Cosmological density peaks and the scale-dependence of bias

VINCENT DESJACQUES

ITP ZURICH

Benasque cosmology workshop, 4th August 2010

Understand galaxy biasing, i.e. how galaxies are distributed relative to the matter

0.05

0.50

Billion 1.00 Lightyeors 1.50 3

No

-

0h

234

02

44

47

En

58

- * Local bias vs. density peaks
- * Clustering of density peaks in a Gaussian random field
- * Bias and the baryon acoustic oscillation (BAO)

Characterizing galaxy clustering

The full hierarchy of (connected) N-point correlations describes the spatial distribution of galaxies (Peebles 1973,...)

 $\xi_g(\mathbf{x}_1,\cdots,\mathbf{x}_N)$

In the large scale limit, the 2-point correlation takes the simple form (Kaiser 1984, but cf. Dragan Huterer's talk)

 $\xi_g(r) = b_I^2 \xi(r)$

 Topological measures provide complementary information (won't be discussed here though)

Local bias model

* Essentially all models of halo biasing are based on the local bias model (Kaiser 1984; Szalay 1988; Fry & Gaztanaga 1993)

$$\delta_{hR}(M, \mathbf{x}) = \sum_{N} \frac{b_N(M)}{N!} [\delta_R(\mathbf{x})]^N$$

* The bias parameters are derived using the peak-background split argument (Bardeen et al. 1986; Cole & Kaiser 1989; Sheth & Tormen 1999)

$$b_N(M) = \left(-\frac{1}{\sigma_0}\right)^N \bar{n}^{-1} \frac{\partial^N[\bar{n}(\nu)]}{\partial\nu^N}, \quad \nu \equiv \delta_c(z_0)/\sigma_0(M)$$

Halo velocities are unbiased

$$\mathbf{v}_{hR}(M,\mathbf{x}) = \mathbf{v}_R(\mathbf{x})$$

- * Eulerian or Lagrangian biasing ?
- * Which value of the smoothing radius R shall we use?
- * How does discreteness affects clustering ?

Another approach: the peak model

(Peacock & Heavens 1985; Hoffman & Shaham 1985; Bardeen, Bond, Kaiser, Szalay 1986; Coles 1989; Lumsden, Heavens & Peacock 1989,...)

- * DM haloes are local density maxima of the evolved mass distribution -> include the peak constraint
- Since it is difficult to work out the properties of density peaks in a highly non-Gaussian field, consider instead the clustering of local maxima of the initial Gaussian density field
- Well-behaved point process which can account for the discrete nature of DM haloes

Peak correlation functions

* Use the peak constraint to write the peak number density

as (Kac 1943; Rice 1951; BBKS)

$$n_{\rm pk}(\nu', M, \mathbf{x}) = \sum_{\mathbf{x}_{\rm pk}} \delta^{(3)}(\mathbf{x} - \mathbf{x}_{\rm pk}) = \frac{3^{3/2}}{R_1^3} |\det\zeta(\mathbf{x})| \,\delta^{(3)}[\boldsymbol{\eta}(\mathbf{x})] \,\theta(\lambda_3) \,\theta(\nu' - \nu)$$

$$\nu(\mathbf{x}) \equiv \delta_M(\mathbf{x})/\sigma_0, \ \eta_i(\mathbf{x}) \equiv \partial_i \delta_M(\mathbf{x})/\sigma_1, \ \zeta_{ij}(\mathbf{x}) \equiv \partial_i \partial_j \delta_M(\mathbf{x})/\sigma_2$$

$$\zeta \equiv -O\Lambda O^{\top}, \ \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3), \ \lambda_1 \ge \lambda_2 \ge \lambda_3$$

$$R_1 \equiv \sqrt{3} \frac{\sigma_1}{\sigma_2}$$

$$\sigma_n^2(M, z_0) \equiv \frac{1}{2\pi^2} \int_0^\infty dk \, k^{2(n+1)} P_{\delta}(k, z_0) [W_M(k)]^2$$

* Calculate the ensemble averages (BBKS; Regos & Szalay 1995; Matsubara 1999; Matsubara 2003; Desjacques 2008; Desjacques & Sheth 2010)

 $\langle n_{\rm pk}(\nu', \mathbf{x}_1) \cdots n_{\rm pk}(\nu', \mathbf{x}_N) \rangle$

Number density

* The number density of peaks of height v is (BBKS)

$$\bar{n}_{pk}(\nu, M) \equiv \langle n_{pk}(\nu, M, \mathbf{x}) \rangle = \frac{1}{(2\pi)^2 R_1^3} e^{-\nu^2/2} G_0^{(0)}(\gamma_1, \gamma_1 \nu) \rangle$$
$$\gamma_1 \equiv \frac{\sigma_1^2}{\sigma_0 \sigma_2}, \quad 0 < \gamma_1 < 1$$
$$G_n^{(\alpha)}(\gamma_1, \omega) \equiv \int_0^\infty du \, u^n f(u, \alpha) \frac{e^{-(u-\omega)^2/2(1-\gamma_1^2)}}{\sqrt{2\pi(1-\gamma_1^2)}}$$

