The fifth Element: Astrophysical status of dark energy

A&A Review (to appear soon)

Alain Blanchard, LATT, Toulouse

August 6, 2010

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

向下 イヨト イヨト

Introduction by Einstein...

ヘロン 人間 とくほど くほとう

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

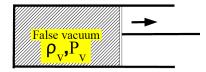
$$\nabla^2 \varphi - \lambda \varphi = 4\pi G \rho$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

$$\nabla^2 \varphi - \lambda \varphi = 4\pi G \rho$$

Lemaître discussed the astrophysical need for Λ (age problem).

$$\nabla^2 \varphi - \lambda \varphi = 4\pi G \rho$$

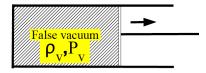

Lemaître discussed the astrophysical need for Λ (age problem). Then :

 $\Lambda \equiv {\rm Vacuum}$

イロン イ部ン イヨン イヨン 三日

$\boldsymbol{\Lambda}$ as the contribution from Vacuum

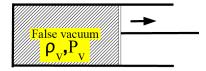
$\boldsymbol{\Lambda}$ as the contribution from Vacuum



True vacuum $\rho = P = 0$

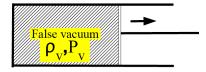
Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

・ロン ・回と ・ヨン ・ヨン


$\boldsymbol{\Lambda}$ as the contribution from Vacuum

True vacuum $\rho = P = 0$

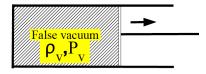
 $dE = -P_v dV$


・ロト ・回ト ・ヨト ・ヨト

True vacuum $\rho = P = 0$

$$dE = -P_v dV$$
$$E = \rho_v V c^2$$

・ロン ・回と ・ヨン ・ヨン

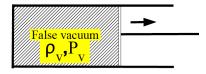


True vacuum $\rho = P = 0$

$$dE = -P_v dV$$

$$E = \rho_v V c^2 \text{ so } dE = \rho_v dV c^2$$

・ロト ・回ト ・ヨト ・ヨト



True vacuum $\rho = P = 0$

$$dE = -P_v dV$$

$$E = \rho_v V c^2 \text{ so } dE = \rho_v dV c^2 = -P_v dV$$

・ロン ・回と ・ヨン ・ヨン

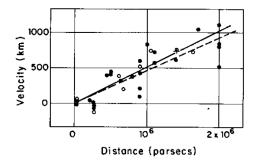
True vacuum $\rho = P = 0$

$$dE = -P_v dV$$

 $E = \rho_v V c^2$ so $dE = \rho_v dV c^2 = -P_v dV$
i.e.

w = -1

(ロ) (同) (E) (E) (E)

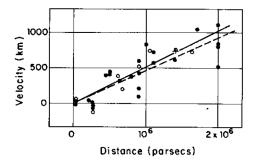

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

・ロト ・回ト ・ヨト ・ヨト

Hubble 1929...

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Hubble 1929...



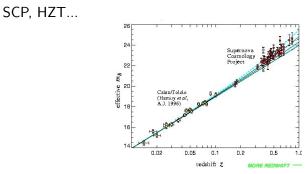
< 17 b

< E

< ∃⇒

Hubble 1929...

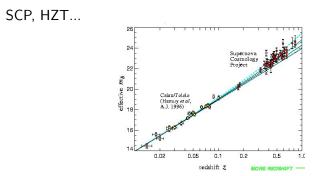
Evidence for the expansion...


Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

・ロト ・回ト ・ヨト ・ヨト

SCP, HZT...

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy


Hubble diagramm

・ロト ・回ト ・ヨト

* 王

Hubble diagramm

Evidence for the acceleration...

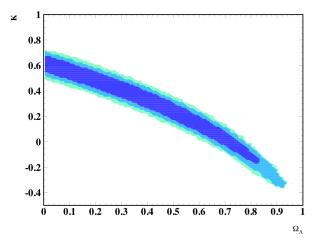
▲ □ → ▲ 三

Э

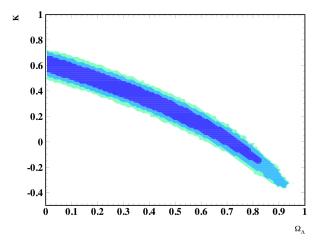
SNIa evolution $\Delta m_e = K \Delta t$?

