β(1− β)
, v2 =

k(1− β)
β(k + c̃)

Curvature type term encoding 
small scale structure

RMS vel of segments



ρi =
µi

L2
i

�k
ij =

LiLj

Li + Lj

dk
ia
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Multi tension string network: (Avgoustidis & Shellard 08, Avgoustidis & EJC 10)

v̇i = (1− v2
i )



 ki

Li
− 2

ȧ

a
vi +

�

b, a≤b

bi
ab

v̄ab

vi

(µa + µb − µi)
µi

�i
ab(t)L

2
i

L2
aL2

b





ρ̇i = −2
ȧ

a
(1 + v2

i )ρi −
civiρi

Li
−

�

a,k

dk
iav̄iaµi�k

ia(t)
L2

aL2
i

+
�

b, a≤b

di
abv̄abµi�i

ab(t)
L2

aL2
b

vab =
�

v2
a + v2

b
µi ≡ µ(pi,qi) =

µF

gs

�
p2

i g
2
s + q2

i

Expansion Loop of `i’ string Segment of `i’ collides 
with`a’ to form segment 
`k’ -- removes energy

Segment of `i’ forms 
from collision of  `a’ 
and `b’ -- adds energy

`k’ segment length 

incorporate the probabilities of intercommuting and the kinetic 
constraints. They have a strong dependence on the string 
coupling gs and we are still getting to the bottom of that 
dependence -- not easy !
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{(p, q)i} = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (1, 3), (3, 1)} , (i = 1, ..., 7)

Example - 7 types of (p,q) string. Only first three 
lightest shown - scaling rapidly reached in rad 
and matter. 

Densities of rest suppressed.

Black -- (1,0) -- Most populous
Blue dash -- (0,1)
Red dot dash -- (1,1) 

Deviation from scaling at end as move into Λ 
domination. 

gs = 0.3

gs = 0.3

Velocities of first three most populous strings:

F  and D strings dominate both the number 
density and the energy density for larger values 
of gs=0.3 - 1  

preliminary results from work in progress with Pourtsidou, Avgoustidis, Pogosian and Steer
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As before for correlation lengths but now with 
gs=0.01

Black -- (1,0) -- Most populous
Blue dash -- (0,1)
Red dot dash -- (1,1) 

Note (0,1) and (1,1) almost identical because 
tensions so similar. Note also F string has much 
larger number density, where as heavier D string 
(100 times here) is less common. Same is true for 
(F,D) string, so now have two heavy and one light 
string. 

As before for velocities but now with gs=0.01

Now have situation where energy density of 
network is dominated by the heavier and rare D 
and (F,D) strings even though the light F string is 
more populous. This is in contrast to previous 
case. 

Will see this impacts on position of B-mode peak 
in CMB. 

gs = 0.01

gs = 0.01



Cstrings
l ∝

N�

i=1

�
Gµi

ξi

�2

CTT ≡
2000�

�=2

(2� + 1)CTT
�
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fs = CTT
strings/CTT

total = 0.1

Strings and the CMB 
Modified CMBACT (Pogosian) to allow for multi-tension strings. 
Shapes of string induced CMB spectra mainly obtained form large scale properties of string 
such as correlation length and rms velocity given from the earlier evolution eqns. 
Normalisation of spectrum depends on:

i.e. on tension and correlation 
lengths of each string

Since strings can not source more than 10% of total CMB anisotropy, we use that to 
determine the fundamental F string tension which is otherwise a free parameter. So µF 
chosen to be such that:

where
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Left: 
Normalised TT power spectra for 3 different string 
couplings. 
Solid black is gs=0.01 
Dotted line is gs=0.3
Dashed line is gs=1

Note degeneracy in gs=0.3 and 1.

Right: 
Normalised BB power spectra for 3 different string 
couplings. 
Solid black is gs=0.01 
Dotted line is gs=0.3
Dashed line is gs=1

Note small string coupling leads to discernible 
move in the peak of the BB spectra to small l -- 
showing impact of changing scaling solutions wrt 
light and heavy strings.  



10 100 1000
l

0.0001

0.01

1

(l(
l+
1)
/2
)C
lB
B

B type polarisation spectra due to cosmic superstrings assuming 10% string 
contribution. Solid black (gs=0.3) and dashed black line (gs=0.01). Expected spectra 
for E to B lensing (blue dot) and primordial grav waves  assuming r=0.1 (magenta-

dot-dash) also shown.
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Lensing prediction (magenta dot). Sum of strings and lens sourced B-mode power 
for gs=0.3 and fs=0.001 (Black). Strings show up as excess power at high l over 
lensing prediction.  Also shown is sum of strings and lensing contributions for 

gs=0.3 and fs=0.01 (red-dash) and gs=0.01 and fs=0.01 (green-dash).  



