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Initial conditions in our universe

 Nearly scale-invariant spectrum of density perturbations

 Background of gravity waves

 (Very nearly) gaussian initial conditions:

Generic inflationary predictions:

δT

T
(θ, φ) =

∑

!m

a!mY!m(θ, φ)



Initial conditions in our universe
δT

T
(θ, φ) =

∑

!m

a!mY!m(θ, φ)

Isotropy:

〈a!m a!′m′〉 ≡ C!!′mm′ = C!δ!!′δmm′

Gaussianity:
〈a!m a!′m′ a!′′m′′〉 = 0 etc.



Inflation generically predicts 
(very nearly) gaussian random fluctuations

 Nongaussianity is proportional to slow-roll 

parameters, V’/V and V’’/V

 Reasonable and commonly used approximation: 
the “local” model of primordial nongaussianity

 Inflation predicts fNL∼O(0.1), which is basically 
extremely small

 More exotic inflationary models can produce 
observable NG, however

Salopek & Bond 1990;  Verde et al 2000;
Komatsu & Spergel 2001; Maldacena 2003

Φ = ΦG + fNL

(
Φ2

G − 〈Φ2
G〉

)



Higher Deriv.
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Figure 3: Plot of the function F (1, x2, x3) x2
2x

2
3 for non-Gaussianities generated by higher derivative

interactions (12) and in the DBI model of inflation [20, 21]. The figure is normalized to have value
1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region 1− x2 ≤ x3 ≤ x2.

Ghost inflation
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Figure 4: Plot of the function F (1, x2, x3) x2
2x

2
3 for ghost inflation (13). The figure is normalized

to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the region
1 − x2 ≤ x3 ≤ x2.

We see that the fudge factor is proportional to the cosine between the distributions. This suppression

9

3-pt function as a measure of cosmological 
NonGaussianity (NG)

 Principal measure of NG: three-pt correlation function (e.g. Luo & Schramm 1993)

k1 k2

k3

k1 k2

k3

“local” “equilateral”

Babich, Creminelli & Zaldarriaga 2004

Local

0.5

0.6
0.7

0.8
0.9
1

x2

0.20.40.60.81
x3

0

2

4

6

8

F!x2, x3"

0

2

4

Figure 1: Plot of the function F (1, x2, x3) x2
2x

2
3 for the local distribution (6). The figure is

normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to zero outside the
region 1− x2 ≤ x3 ≤ x2.

Slow roll
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Figure 2: Plot of the function F (1, x2, x3) x2
2x

2
3 for the usual slow-roll inflation (9) with ε = η =

1/30. The figure is normalized to have value 1 for equilateral configurations x2 = x3 = 1 and set to
zero outside the region 1− x2 ≤ x3 ≤ x2.

It is interesting to rewrite the definition of f(F ) as

f(F ) =
F · Flocal

Flocal · Flocal
= cos(F,Flocal)

(

F · F
Flocal · Flocal

)1/2

. (21)
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Brief history of NG measurements: 1990’s

Early 1990s;  COBE:  Gaussian CMB sky (Kogut et al 1996)

1998; COBE: claim of NG at l=16 equilateral bispectrum
(Ferreira, Magueijo & Gorski 1998)

but explained by a known systematic effect!
(Banday, Zaroubi & Gorski 1999)

(and anyway isn’t unexpected given all
bispectrum configurations you can measure;
Komatsu 2002)



Brief history of NG measurements: 2000’s

Pre-WMAP CMB: all is gaussian (e.g. MAXIMA; Wu et al 2001)

WMAP pre-2008: all is gaussian 
(Komatsu et al. 2003; Creminelli, Senatore, Zaldarriaga & Tegmark 2007)

-36 < fNL < 100   (95% CL)

Dec 2007, claim of NG in WMAP
(Yadav & Wandelt arXiv:0712.1148)

27 < fNL < 147   (95% CL)

The generalized estimator is given by

 f̂ NL ! Ŝprim " Ŝlinearprim

N
; (3)

where N is the normalization factor and Ŝprim and Ŝlinearprim are
the so called trilinear and linear term of the estimator,
respectively. The trilinear term captures the bispectrum
information about fNL while the linear term has vanishing
expectation and is designed to reduce the scatter in the
trilinear term induced by the foreground mask and
WMAP’s anisotropic scan strategy.

