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Plan of the talk

• Excursion set theory

• Path integral formulation of excursion set theory
– non-Markovian evolution with smoothing scale

– non-Gaussianities in the primordial fluctuations

• Improvement in the collapse model
– ellipsoidal barrier

– diffusing barrier



• Results of the formalism
– halo mass function for spherical collapse

• Gaussian fluctuation                                      (MR1)

• Non-Gaussian fluctuations                     (MR3,MR4)

– ellipsoidal collapse
• A more formal derivation of the SMT mass function• A more formal derivation of the SMT mass function

• Ellipsoidal collapse + Non-Gaussianities      

(De Simone, MM, Riotto)

– halo bias                             (Ma, MM,Riotto,Zhang)



• study the evolution of δ(R) as a function of R 
– at R=∞, δ(R)=0.  Lowering R, δ(R) evolves stochastically

– use S=σ2(R) as “time”. AtR=∞, S=0. As R decreases, S increases

Excursion set theory
Bond, Cole, Efstathiou and Kaiser (1991)

Peacock and Heavens (1990)

First-passage    
time problem



What are the equations governing this stochastic motion ?

“noise”“noise”

For sharp k-space filter: 



Langevin eq. with Dirac-delta noise ! 

→ Π(δ,S) satisfies the  Fokker-Planck eq.

to take into account that we are interested in the first-passage 
problem,   Bond et alimpose an “absorbing barrier boundary 
condition”,condition”,

The solution is



The first-crossing rate is

With standard manipulations the halo mass function is then:



Excursion set theory is very elegant, but its 
original formulation suffers of two type of 
problems:

• at the technical level:the evolution with S is Markovian only if δ
is smoothed with a sharp filter in k-space. However, with this 
filter it  is not possible to associate a mass to the smoothing 
radius ! radius ! 
With any other filter the evolution is non-Markovian
(important also for non-Gaussianities )

• at the physical level:the spherical collapse model is an 
oversimplification of the complex dynamics of halo formation



our formulation of the problem

• consider a stochastic process δ(S) defined by

‹ δ(S1) δ(S2)›c, ‹δ(S1) δ(S2) δ(S3)›c, ...

• consider an ensemble of trajectories all starting at ``time’’ S=0
from δ(0)= δ and follow them for a time Sfrom δ(0)= δ0 and follow them for a time S

• discretize time S,Sk=k ε, (k=0,...,n),Sn=S

• a trajectory is defined by the collection of values δk such that 
δ(Sk)= δk



• the probability density in the space of trajectories is

using                                                we get

Z is the generating functional of connected correlators!



• define

this is the probability of arriving in δn through trajectories that 
never exceeded a threshold δc

• first crossing rate:

• The problem is reduced to the evaluation of a path-integral with 
boundaries

• First-principle approach. No ad hoc “absorbing barrier boundary 
condition” 



1. Markovian case + Gaussian fluctuations

all higher connected correlators are zero.
We can then compute explicitly:

From this, we can prove that, in the continuum limit,  Π(δ,S) 
satisfies the FP equation and the b.c. Π(δ,S=0) if δ> δc

We recover the standard results from excursion set theory



2. Non-Markovian case + Gaussian fluctuations

For top-hat filter in cordinate space: 

measures the amount of non-Markovianity



In this case:

Expand perturbatively in ∆.
A flavor of the computation: the correction to Π is 

Consider for instance the terms with i<n, j=n. We then need 



In the continuum limit:

we need to know how it approaches zero:

The remaining integral can be computed analytically.
Terms with i,j <n are more difficult (cancellation of divergences)



• we are able to computing everything analytically, and in the end



3. Non-gaussianities

• example: bispectrum

• expand perturbatively in the bispectrum and compute with the • expand perturbatively in the bispectrum and compute with the 
same technique

Note that we have the can compute the full dependence on 

< δ(Si) δ(Sj) δ(Sk)>
while NG extension of Press-Schechter theory only depends  on 
the cumulant      <δ3(S)>



Our result for the mass function      (MR3)

The dependence on <δ3(S)> agrees with that found from NG extension of Press-
Schechter theory                             (LoVerde, Miller, Shandera & Verde 2008)



Improving the physical model for collapse

The spherical collapse model is a poor approximation to the 
complex dynamics of halo formation. Various improvements 
can be implemented in the excursion set theory framework

• ellipsoidal collapse → moving barrier B(S) Sheth &Tormen (1999)• ellipsoidal collapse → moving barrier B(S) 

• diffusing barrier model: the critical threshold for collapse is 
treated as a stochastic variable, to take into account at an 
effective level the randomness of the process