Position of the peak of the BB spectrum as a function of the string coupling gs. The 
transition from high l values to lower values occurs when the density of string 

becomes dominated by the heavy rarer strings.   



µF and gs

xi = α/(Γ Gµi)
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Using cosmology to constrain   

Ωgh
2 = 1.17× 10−4

3�

i=1

Gµi

�
1− �v2

rad,i�
ξ2
rad,iΩm

�
(1 + 1.4xi)3/2 − 1

xi

Aim use a combination of measurements to constrain the allowed parameter space making 
use of the fact they ahve different dependencies on the parameters. For example combining 
CMB and pulsar timing (Battye and Moss 10)
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Conclusions

If we are lucky with inflation in string models, we may form 
metastable F and D strings which will survive long enough to 

be of interest. To really understand their impact we need to 
know their dynamical properties.

1. What does a network of strings with junctions look like? 
Will need to incorporate kinematic constraints.

2. What are their distinctive observational signatures, either 
through Gravitational waves, lensing or cmb?

3. We are beginning to address some of these questions 
thanks to a combination of analytic and numerical 

approaches and are finding some interesting results.  

Lots still to do though !
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Numerically: Scaling solutions 
seem to exist for all N :

[EC and Saffin 05]

ξN(t) = ξ0(N) + αN t

ρ~µξ-2

Modelling the case K= SN

[Vachaspati and Vilenkin 87]
[Saffin 06; Hindmarsh and 

Saffin 06]

(p,q) string networks -- mimic with field 
theory. Under sym breaking G -->K (non-

Abelian) find defects that do not 
intercommute. 

K= S3 and S8 - [Spergel & Pen 96]
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Take      on each leg  j  to increase
towards the vertex, position 

σ

   X (t)

   
+ dt f j (t) ⋅ [∫

j
∑ x j (sj (t),t) − X (t)]

Varying

boundary terms at   (sj (t),t)

Varying
   
X ⇒ f j = 0

j
∑

Varying
   sj ⇒ f j ⋅ ʹ′x j = ʹ′x j

2 (not independent of other eqns)

Varying    f j ⇒ x j (sj (t),t) = X (t)

12/18/07 19

Equations of motion for junction

    

S = ! µ
j

dt d" #(s
j
(t) ! " ) $x

j
2(1! &x

j
2)%

j

&

Take      on each leg  j  to increase

towards the vertex, position 

Varying

boundary terms at

Varying

Varying (not independent of other eqns)

Varying
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Equations of motion for junction

Take      on each leg  j  to increase

towards the vertex, position 

    
x

j
! &&x

j
" ##x

j
= 0,Varying

boundary terms at

Varying

Varying (not independent of other eqns)

Varying
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Equations of motion for junction

Take      on each leg  j  to increase

towards the vertex, position 

Varying

boundary terms
    
! µ

j
( "x

j
+ &s

j
&x

j
) = f

j at

Varying

Varying (not independent of other eqns)

Varying
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   x j (σ,t) = 1
2 [a j (σ + t) + b j (σ − t)]    ʹ′a j

2 = ʹ′b j
2 = 1with

   x j (sj (t),t) = X (t) ⇒ a j (sj + t) + b j (sj − t) = 2X (t)

Initial conditions at                values of            and   t = 0 ⇒    ʹ′a j (σ )    ʹ′b j (σ )

for   σ < sj (0)
So for  t > 0,  values of 

   ʹ′b j (sj (t) − t) (ingoing wave) 

are known, but not those of    ʹ′a j (sj (t) + t) (outgoing wave) 

So use to eliminate   ʹ′a j
12/18/07 20

Obtain General solution

with

     

f
j
= 0

j

! " µ
j
[(1+ &s

j
) #a

j
+ (1$ &s

j
) #b

j
j

! ] = 0

Initial conditions at                values of            and 

for 

So for  t > 0,  values of (ingoing wave)

are known, but not those of (outgoing wave)

So use to eliminate
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Obtain General solution

with

Initial conditions at                values of            and 

for 

So for  t > 0,  values of (ingoing wave)

are known, but not those of (outgoing wave)

So use 
    
(1+ &s

j
) !a

j
" (1" &s

j
) !b

j
= 2 &X to eliminate

12/18/07 20

Obtain General solution

with

Initial conditions at                values of            and 

for 

So for  t > 0,  values of (ingoing wave)

are known, but not those of (outgoing wave)

So use to eliminate

    

! µ
j
(1" &s

j
) #b

j
j

$ = "(µ
1
+ µ

2
+ µ

3
) &X
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As a check,

summing 3 eqs

(gives energy

conservation.)