Although our estimator [17] can utilize both the tem-
perature and E-polarization information of the cosmic
microwave background (CMB) to constrain primordial
non-Gaussianity, we have used only temperature informa-
tion of the WMAP 3-year data. For the analysis we used
various combinations of 8 channels of WMAP 3-year raw
data: Q1, Q2, V1, V2, W1, W2, W3, and W4. For all the
simulations we used the WMAP 3-year maps in HEALPIX
format with Npix ! 3 145 728 pixels. We focused on the V
and W bands, which are the main WMAP CMB science
channels suffering least from foreground contamination.
We also applied our estimator to Q and Q" V "W to
assess sensitivity to foregrounds.

We performed Monte Carlo simulations to assess the
statistical significance and errors of our fNL estimates. For
example for the Q" V "W coadded simulated map, we
first simulated 8 Gaussian maps using the noise and beam
properties of the corresponding 8 channels. Then a single
map was obtained by pixelwise averaging of these 8 maps.
The same procedure was followed to obtain simulated
coadded maps of the other channel combinations. The
SAB and SBB weight maps for the linear estimator [15]
were obtained using 800 Monte Carlo simulations that
include the WMAP noise and foreground masks.

Figure 1 shows the measured value of the nonlinear
coupling parameter fNL for 4 combinations of coadded
frequency channels (Q" V "W, V "W, V, and W) as a
function of maximum multipole ‘max used in the analysis.
All the analyses in this figure use the Kp0 mask. The figure
shows the 95% C.L. error bars derived from Monte Carlo
simulations.

For the coadded V "W map there is evidence of pri-
mordial non-Gaussianity at more than 95% C.L. for all
‘max > 450. For the coadded Q" V "W map there is a
detection of primordial non-Gaussianity at more than 95%
C.L. for all ‘max > 500. Residual suboptimality of our
estimator results in a larger error bar for the Q" V "W
combination compared to the V "W combination.

Using the coadded V "W channel with ‘max ! 750, we
find

 27< fNL < 147 #at 95%C:L:$: (4)

This rules out the null hypothesis of Gaussian primordial
perturbations at 2:8!.

Our analysis provides the most information to date on
the primordial non-Gaussianity of the local type. For the
sake of comparison with the previous best result in the
literature ( % 36< fNL < 100, for the coadded Q" V "
W map at the 2! level for ‘max & 400 [16,18,19]), our
constraints using the coadded Q" V "W map truncated
at ‘max ! 400 are: %20:84< fNL < 83:4 (at 95% C.L.).
We may conclude that the additional information uncov-
ered by the Yadav et al. estimator [17] at ‘ > 400 is
important for our result. As calculated by Creminelli
et al. [20] and verified in simulation by [21], there is a
contribution to the estimator variance due to nonzero fNL.
This widens the confidence interval of the estimator by 3%.
It does not, however, modify the significance of our rejec-
tion of the Gaussian null hypothesis.

Interpretation.—A detection of non-Gaussianity has
profound implications on our understanding of the early
Universe. We will now argue based on an extensive suite of
null tests and theoretical modeling that our results are not
due to any known systematic error, foregrounds, or sec-
ondary anisotropy.

Since our estimator is based on three-point correlations,
any mis-specification of the WMAP noise model would not
bias our estimator, since Gaussian instrument noise has a
vanishing three-point function. Similarly, if the CMB were
Gaussian, asymmetric beams cannot create non-Gauss-
ianity. Beam far-side lobes can produce a small level of
smooth foreground contamination at high galactic latitude
[22] at ‘ ' 10. This effect has been corrected in the 3-year
maps [23]. Since our signal is not frequency dependent this
is clearly not a dominant effect. Even so, we checked for
this or any other large scale anomaly by deleting modes
with ‘ ' 20 from our analysis. We find that our estimate
increases to fNL ! 135( 96 at (95% C.L.), leaving the
statistical significance of our signal at a similar level.

FIG. 1 (color). We show the measured value of the nonlinear
coupling parameter fNL using WMAP 3-year raw maps, and the
corresponding 95% error bars derived from the Gaussian simu-
lations. For this analysis the WMAP Kp0 mask was used. The
analysis is done for 4 combinations of the frequency channels:
coadded Q" V "W, coadded V "W, V, and W.

PRL 100, 181301 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
9 MAY 2008

181301-2



Komatsu et al. 2010

28 Komatsu et al.

TABLE 11
Estimatesa and the corresponding 68% intervals of the primordial

non-Gaussianity parameters (f local
NL , fequil

NL , forthog
NL ) and the point

source bispectrum amplitude, bsrc (in units of 10−5 µK3 sr2), from the
WMAP 7-year temperature maps

Band Foregroundb f local
NL fequil

NL forthog
NL bsrc

V+W Raw 59 ± 21 33 ± 140 −199 ± 104 N/A
V+W Clean 42 ± 21 29 ± 140 −198 ± 104 N/A
V+W Marg.c 32 ± 21 26 ± 140 −202 ± 104 −0.08 ± 0.12
V Marg. 43 ± 24 64 ± 150 −98 ± 115 0.32 ± 0.23
W Marg. 39 ± 24 36 ± 154 −257 ± 117 −0.13 ± 0.19

aThe values quoted for “V+W” and “Marg.” are our best estimates from
the WMAP 7-year data. In all cases, the full-resolution temperature maps at
HEALPix Nside = 1024 are used.
bIn all cases, the KQ75y7 mask is used.
c“Marg.” means that the foreground templates (synchrotron, free-free, and

dust) have been marginalized over. When the foreground templates are
marginalized over, the raw and clean maps yield the same fNL values.