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

(1日) (日) (日)


SNIa evolution $\Delta m_e = K \Delta t$? why?

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy


・ 回 と ・ ヨ と ・ ヨ と

SNIa evolution $\Delta m_e = K \Delta t$? why? why not?

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

SNIa evolution $\Delta m_e = K \Delta t$? why? why not?

SNIa evolution $\Delta m_e = K \Delta t$? why? why not?

Degeneracy with cosmological constant!

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Clusters occupie $\sim 10^{-5}$ of the volume of the universe...

(4回) (4回) (4回)

Clusters occupie $\sim 10^{-5}$ of the volume of the universe...

Cluster abundance evolution?

・ 同 ト ・ ヨ ト ・ ヨ ト

Clusters occupie $\sim 10^{-5}$ of the volume of the universe...

Cluster abundance evolution?

Controversial...

伺い イヨト イヨト

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

★御★ ★注★ ★注★

白 ト く ヨ ト く ヨ ト

 $-f_x$ and T_x can be measured with good accuracy.

A B K A B K

- $-f_x$ and T_x can be measured with good accuracy.
- x-ray clusters can be detected up to $z \ge 1$.

- ∢ ≣ >

- $-f_x$ and T_x can be measured with good accuracy.
- x-ray clusters can be detected up to $z \ge 1$.
- Selection function is understood (?).

向下 イヨト イヨト

- $-f_x$ and T_x can be measured with good accuracy.
- x-ray clusters can be detected up to $z \ge 1$.
- Selection function is understood (?).

Optical, SZ, weak lensing are alternatives encoding the same information.

・ 同 ト ・ ヨ ト ・ ヨ ト

Clusters abundance

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Clusters abundance

$$n(M,z) = -\frac{\overline{\rho}}{M^2 \sigma_t(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

$$n(M,z) = -\frac{\overline{\rho}}{M^2 \sigma_t(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

with :
$$\sigma_t(M) = D(t)\sigma_0(M)$$
 and $\nu_{NL} = \frac{\delta_{NL}(t)}{\sigma_t(M)}$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

$$n(M,z) = -\frac{\overline{\rho}}{M^2 \sigma_t(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

with :
$$\sigma_t(M) = D(t)\sigma_0(M)$$
 and $\nu_{NL} = \frac{\delta_{NL}(t)}{\sigma_t(M)}$

A (potential) probe of D(t) (sensitive to Ω_m)

$$n(M,z) = -\frac{\overline{\rho}}{M^2 \sigma_t(M)} \delta_{NL} \frac{d \ln \sigma}{d \ln M} \mathcal{F}(\nu_{NL})$$

with :
$$\sigma_t(M) = D(t)\sigma_0(M)$$
 and $u_{NL} = rac{\delta_{NL}(t)}{\sigma_t(M)}$

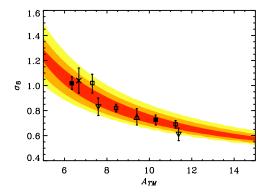
A (potential) probe of D(t) (sensitive to Ω_m)

sensitive to σ_8 but degeneracy with calibration of the M - T relation.

・ 同 ト ・ ヨ ト ・ ヨ ト

connection to the observable quantities:

connection to the observable quantities:


$$T = A_{TM} M_{15}^{2/3} (\Omega_M (1 + \Delta) / 179)^{1/3} h^{2/3} (1 + z) \, \mathrm{keV}$$

connection to the observable quantities:

$${\cal T} = A_{TM} M_{15}^{2/3} (\Omega_M (1+\Delta)/179)^{1/3} h^{2/3} (1+z) ~{
m keV}$$
 use observed ${\cal N}({\cal T})$

$$\sigma_8 - A_{TM}$$

 $\Omega_m = 0.3$

・ロン ・回 と ・ ヨン ・ ヨン

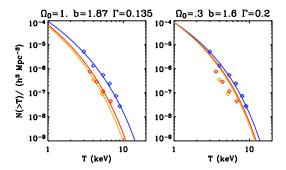
Conclusion

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

白 ト く ヨ ト く ヨ ト

Conclusion :

evolution of the abundance of clusters is inconsistent with standard scaling in Λ CDM... (controversial).