Hence eliminate        and solve for     , 

  
&s

j

where:

Need Find:
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( µ
j
)2 &s

1
=

j

! " ( µ
j
)(1"

j

! &s
1
) µ

k
(1" &s

k
)c

1k
k

! + µ
j
µ

k
j,k

! (1" &s
j
)(1" &s

k
)c

jk

As a check,

summing 3 eqs

(gives energy

conservation.)

Hence eliminate        and solve for     , 

where:

Need Find:
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As a check,

summing 3 eqs    
! µ

1
&s
1
+ µ

2
&s
2
+ µ

3
&s
3
= 0

(gives energy

conservation.)

Hence eliminate        and solve for     , 

where:

Need Find:
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As a check,

summing 3 eqs

(gives energy

conservation.)

Hence eliminate        and solve for     , 
   
&s
3

where:

Need Find:
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As a check,

summing 3 eqs

(gives energy

conservation.)

Hence eliminate        and solve for     , 
   
&s
1

where:

Need Find:
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As a check,

summing 3 eqs

(gives energy

conservation.)

Hence eliminate        and solve for     , 
   
&s
2

where:

Need Find:

06/23/2008 40

As a check, 
summing 3 eqs 

(gives energy 
conservation.)

Hence eliminate        and solve for     , 

where:    cij = ʹ′bi (si − t) ⋅ ʹ′b j (sj − t)

Need Find:
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Final solution

etc.

   

µ
1
(1! &s

1
)

µ
1
+ µ

2
+ µ

3

=
M

1
(1! c

23
)

M
1
(1! c

23
) +M

2
(1! c

31
) +M

3
(1! c

12
)

Note: because 

these are differential equations for 

Also  since            and             all

i.e.          satisfy triangle inequalities (obvious if           )

—  e.g. if                        string 3 is unstable
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Final solution

etc.

Note: because 

these are differential equations for 

Also  since            and             all
   
&s

j
<1

i.e.          satisfy triangle inequalities (obvious if           )

—  e.g. if                        string 3 is unstable

12/18/07 22

Final solution

etc.

Note: because 

these are differential equations for 

Also  since            and             all

i.e.          satisfy triangle inequalities (obvious if           )

—  e.g. if                        string 3 is unstable

   
&X = 0
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Final solution

  M1 = µ1
2 − (µ2 − µ3)2 etc.

Note: because 

these are differential equations for 
   cij = ʹ′bi (si − t) ⋅ ʹ′b j (sj − t)

  s j (t)

Also  since              and             all  cij <1   M j > 0

i.e.          satisfy triangle inequalities (obvious if           )

—  e.g. if                        string 3 is unstable µ3 > µ1 + µ2

 µ j
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Butterfly configuration -- in the plane

Typically, how many kinks, cusps on loops made of junctions ?

Bevis et al 09
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FIG. 6: Incident velocities v and angles α which are seen in
simulations to yield Y-junctions when µ1 = µ2 (i.e. S = 0)
and R = 0.840. Here Y denotes the formation of a bridge
with Y-junctions at either side, points that the strings passed
through each other and X denotes that the strings became
locked together to form an X-junction. The CKS prediction
is that the region beneath the curve could yield Y-junctions.

pared to that in the string core and that this represents
the peak of radiation production. The initial burst soon
ceases and there is then no reliably resolvable radiation
produced at late times.

Keeping α fixed and increasing v reveals that, as ex-
pected from the CKS calculations, eventually the com-
posite region no longer forms and the strings merely pass
through each other. The only trace of the interaction is
then displacement waves, similar to those seen when Y-
junctions do form. However, the limiting v for composite
formation is often somewhat below the CKS prediction,
as shown in Fig. 6 for this symmetric case. Note that we
need only consider α < 45◦ due to the symmetry present
in the initial conditions. This discrepency between the
Nambu-Goto and field theory cases is somewhat more ex-
treme than reported by Ref. [32] for the Abelian Higgs
model in the type I regime, something that we will return
to in our conclusions. We will also investigate the transi-
tion from bridge-forming collisions to non-bridge-forming
collisions in Sec. VII when we discuss quantitative mea-
surements from the simulations.