We use the V- and W-band maps at the HEALPix res-
olution Nside = 1024. As the optimal estimator weights
the data optimally at all multipoles, we no longer need
to choose the maximum multipole used in the analysis,
i.e., we use all the data. We use both the raw maps (be-
fore cleaning foreground) and foreground-reduced (clean)
maps to quantify the foreground contamination of fNL
parameters. For all cases, we find the best limits on fNL

parameters by combining the V- and W-band maps, and
marginalizing over the synchrotron, free-free, and dust
foreground templates (Gold et al. 2010). As for the mask,
we always use the KQ75y7 mask (Gold et al. 2010).

In Table 11, we summarize our results:

1. Local form results. The 7-year best estimate of
f local

NL is

f local
NL = 32 ± 21 (68% CL).

The 95% limit is −10 < f local
NL < 74. When

the raw maps are used, we find f local
NL = 59 ±

21 (68% CL). When the clean maps are used, but
foreground templates are not marginalized over,
we find f local

NL = 42 ± 21 (68% CL). These results
(in particular the clean-map versus the foreground
marginalized) indicate that the foreground emis-
sion makes a difference at the level of ∆f local

NL ∼ 10.
We find that the V+W result is lower than the
V-band or W-band results. This is possible, as
the V+W result contains contributions from the
cross-correlations of V and W such as 〈VVW〉 and
〈VWW〉.

2. Equilateral form results. The 7-year best esti-
mate of f equil

NL is

f equil
NL = 26 ± 140 (68% CL).

The 95% limit is −214 < f equil
NL < 266. For f equil

NL ,
the foreground marginalization does not shift the
central values very much, ∆f local

NL = −3. This
makes sense, as the equilateral bispectrum does not
couple small-scale modes to very large-scale modes
l ! 10, which are sensitive to the foreground emis-
sion. On the other hand, the local form bispectrum
is dominated by the squeezed triangles, which do
couple large and small scales modes.

3. Orthogonal form results. The 7-year best esti-
mate of forthog

NL is

forthog
NL = −202 ± 104 (68% CL).

The 95% limit is −410 < forthog
NL < 6. The fore-

ground marginalization has little effect, ∆f local
NL =

−4.

As for the point-source bispectrum, we do not detect
bsrc in V, W, or V+W. In Komatsu et al. (2009b), we
estimated that the residual sources could bias f local

NL by
a small positive amount, and applied corrections using
Monte Carlo simulations. In this paper, we do not at-
tempt to make such corrections, but we note that sources
could give ∆f local

NL ∼ 2 (note that the simulations used by
Komatsu et al. (2009b) likely overestimated the effect of
sources by a factor of two). As the estimator has changed
from that used by Komatsu et al. (2009b), extrapolating
the previous results is not trivial. Source corrections to
f equil

NL and forthog
NL could be larger (Komatsu et al. 2009b),

but we have not estimated the magnitude of the effect
for the 7-year data.

We used the linear perturbation theory to calculate
the angular bispectrum of primordial non-Gaussianity
(Komatsu & Spergel 2001). Second-order effects (Pyne
& Carroll 1996; Mollerach & Matarrese 1997; Bartolo
et al. 2006, 2007; Pitrou 2009a,b) are expected to give
f local

NL ∼ 1 (Nitta et al. 2009; Senatore et al. 2009a,b;
Khatri & Wandelt 2009a,b; Boubekeur et al. 2009; Pitrou
et al. 2008) and are negligible given the noise level of the
WMAP 7-year data.