(MR2; see also Audit et al (1997), Lee & Shandaring (1998),

Sheth, Mo and Tormen (2001) for earlier related ideas)

Sheth &Tormen (1999)

Sheth, Mo &Tormen (2001)



The diffusing barrier
• Realistic halo formation proceed through a mixture of smooth 

accretion, tidal effects with the environment, and violent episodes 
of merging and fragmentation

• Further intrinsic randomness  related to the actual definition of 
halos in N-body simulations and in observations

In MR2 we propose that at least some of this complexity can be 
accounted for, at an effective level, by promoting the critical 
value for collapse to a stochastic variable, that fluctuates over an 
average value given by the spherical or ellipsoidal collapse model

We considered a barrier that performs a random walk around the 
constant value δc, with a diffusion coefficient DB



• repeating our computation with such a diffusing barrier

with a=1/(1+DB)

It works as if the barrier for collapse were lower, δc→ a1/2 δc

(the same holds for our NG mass function)

This is just the replacement usually performed in the literature to fit 
N-body data. Our result therefore offer a physical interpretation for 
this replacement

From recent N-body simulation (Robertson et al 2008) we deduce 
DB≈0.25  and a≈0.80, in excellent agreement with the slope of the 
mass function from the same N-body simulation
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Ellipsoidal collapse in the path integral 
formulation

• For a wide range of moving barriers B(S) , 

Sheth & Tormen (2002)show that the empirical formula

De Simone, MM, Riotto

fits well the first-crossing rate obtained generating numerically

a large set of random walks. 

It also reproduces the exact result for constant barrier

and for linear barrier  (Sheth 1998)



• a puzzle:  the truncation to p=5 works well empirically. However

is the Taylor expansion of B(S0-S) in S0=S, so it resums to B(0) !
Even if it works well, it cannot be fundamentally correct!

(see also Lam & Sheth 2009)

Our path integral formulation is well suited for computing the Our path integral formulation is well suited for computing the 
first-crossing rate with moving barrier from first principles:

Shifting the integration variables δi → δi – B(Si) we reduce to 
constant barrier + new terms in W, which depends on the 
derivatives of B(S) → Apply our perturbative expansion



• we perform an expansion in derivatives (appropriate for the 
ellipsoidal collapse barrier).        (De Simone,MM, Riotto, 1007.1903)
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Using a different 
expansion, which resums 
an infinite number of term

PSST
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Ellipsoidal barrier + Non-Gaussianities

• Motivations: the complete halo mass function is usually 
computed hoping that

then one takesthen one takes

With our formalism we can compute directly the first-crossing 
rate with ellipsoidal barrier + NG and compare with the above 
ansatz. Full analytic result, see De Simone,MM, Riotto 2010 
(including a saddle point improvement suggested  in 

D’Amico, Musso,Noreña & Paranjape 2010)
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Non-Markovian corrections to halo bias   

• Halo bias can be obtained from excursion set theory + spherical 
collapse :

compute the first crossing rate for 

trajectories that starts from  a value  δ0 ≠0 at S=0 

(Ma,MM,Riotto, Zhang)

Cole & Kaiser 1989, Bond et al 
1991, Mo & White 1996

• With our path integral formalism we can compute the non-
Markovian corrections due to the filter   

(ν=δc/σ)



• Combining it with the diffusing barrier model, κ→aκ, δc→a1/2δc

• Fit to mass function and bias taking aand κ as free parameters. 

Comparing with the N-
body results of Tinker et 
al 2008,2010 we get  
a=0.815and κ =0.21

Tinker et al Tinker et al 

our result 

ellipsoidal collapse (ST)

spherical collapse 

∆
 

∆
 With only 2 free 

parameters, matches
N-body results to ≈15%



Conclusions

• Excursion set theory, after some technical and 
physical improvements, works quite well, and 
catches a large part of the complicated physics 
of halo formation and bias

• Better justification of the standard ST result for 
ellipsoidal collapse

• Consistent derivation of the effect of 
non-Gaussianities



thank you!





backup slides



Can we reproduce the markovian result?

• for a gaussian process

• take

• then

and

Wiener measure !



next we must compute Π

(generalized Chapman-Kolmogorov). 

From the study of this integral equation we get:From the study of this integral equation we get:

xc

FP eq zero

In the continuum limit:

We recover the usual result



Robertson et al 2009

We deduce from this that 
the barrier diffuses, and its 
diffusion coefficient is
DB=(0.3δc)2

The first-passage problem with 
diffusing barrier is a classical 
problem (e.g. Redner 2001).

� Effective diffusion coefficient

D =1+ DB