Interestingly at larger α we find that there are still
two possibilities for the final state of the system. For
large speeds it remains the case that the strings pass
through each other, while for lower values the strings
become locked together and an X-junction forms, as il-
lustrated in Fig. 7. These are denoted by an X in Fig. 6.

The Nambu-Goto solution for 4 strings connected in
an X-junction is trivial, given the present initial condi-
tions and the equal tensions µ1 = µ2. The X-junction
itself is simply static by symmetry and the string located

FIG. 7: Isosurfaces of energy density T 0
0 = 0.5η4 from a colli-

sion of type A, when α = 40◦ and v = 0.2, showing the forma-
tion of an X-junction. Results are shown for time t = 30η−1.

between it and the kinks must then also be stationary
(since the junction just reflects incident waves). How-
ever, the Nambu-Goto equations for 4 connected strings
cannot yield any constraints because the connectivity is
put in by hand.

The field simulations show a very similar situation to
these Nambu-Goto dynamics, albeit for additional mi-
nor oscillations, as in the Y-junction cases. There is
only a small interaction region, but this will have a low-
ered energy per unit invariant length. The small amount
of energy liberated by this, and a larger amount of en-
ergy liberated by the complete retardation of the inci-
dent strings, must then go into the increased length of
the string, since there is again little excitation of radia-
tive modes. However, since the binding is over only a
short length of string it would be expected that even a
small perturbation from these very idealized initial con-
ditions, such as a low amplitude disturbance travelling
along one of the strings, would easily break up the X-
junction. The strings would then separate due to their
tensions and therefore we do not believe that X-junctions
would be cosmologically important in this model. They
may, however, be more relevant in non-Abelian models
[28].

B. (2,0) + (0,1) → (2,1)?

A similar situation exists also for the unsymmetric case
of a (2,0) string colliding with a (0,1) string to yield a
possible (2,1) composite. Since S = 0.305 it would be
expected from CKS that, when a bridge forms, it would
not be static and would not lie parallel to one of the
coordinate axes but instead traverse in the same direction
as the heavier initial string and be orientated closer to it.
This is indeed the result apparent in Fig. 8 although we
return to this comparison from a quantitative perspective
in Section VII.

As for case A, there is a burst of radiation as the bridge
forms, but again the emission appears to be weak and
limited to the bridge coalescence phase. The distribu-
tion of Y-junction formation events across the α-v plane,
shown for this case in Fig. 9, is also similar to case A. No
Y-junctions are found when CKS solutions are forbidden,
but the limiting velocity at a given α is again lower than
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Two different Type I Abelian strings 
which combine to form stable (p,q) 

type strings. Again show similar 
features, but there is a difference 

from Nambu-Goto prediction (solid 
line). Bevis and Saffin 08
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Condition  

provides kinematical 
constraints  

Abelian strings, in 
white or z region, 

must pass 
through 

one another. 

Non-abelian-
strings, in z 

region, may be 
linked along the
z axis; in white 
region, they will 

be locked.
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Problem because now lack 
symmetry. If 1,2 exchange 
partners, and are joined by 3, 
all we know is it must be 
parallel to xy-plane. Consider 
x-link:

New string at angle θ to x-axis 
and moving in z-direction with 
velocity u



06/23/2008 46

Rate of change of string lengths

Note light strings have positive velocity and so seem to grow 
at the expense of heavy strings
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of physical length to the CKS predictions in this quantity
using Eqns. (1) and (3).

VII. NUMERICAL RESULTS

We now present the results of applying the above algo-
rithms to the three cases for which we presented qualita-
tive results in Section V. As before, our simulations all
have 2 = λ1 = λ2 = 2e2 = 2g2, η = ν and κ = 0.4

√
λ1λ2.

A. (1,0) + (0,1) → (1,1)

In the symmetric case of a (1,0) string colliding with
a (0,1) string, we find that the bridge half-length varies
as shown in Fig. 13 for α = 20◦ and v = 0.2. The
CKS prediction is also indicated on the plot, being the
straight line for which l3 = 0 when t = 0, and the two
sets of measurements from the simulation do approxi-
mately track this. The difference between the latter two
is simply due to the choice of a different threshold ε be-
low which the both |φ|/η and |ψ|/ν must be for a site to
be considered as part of the bridge. Of course, it would
be expected that the case of ε = 0.75 would show larger
l3 values than ε = 0.5 since a larger threshold will be
crossed further from the string centre-lines.