Among various sources of secondary non-Gaussianities
which might contaminate measurements of primordial
non-Gaussianity (in particular f local

NL ), a coupling be-
tween the ISW effect and the weak gravitational lensing
is the most dominant source of confusion for f local

NL (Gold-
berg & Spergel 1999; Serra & Cooray 2008; Hanson et al.
2009; Mangilli & Verde 2009). While this contribution
is expected to be detectable and bias the measurement
of f local

NL for Planck, it is expected to be negligible for
WMAP: using the method of Hanson et al. (2009), we
estimate that the expected signal-to-noise ratio of this
term in the WMAP 7-year data is about 0.8. We also
estimate that this term can give f local

NL a potential posi-
tive bias of ∆f local

NL ∼ 2.7. Calabrese et al. (2009) used

Future: much better constraints, σ(fNL)<O(10) with Planck

Current constraints from WMAP



Constraints from future LSS surveys

LoVerde, Miller, Shandera & Verde,  2008 



Abundance of halos:
the mass function

Lots of interest in using halo counts as a 
cosmological probe.

 Mass function can be computed precisely (~5%) and 
robustly for standard cosmology (Jenkins et al. 01, 
Warren et al. 03)

 dN/dM appears universal — i.e. f(σ) — for standard 
cosmologies

Lukic et al. (2007)
astro-ph/0702360

σ2(M,z) =
1

2π2

Z ∞

0
k2P(k)W 2(k,M)dk



Mass function, usual analytic approach

dn

dM
dM =

ρM

M

∣

∣

∣

∣

dF

dM

∣

∣

∣

∣

dM

Press & Schechter 1974:

F (> M) = 2

∫
∞

δc/σ(M)
PG(ν)dν

(

dn

d lnM

)

PS

= 2
ρM

M

δc

σ

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

PG(δ/σ)therefore

“Extended Press-Schechter” (EPS): PG(ν) → PNG(ν)

Matarrese, Verde & Jimenez (2000;  MVJ):  
follow EPS, then expand PNG in terms of skewness, do the integral
(also LoVerde, Miller, Shandera & Verde 2008)

However, no convincing reason why either should work! 
Need to check these formulae with simulations



Same initial conditions, different fNL 
Slice through a box in a simulation Npart=5123, L=800 Mpc/h

fNL=-5000

fNL=-500

fNL=0

fNL=+500

fNL=+5000
375 Mpc/h

80
 M

pc
/h

 Under-dense region evolution 
decrease with fNL

 Over-dense region evolution 
increase with fNL

Simulations with nongaussianity (fNL)

Dalal, Doré, Huterer & Shirokov, arXiv:0710.4560, PRD 2008



The measured halo mass function

 5123 (10243) particle simulations with box size 800 (1600) Mpc/h
 Gracos code (www.gracos.com); add quadratic Phi term in real space; apply 

transfer function in Fourier space

http://www.gracos.com
http://www.gracos.com


Looking at one individual cluster

fNL=+5000
M=1.2 1016 M⊙

Most massive cluster in our simulation 

For small enough fNL, same peaks arise, with different heights (implying different masses)
Can we extend to any cluster?

fNL=+500
M=5.9 1015 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL=-500
M=4.3 1015 M⊙

fNL=0
M=5.1 1015 M⊙



 Idea: identify the same cluster for different fNL, keep track how its mass changed!
 Significantly saves computational expense (relative to brute-force fitting n(M, fNL))

fNL=+3000
M=1.2 1016 M⊙

fNL=+3000
M=1.2 1016 M⊙

fNL = 500

Building the P(Mf|M0) distribution



Dalal et al. NG mass function 

 If the mapping M0→Mf is described by a PDF 
dP/dMf(M0), then the non-gaussian mass 
function is a convolution over the (known) 
gaussian mass function 

fNL=500
30
3

dN
dM

=
Z dP(Mf |M0)

dMf

dN
dM0

dM0

¯[Mf

M0

]
−1 = 6. 10−5 fNLσ8 σ(M0,z)−2

σ
( ¯[Mf

M0

]
−1

)
= 0.012 ( fNLσ8)0.4 σ(M0,z)−0.5

usual Gaussian mass function
(e.g. Jenkins et al)

non-Gaussian mass function

Mean and variance of P(Mf/M0) are well fit by:

NG to G ratios at z=0



Old fitting functions are discrepant; 
off by O(100%) wrt truth

1e+14 1e+15

M (h
-1

 M
sun

)

0.0

0.2

0.4

0.6

0.8

1.0
n

N
G

(z
, 
M

) 
/ 

n
G

(z
, 
M

)
our fit to sims
EPS
MVJ

f
NL

=-500
z=0

z=0.5

z=1

Moreover, it is not much harder to run a simulation 
than evaluate Extended Press-Schechter n(M)



Cosmological constraints - 
dark energy and NG

-1.2 -1.1 -1 -0.9 -0.8

w

-200

-100

0

100

200

f N
L EPS

N-body simulations

N.B. Planck bispectrum will provide stronger constraints

Cluster counts alone;
SPT-type survey,  ~7,000 clusters,  4000 sq.deg.,  0.1<z<1.5

+ Planck cosmological parameter prior



Effects of primordial NG 
on the bias of virialized objects



Does galaxy/halo bias depend on NG?