Peaks vs. Excursion set Theory

 $\sqrt{\frac{2}{\pi}\nu e^{-\nu^2/2}}$ Press & Schechter Spherical collapse Bond et. al. $A_{1} / \frac{2}{\pi} \sqrt{a\nu} \, e^{-a\nu^{2}/2} \left[1 + (a\nu^{2})^{q} \right]$ **Ellipsoidal collapse** Sheth & Tormen Non-Markovian (+stochastic barrier) $\sqrt{\frac{2}{\pi}} \left[(1 - a\kappa)\sqrt{a\nu} e^{-a\nu^2/2} + a^{3/2}\kappa \frac{\nu}{2}\Gamma\left(0, \frac{a\nu^2}{2}\right) \right]$ Maggiore & Riotto Peaks $G_0^{(0)}(\gamma_1,\gamma_1\nu) e^{-\nu^2/2}$ (ignoring cloud-in-BBKS cloud)

(cf. Michele Maggiore's talk)

Peak biasing

At the first order (i.e. large scale), the 2-point correlation of peaks can be thought of as arising from the biasing relation (Desjacques 2008)

$$\delta n_{\rm pk}(\nu, M, \mathbf{x}) = (\hat{b}_I \delta_M)(\mathbf{x}) \equiv b_\nu \delta_M(\mathbf{x}) - b_\zeta \partial^2 \delta_M(\mathbf{x})$$
$$b_\nu(\nu, M) = \frac{1}{\sigma_0} \left(\frac{\nu - \gamma_1 \bar{u}}{1 - \gamma_1^2}\right), \quad b_\zeta(\nu, M) = \frac{1}{\sigma_2} \left(\frac{\bar{u} - \gamma_1 \nu}{1 - \gamma_1^2}\right)$$

* In Fourier space,

 $\delta n_{\rm pk}(\nu, M, \mathbf{k}) = \hat{b}_I(k) \delta_M(\mathbf{k}), \quad \hat{b}_I(k) \equiv \left(b_\nu + b_\zeta k^2\right)$

* Compare with local f_{NL} primordial NG (Dalal et al. 2008):

$$\hat{b}_{\rm NG}(k) = \left(b_{\nu} + f_{\rm NL}\frac{b_{\phi}}{k^2}\right)$$

2-point peak correlation

* Up to second order, this is

 $\xi_{\rm pk}(\nu, M, r) = (\hat{b}_I^2 \xi_0^{(0)})(r) + \frac{1}{2} (\xi_0^{(0)} \hat{b}_{II}^2 \xi_0^{(0)})(r)$

Work in Progress with Martin Crocce, Roman Scoccimarro, Ravi Sheth

$$-\frac{3}{\sigma_1^2} (\xi_1^{(1/2)} \hat{b}_{II} \xi_1^{(1/2)})(r) - \frac{5}{\sigma_2^2} (\xi_2^{(1)} \hat{b}_{II} \xi_2^{(1)})(r) \left(1 + \frac{2}{5} \partial_\alpha \ln G_0^{(\alpha)}(\gamma_1, \gamma_1 \nu) \Big|_{\alpha=1}\right) \\ + \frac{5}{2\sigma_2^4} \left[(\xi_0^{(0)})^2 + \frac{10}{7} (\xi_2^{(2)})^2 + \frac{18}{7} (\xi_4^{(2)})^2 \right] \left(1 + \frac{2}{5} \partial_\alpha \ln G_0^{(\alpha)}(\gamma_1, \gamma_1 \nu) \Big|_{\alpha=1}\right)^2 \\ + \frac{3}{2\sigma_1^4} \left[(\xi_0^{(1)})^2 + 2(\xi_2^{(1)})^2 \right] + \frac{3}{\sigma_1^2 \sigma_2^2} \left[3(\xi_3^{(3/2)})^2 + 2(\xi_1^{(3/2)})^2 \right]$$

where $\xi_{\ell}^{(n)}(r) \equiv \frac{1}{2\pi^2} \int_0^\infty dk \, k^{2(n+1)} P_{\delta}(k, z_0) j_{\ell}(kr) [W_M(k)]^2$

* In Fourier space, the 2nd order bias is

 $\hat{b}_{II}(q_1, q_2) = b_{\nu\nu} + b_{\nu\zeta}(q_1^2 + q_2^2) + b_{\zeta\zeta}q_1^2q_2^2$

Peak-background split

* b_v and b_{vv} are exactly the same as the first- and secondorder biases returned by a peak-background split

$$b_{\nu}(\nu, M) = -\frac{1}{\sigma_0} \frac{\partial \ln \bar{n}_{\rm pk}(\nu, M)}{\partial \nu} \equiv b_I(\nu, M)$$
$$b_{\nu\nu}(\nu, M) = \frac{1}{\sigma_0^2} \bar{n}_{\rm pk}^{-1} \frac{\partial^2 \bar{n}_{\rm pk}(\nu, M)}{\partial \nu^2} \equiv b_{II}(\nu, M)$$