If the CKS solution was precisely followed by these
centre-lines, it would be expected that these two mea-
sures each would show l3 = tṡCKS

3 + c, where c is con-
stant and equal to the distance between the point on the
z-axis at which the threshold is crossed and the point
where the three string centre-lines meet. This is approxi-
mately what is seen, although it should be noted that the
collision of the centre-lines occurs slightly before t = 0
due to the attraction between the strings. Of course, for
t >> η−1 the offset c will become negligible and hence
from a cosmological perspective we are really only in-
terested in whether late time gradient is accurately pre-
dicted by the CKS solution.

The measured gradients for α and v values are shown
in Fig. 14 and compared to the CKS predictions. An ap-
proximate uncertainty estimation is performed such that
dl3/dt is taken from a linear fit to the final third of the ap-
parent linear region, with the error bar shown being the
standard deviation across the three thirds. This method
is sensitive to both systematic differences between the
early- and late-time dynamics and to the measurement
uncertainties. The plot shows that when Y-junctions
form there is excellent agreement between the simula-
tions and the Nambu-Goto predictions. However if v is
increased at fixed α, then there is a certain critical value
vc where dl3/dt drops suddenly to zero and away from
the CKS solution. There is not, as one might have ex-
pected, a gradual divergence from the CKS predictions,
and the results seen in Fig. 6 are not due to dl3/dt in our
model slowly falling away from the Nambu-Goto value
and reaching dl3/dt = 0 at a lower value of v. Instead
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FIG. 13: The measured l3 as a function of t measured from
a ∆x = 0.5η−1 simulation for a case A collision: (1,0)+(0,1),
with α = 20◦ and v = 0.2. Results shown are derived from
the count of sites on x = y = 0 with |φ| < εη and |ψ| < εν and
using ε = 0.5 (blue crosses) and ε = 0.75 (green triangles),
while the CKS prediction is shown by a dashed grey line. Blue
cicles indicate the results for ε = 0.5 from a shorter simula-
tion but with ∆x halved from 0.5η−1 to 0.25η−1 , highlighting
that the simulated dynamics are not precisely those of the
continuum, while the measurements themselves are accurate
to within ∆x/2 and the corresponding uncertainties are too
small to be shown on this plot.
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FIG. 14: The measured dl3/dt values from a class A collision,
shown as a function of v for fixed α, compared to the CKS
predictions. Results are shown for α = 10◦ (uppermost), 20◦

(middle), and 25◦ (lower). The simulations had ∆x = 0.5 and
were of sufficient size that signals emitted from the box centre
at t = 0 would reach the corners of the yz-plane by t = 60η−1,
except for (α = 20◦, v = 0.2), (α = 20◦, v = 0.3405) and
(α = 25◦, v = 0.31) which ran till t = 120, 90 and 120η−1.
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Physical bridge length

Field theory simulation matches Nambu-Goto 
prediction (dashed line) very well. Bevis and Saffin 08
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Average string 
velocity

Note even for case of equal 
tensions, around the 

junctions

the result for Nambu-Goto 
strings
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Collision of Cosmic Superstrings 
[EJC, Firouzjahi,Kibble,Steer --arXiv [0712.0808] hep-th

Consider forming junctions between (p,q) strings. Presence 
of fluxes implies need to generalise DBI action:

where

Constraints as before with original tension replaced by 

plus two new constraints:

Conservation of electric flux and charge at the junctions
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Constraints on (p,q) string junction formation
Strings with charges (p1,q1) and (p2,q2) collide and become 
linked by a string with charges (p3,q3) = -(p1 +p2, q1 +q2) 

t>0:
t<0:

Ex: Collision of F-string (1,0) with a D-string (0,1). The basic 
building blocks for (p,q) strings.Third string is (1,1) string and 

forms for 0<v<vc.

vc=0 indep of gs for α=π/4. For α>π/4 no x-link forms. For gs -> 
0, vc=1, so half the (α,v) plane allowed. Implies very heavy D-

string can always exchange partners with light F-string 
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Equal tension:

x-link 
formation:
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Collisions in a warped background
Can extend analysis beyond collision in flat space-time to 

collisions in warped throat such as Klebanov-Strassler:

h- warp factor, M- number of RR F(3) fluxes turned on inside 
S3 where internal geometry ends. Find:

Can reanalyse and understand collision of an F-string and D-
string in the throat. 

Same basic properties as before but in terms of redefined 
parameters. Very useful when considering more realistic 

scenarios. 