Simulations and theory both say:  
large-scale bias is scale-independent

cosmologists 
measure

theory predicts

usually nuisance
parameter(s)

bias ≡ clustering of galaxies
clustering of dark matter

=

(
δρ

ρ

)

halos(
δρ

ρ

)

DM



Scale dependence of NG halo bias!

b(k) = bG + fNL
const
k2

Dalal, Doré, Huterer & Shirokov, arXiv:0710.4560, PRD 2008



Halo clustering with NG:   Analytic confirmation
Rigorous derivations exist, but here’s back-of-envelope:

Then, near the peaks of the potential

δNG = δ(1 + 2fNLφ)And in particular

ΦNG = φ + fNL(φ2 − 〈φ2〉)

∇2ΦNG = ∇2φ + 2fNL

(
φ∇2φ + |∇φ|2

)

≈ ∇2φ (1 + 2fNLφ)



Halo clustering with NG:   Analytic confirmation

Using Poisson Eq. (to replace φ with δ) and including 
late-time perturbation evolution, you get

Dalal, Doré, Huterer & Shirokov, PRD 2008

Definition of bias:

With NG, for peaks:

Reinterpreting as 
change in bias

δh = bL δ

δ → δ + 2fNLφ δ

δh = bL (δ + 2fNLφ δ) = (bL + ∆b) δ

∆b(k) = fNL(bG − 1) δc
3 ΩMH2

0

T (k)D(a)k2

Many complementary confirmations : Matarrese & Verde; Slosar et al; Afshordi & Tolley; 
Desjacques et al; Giannantonio & Porciani; Grossi et al; McDonald; ....)  



Constraints from the bias of DM halos



Slosar, Hirata, Seljak, Ho & Padmanabhan 2008

fNL = 8 +/- 30 (68%, QSO)      

fNL = 23 +/- 23 (68%, all)      

Constraints from current data - SDSS



Future NG from measurements of b(k)

 Numerous cosmological probes, such as the baryon acoustic oscillations (BAO) or probes 
of Integrated Sachs-Wolfe effect (galaxy-CMB cross-corr) can be used to measure b(k)

 The effect (going as k-2) provides a fairly unique signature and a clear target; almost no 
degeneracy with other cosmological parameters

Expect accuracy of order sigma(fNL)<10 or even ~1 in the future

Carbone, Verde & Matarrese 2008; Afshordi & Tolley 2008

4

TABLE 1
Galaxy Surveys considered

survey z range sq deg mean galaxy density (h/Mpc)3 ∆fNL/q′ LSS

SDSS LRG’s 0.16 < z < 0.47 7.6 × 103 1.36 × 10−4 40
BOSS 0 < z < 0.7 104 2.66 × 10−4 18
WFMOS low z 0.5 < z < 1.3 2 × 103 4.88 × 10−4 15
WFMOS high z 2.3 < z < 3.3 3 × 102 4.55 × 10−4 17
ADEPT 1 < z < 2 2.8 × 104 9.37 × 10−4 1.5
EUCLID 0 < z < 2 2 × 104 1.56 × 10−3 1.7
DES 0.2 < z < 1.3 5 × 103 1.85 × 10−3 8
PanSTARRS 0 < z < 1.2 3 × 104 1.72 × 10−3 3.5
LSST 0.3 < z < 3.6 3 × 104 2.77 × 10−3 0.7

where k = (!+1/2)/r, Φ′ is the derivative of the gravita-
tional potential with respect to the conformal time, and
δ2D
g,!m and T!m are the projected survey galaxy overden-

sity and the CMB temperature in the spherical harmonic
space, respectively.

The expected dispersion in the cross-correlation signal
is ∆C2

gT (!) ! Cgg(!)CTT (!)[fsky(2! + 1)]−1, where fsky

is the fraction of sky covered in the survey, and we as-
sumed a small cross-correlation signal, i.e. C2

gT (!) "
Cgg(!)CTT (!).

For a galaxy distribution biased according to Eq. (4),
dividing the survey in redshift shells, and following the
same procedure of Section 3, the error in each shell at
redshift z for a given ! is

σ−2
fNL

=
γ
[

H(z)D(z) d
dz ((1 + z)D(z))Pδδ(k, 0)∆b(k, z)

]2
r2δr

(2l + 1)3CTT (!)[PG(k, z) + nc(r)−1]
,

(15)

where γ = 8fsky

(

3TH2
0Ωm0/c3

)2
, k ≡ (l + 1/2)/r, δr =

(c/H(z))∆z, ∆b is Eq. (6) in the limit fNL = 1, and PG
denotes the galaxy power spectrum in the Gaussian case.
We impose kmin to be greater than the largest mode that
can be sampled in each survey shell and kmax = 0.03
h/Mpc. The total error is obtained summing up Eq. (15)
on all the multipoles ! ≤ 200 and integrating over the
minimum and maximum redshift of each survey.