* So, the peak correlation can also be written

 $\xi_{\rm pk}(\nu, r) = b_I^2 \xi_0^{(0)}(r) + \frac{1}{2} b_{II}^2 \left[\xi_0^{(0)}(r)\right]^2 + \text{other terms}$

First order bias parameters

Large scale correlation in CDM models

Local bias : $b_{\nu}^2 \xi_{\delta}$

WDM transfer function

Gravitational evolution

In a first approximation, the initial density peaks move along straight lines (Zel'dovich 1970)

 $\mathbf{x}_{pk}(z) = \mathbf{q}_{pk} - D(z)\nabla\Phi(\mathbf{q}_{pk})$

* The peak correlation function can be formally written (Bharadwaj 1996)

$$\bar{n}_{pk}^{2} \left[1 + \xi_{pk}(\nu, M, r, z) \right] = \int d^{3} \mathbf{v}_{1} d^{3} \mathbf{v}_{2} P_{2}(\mathbf{v}_{1}, \mathbf{v}_{2}; r, z | pk)$$
$$= \int d^{3} \mathbf{r}' \int d^{3} \mathbf{v}_{1} d^{3} \mathbf{v}_{2} \, \delta^{(3)} \left[\mathbf{r}' - \mathbf{r} + \Delta \mathbf{v}_{12} \right] P_{2}(\mathbf{v}_{1}, \mathbf{v}_{2}; \mathbf{r}', z_{i} | pk)$$

Gravitational evolution (II)

* The peak power spectrum as a function of redshift is

 $P_{\rm pk}(\nu, M, k, z) = G^2(k, z) \left[\hat{b}_{\rm vel}(k) + \frac{D(z_0)}{D(z)} \hat{b}_I(k, z_0) \right]^2 P_{\delta_M}(k, z_0) + P_{\rm MC}(\nu, M, k, z)$

 $P_{\delta_M}(k, z_0) \equiv P_{\delta}(k, z_0) [W_M(k)]^2$

$$G^{2}(k,z) \equiv \left(\frac{D(z)}{D(z_{0})}\right)^{2} \exp\left(-\frac{1}{3}k^{2}\sigma_{\rm vpk}^{2}(z)\right)$$

* Note the similarity with Renormalized Perturbation Theory (RPT, Crocce & Scoccimarro 2006)

$$P_{\delta}(k,z) = G_{\delta}^{2}(k,z)P_{\delta}(k,z_{0}) + P_{\mathrm{MC}}(k,z)$$
$$G_{\delta}^{2}(k,z) \equiv \left(\frac{D(z)}{D(z_{0})}\right)^{2} \exp\left(-\frac{1}{3}k^{2}\sigma_{v}^{2}(z)\right)$$

Velocity bias

Assumption: DM haloes locally move with the dark matter flows. This implies

***** Local bias:
$$\sigma_h^2 = \sigma_v^2$$

 $\theta_h(\mathbf{k}) = \theta(\mathbf{k}), \quad (\theta \equiv \nabla \cdot \mathbf{v})$

 $\sigma_{\rm pk}^2 = \sigma_v^2 \left(1 - \gamma_0^2 \right), \quad 0 < \gamma_0 < 1 \tag{BBKS}$

 $\theta_{\rm pk}({f k}) = \left(1 - \frac{\sigma_0^2}{\sigma_1^2}k^2\right)\theta({f k}) \equiv \hat{b}_{\rm vel}(k)\theta({f k})$ (Desjacques & Sheth)

This velocity bias is statistical (as opposed to physical)

Redshift distortions

* For a local bias model with unbiased velocities (Kaiser 1987)

 $P_h^s(k,\mu) = \left(b_I + f\mu^2\right)^2 P_\delta(k,\mu)$

* In the peak model, the Kaiser expression becomes (Desjacques & Sheth 2010) $P_{pk}^{s}(k,\mu) = \left[\hat{b}_{I}(k) + f\hat{b}_{vel}(k)\mu^{2}\right]^{2}P_{\delta}(k,\mu)$

* Standard manipulations applied to the peak model would lead to k-dependent estimates of the growth rate f

Lagrangian vs. Eulerian bias

* The Eulerian and Lagrangian first order bias parameters are related according to

$$\hat{b}_I^{\mathrm{E}}(k,z) \equiv \hat{b}_{\mathrm{vel}}(k) + \frac{D(z_0)}{D(z)}\hat{b}_I(k,z_0)$$

 $b_{\nu}^{\rm E}(z) \equiv 1 + \frac{D(z_0)}{D(z)} b_{\nu}(z_0), \quad b_{\zeta}^{\rm E}(z) \equiv \frac{D(z_0)}{D(z)} b_{\zeta}(z_0) - \frac{\sigma_0^2}{\sigma_1^2}$

or

Scale-dependence across BAO

MICE project, 450 (Gpc/h)³ simulation

In summary

- * The peak model is an extension of the local bias model
- The spatial bias parameters are k-dependent; This generates a few percent residual scale-dependence across the BAO feature
- * The peak velocities are statistically biased; The Kaiser formula acquires a velocity bias factor
- * Large numerical simulations should be able to test the predictions of this model
- * Are massive haloes related to local maxima of the initial density field ? cf. Cris Porciani's talk...