For future large-scale galaxy surveys, we obtain
∆fNL = 7.6, 12.5, 11.5 for LSST, EUCLID and ADEPT,
respectively.

4. RESULTS & DISCUSSION

Here we present forecasts of fNL constraints for forth-
coming and future surveys. The surveys we consider and
their specifications are reported in Table 1, along with
the 1 − σ error on fNL from the shape of the galaxy
power-spectrum. The reported errors on fNL have been
normalized by the correction factor for non-spherical col-
lapse q′ ≈ 0.8. Note that the number of galaxies and
the Gaussian bias enter in this signal-to-noise calcula-
tion only through the contribution to the error due to
shot-noise. The reported numbers are not dominated by
shot-noise.

This signal-to-noise calculation indicates that the halo

clustering approach to primordial NGis in principle more
promising than the ISW one: the ISW signal is weighted
at low redhift (z <

∼ 1), when dark energy dominates, while
the effect of NG grows with redshift. However, the two
approaches are affected by different systematics and thus
should be considered complementary.

It is interesting to compare the constraints on
primordial NG achievable from the large-scale halo
clustering with those achievable with the small-scale
galaxy bispectrum. For example, comparing with
Sefusatti & Komatsu (2007) we deduce that the halo-
clustering constraints are a factor of 3 stronger than
the bispectrum ones. The bispectrum however, through
its dependence on the k-space configuration, can be
used to discriminate among different forms of NG. The
CMB bispectrum for an ideal experiment can yield
constraints of ∆fNL = few (Yadav et al. 2007). The
results of Table 1 indicate that constraints on fNL of
order unity are achievable with future surveys, making
it a highly competitive technique. We conclude that it
is particularly important to be able to take into account
general non-local and scale-dependent NG features
characterized by a given bispectrum of the potential.
In fact, as shown by Bartolo et al. (2005), there are
contributions to the bispectrum, which have a specific
shape and redshift dependence and which come into
play at the level of fNL ∼ few. This is well above
the detection threshold for forthcoming and proposed
surveys, thus opening up the possibility to measure
these secondary contributions to fNL.

While this work was being completed we became
aware of Afshordi & Tolley (arXiv:0806.1061) and of
McDonald (arXiv:0806.1046). Our results are in good
agreement with theirs.
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Nongaussianity form clustering of galaxy clusters

Covariance (i.e. clustering) between very distant clusters of 
galaxies is especially sensitive to primordial nongaussianity

Improvement relative to counts alone: 2-3 orders of magnitude 
in accuracy

Improvement relative to variance of counts: >1 order of 
magnitude in accuracy

In other words:
Good: Counts (d2N/dzdΩ = r2(z)/H(z))
Better: Variance (of counts in cells)
Best: Covariance (of counts in cells)

Cunha, Huterer & Doré, arXiv:1003.2416

N.B. calculation is 
numerically demanding 

even at the Fisher matrix level!



Nongaussianity form clustering of galaxy clusters

Cunha, Huterer & Doré, arXiv:1003.2416
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Marginalized errors - Variance only

Nuisance parameters Counts Variance Counts+Variance

Halo bias Mobs σ(ΩDE) σ(w) σ(fNL) σ(ΩDE) σ(w) σ(fNL) σ(ΩDE) σ(w) σ(fNL)

Marginalized Marginalized 0.075 0.25 55

Known Marginalized 0.061 0.21 27

Marginalized Known 0.0037 0.016 44

Known Known 0.0035 0.014 19

TABLE II: Marginalized constraints on fNL and dark energy with cluster counts, variance of the counts, and the two combined.
The fiducial case assumes 5 bins in mass and redshift each with a mass threshold M th = 1013.7, maximum redshift zmax = 1.0,
and other assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in the first two
columns. Entries with ∞ indicate that the method was unable to constrain the parameters.

Marginalized errors - Full Covariance

Nuisance parameters Counts+Covariance

Halo bias Mobs σ(ΩDE) σ(w) σ(fNL)

Marginalized Marginalized 0.069 0.23 6.0

Known Marginalized 0.065 0.22 5.4

Marginalized Known 0.0036 0.014 3.8

Known Known 0.0036 0.014 1.8

TABLE III: Marginalized constraints on fNL and dark energy with cluster counts, covariance of the counts, and the two
combined. The fiducial case assumes 5 bins in mass and redshift each with a mass threshold M th = 1013.7, maximum redshift
zmax = 1.0, and other assumptions as in the text. Assumptions about the nuisance parameters are varied, and are shown in
the first two columns. Entries with ∞ indicate that the method was unable to constrain the parameters.

D. Photometric redshift errors

To study the effects of photometric redshift errors, we
add 10 nuisance parameters to the analysis, namely two
parameters — one each describing the photo-z scatter
and bias — in each of the five redshift bins. The results
are summarized in Table IV.

If either the halo bias or the mass-observable nui-
sance parameters are fixed, then the degradation from
the inclusion of photo-z’s is not very damaging. In other
words, the additional correlations between either photo-z
and halo bias parameters, or between photo-z and mass-
observable parameters, do not cause substantial addi-
tional degradation to fNL constraints (relative to the case
where only the photo-z parameters are unknown).

However when all 23 nuisance parameters (10 for the
photo-z’s, 10 for the mass-observable relation, and 3 for
halo bias) are left free, one cannot simultaneously con-
strain dark energy and fNL, and the constraints on both
drastically degrade. We traced the biggest source of
degradation to the redshift evolution parameters in the
mass-observable relation and to the photo-z bias nui-
sance parameters. Simply adding a 33% prior to the

one parameter describing the evolution of the bias in
P (Mobs|M) (parameter a1 in Eq. (A3)) was enough to
reclaim respectable accuracy, with σ(fNL) = 18.8 (see
the bottom row of Table IV). Alternatively, if the bias
in each photo-z bin is known to the absolute accuracy of
0.01 with all other parameters free, then σ(fNL) = 7.0,
which is just ∼ 15% worse than when photo-z param-
eters are fixed5. For a survey such as the DES, these
requirements should be relatively easy to satisfy, given
that spectroscopic samples of 104-105 galaxies are will be
available to calibrate the photometric redshift errors (see
e.g. Eqs. (19) and (20) in ? ]).

5 Unlike fNL, the dark energy constraints are sensitive to both bias
and scatter of the photo-z’s. For a prior uncertainty in the photo-
z bias of 0.01 per bin, the photo-z scatter needs to be known to
0.025 per bin to achieve small (! 15%) degradation in σ(ΩDE)
and σ(w) relative to the case of perfectly known photo-z errors.

more “covariances”

(still much worse if 
marginalized 

over other pars.)



Scale-dependent nongaussianity?
Generalized local ansatz

Motivated by inflationary models with self-interactions etc 

In general, even if you are considering standard single-field 
inflation, interactions may lead to scale-dependence of fNL

See Chris Byrnes talk next week

Φ(x) = φG(x) + fNL

[
φ2

G(x) − 〈φ2
G〉

](Usual) local model...

...we generalize to a scale dependent (non-local) model

Φ(k) = φG(k) + fNL(k)
∫

d3k′

(2π)3
φG(k′)φG(k − k′)

Φ(x) = φG(x) + fNL(x)∗
[
φ2

G(x) − 〈φ2
G〉

]

Becker, Huterer & Kadota, in preparation



A complete basis for fNL(k): piecewise-constant bins

F new
ij =

N∑

k,l=1

∂pk

∂qi

∂pl

∂qj
Fkl

Projection onto any theoretical fNL(k) model is now trivial:
(F = Fisher matrix; quantifies measurability of fNL(k) from bias of LSS)

Original (basis) 
parameters, fNL

i

New parameters 
(e.g. fNL(kpivot), n)

Measurement errors 
from 

DES-type survey

Becker, Huterer & Kadota, in preparation



Figure 3: The first three, and the last (10th), principal component of fNL(k). The PCs, e(i)(k), are
basically eigenvectors of the covariance matrix for piecewise-constant values of fNL(k) in wavenum-
ber bins uniformly distributed in log k, and are ordered from the best-measured one (i = 0), to
the worst-measured one (i = 9) for the assumed fiducial survey. [Kenji: Check the shape doesn’t
change by including more bins. My worry is it changes by including 15 bins instead of 10 bins. It
means 10 bins are not enough! This figure could be put in the earlier section because this fig is a
sort of important to illustrate the properties of our PCs.]

5.2 Principal components and relation to local and equilateral models

[Kenji: what’s the punchline of this subsection? What is the conclusion of this section
important for? maybe we could put it in the discussion section by changing the title of the
next section to something like ’Discussion and Conclusion’?] [Dragan: Seems that PCs
and cosines are some quantitative results in the paper, so I would put them in a separate
section (like this one) before D&C. I wrote an intro par here to motivate the PCs, which
basically tell you what you measure. See comment below for the cosines result.]

[Dragan: (new par).] We now represent a general function fNL(k) in terms of principal
components (PCs). This decomposition is very convenient, as it tells us which particular
modes of fNL(k) are best or worst measured. The PCs will also enable us to measure
the overlap of our non-Gaussianity as specified by our generalized ansatz to the local and
equilateral forms of non-Gaussianity.

It is rather straightforward to start from the covariance matrix for the piecewise con-
stant parameters f i

NL and obtain the principal components (PCs) of fNL(k). The PCs are
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Principal Components of fNL(k)

Best-measured fNL(k) mode

2nd-best measured...

3rd-best measured...

worst-measured mode

cos(B1, B2) =
B1 · B2√

(B1 · B1) (B2 · B2)

B1 · B2 =
∑

k1,k2,k3

B1(k1, k2, k3)B2(k1, k2, k3)
∆2B(k1, k2, k3)

Becker, Huterer & Kadota, in preparation

Local cosine Equilateral cosine
PC 0 0.708 0.074
PC 1 0.263 0.005
PC 2 0.158 0.063
PC 3 0.024 0.158
PC 4 0.204 0.247
PC 5 0.747 0.022
PC 6 0.070 0.309
PC 7 0.083 0.249
PC 8 0.219 0.272
PC 9 0.356 0.243

Table 1: Cosines of principal components of the scale-dependent model with the local bispectrum
(second column) and the equilateral bispectrum (third column). A cosine of near unity implies that
the two bispectra have very similar shapes, and a cosine of near zero implies the opposite. [Kenji:
If we keep this table, I think we had better clarify the non-monotonic behavior of the local cosine
values.][Dragan: Adam and I discussed it, and we can add some kind of oblique comment in text.]

Another form for the bispectrum much discussed in the literature is the equilateral one

Bequi(k1, k2, k3) = − 2
(k2k1k3)2

−Blocal(k1, k2, k3)+
1

k1k2
2k

3
3

+
1

k3k2
1k

3
2

+permutations. (5.9)

In contrast with Blocal, most of the power of Bequi is in triangles where k1 ≈ k2 ≈ k3.
Table 1 lists the cosines of the ten principal-component derived bispectra with the local

bispectrum and the equilateral bispectrum. The form of Eq. (3.15) seems to suggest that
the fNL(k) will have more in common with the local bispectrum than the equilateral form.
It certainly seems possible that an fNL(k) might exist which would yield a bispectrum of
the form in Eq. (5.9) when substituted into Eq. (3.15). However in Appendix C we prove
that no such fNL(k) can exist. Therefore, it seems natural to expect that our fNL(k) PCs
will have more “overlap” with the local bispectrum than with the equilateral bispectrum.
However, this is not always the case: while the cosines of the fNL(k) PCs with the local
bispectrum are, on the whole, larger than those with the equilateral, the reverse is true
for several individual PCs; see Table 1. [Adam: We need something here on the fact that
there are more triangles in the bins that are larger in linear k. This is a placeholder to
remind me to do this.] [Dragan: That comment already exists in the 2nd to last par in
Sec 4.]

6. Conclusions

In this paper we have suggested a new phenomenological model of nongaussianity by gener-
alizing the local model (parameterized with a constant parameter fNL) to a scale-dependent,
non-local class of models. We did this by promoting fNL to a free function of wavenumber
fNL(k).

[Dragan: Relevance for inflationary models?]
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Overlap with local and equil. NG models:

wavenumber k
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Scale-dependent non-Gaussianity:
comparison with simulations

S. Shandera et al, in preparation

fNL(k) = fNL(kp)
(

k
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)nf
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Conclusions
 Searching for primordial nongaussianity is one of the most 

fundamental tests of the early universe cosmology

CMB bispectrum traditionally most promising tool; current results 
favor fNL>0 but only at 1-2 sigma

Mass function of cluster counts is in principle sensitive to NG, but 
not competitive with the CMB

Cosmological models with (local) primordial NG lead to significant 
scale dependence of halo bias; theory and simulations are in 
remarkable agreement on this

 Therefore, LSS probes (baryon oscillations, galaxy-CMB cross-
correlations, etc) are likely to lead to constraints on NG nearly 2 
orders of magnitude stronger than previously thought

 sigma(fNL)~few expected from future LSS surveys (DES, PanStarrs, 
LSST, JDEM/EUCLID etc)

See upcoming talks on NG/bias from C. Byrnes, V. Desjacques, M. 
Maggiore, M. Manera, C. Porciani, R. Scoccimarro and R. Smith