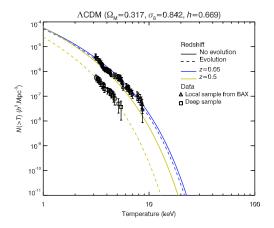

伺 ト イヨト イヨト

Clusters abundance evolution: 2000

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Clusters abundance evolution: 2000



Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

3

Clusters abundance evolution: 2010

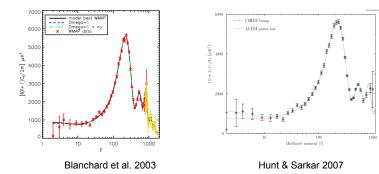
Delsart, Blanchard & Barbosa, 2010

イロト イヨト イヨト イヨト

3

Conclusion :

evolution of the abundance $(N(T), n(f_x, z)...)$ of clusters is inconsistent with standard scaling in Λ CDM... (controversial).


CMB

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

EdS but non power law fluctuations...

回 と く ヨ と く ヨ と

EdS but non power law fluctuations...

<ロ> <同> <同> <同> < 同>

< ≣⇒

・ロト・(四ト・(川下・(日下・(日下)

It is becoming almost impossible to build crazy models which pass observational constraints!

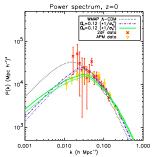
J.Peacock (Benasque 2010)

- ∢ ⊒ ⊳

It is becoming almost impossible to build crazy models which pass observational constraints!

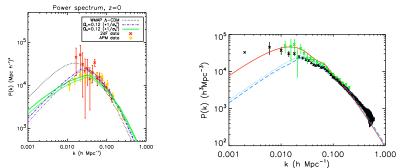
J.Peacock (Benasque 2010)

meaning ΛCDM is not to be regarded as a crazy model...


向下 イヨト イヨト

・ロト・(四ト・(川下・(日下・(日下)

LSS was the smocking gun!


回 と く ヨ と く ヨ と

LSS was the smocking gun!

イロト イヨト イヨト イヨト

LSS was the smocking gun!

イロト イヨト イヨト イヨト

Consequence of inhomogneneities?

回 と く ヨ と く ヨ と

Back reaction effect.

A B K A B K

Back reaction effect.

Serious and non-trivial question in GR:

A B K A B K

A ■

Back reaction effect.

Serious and non-trivial question in GR:

would many local Schwarzschild metrics glue together to get FLRW models?

→ ∃ >

- ∢ ⊒ ⊳

$$ilde{g}^{lphaeta}=g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

A B K A B K

$$ilde{g}^{lphaeta}=g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

 $h^{\alpha\beta}$ are small even today.

¢

$$ilde{g}^{lphaeta}=g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

 $h^{lphaeta}$ are small even today. Would *FL* equation be significantly modified ?

$$ilde{g}^{lphaeta} = g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

 $h^{lphaeta}$ are small even today. Would *FL* equation be significantly modified ?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3}$$

$$ilde{g}^{lphaeta}=g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

 $h^{\alpha\beta}$ are small even today. Would *FL* equation be significantly modified ?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3} \left(1 + F(h_{\alpha\beta})\right)$$

with:

$$F(h_{lphaeta})\gg~\langle h^2
angle$$

$$ilde{g}^{lphaeta}=g^{lphaeta}_{RW}(1+h^{lphaeta}.)$$

 $h^{\alpha\beta}$ are small even today. Would *FL* equation be significantly modified ?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G\rho}{3} \left(1 + F(h_{\alpha\beta})\right)$$

with:

$${\it F}(h_{lphaeta})\gg~\langle h^2
angle$$
 or even $\langle h
angle$

・ 回 ト ・ ヨ ト ・ ヨ ト

Hubble diagram can be reproduced.

回 と く ヨ と く ヨ と

Hubble diagram can be reproduced.

Testable: CMB $C_l + P(k)$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Hubble diagram can be reproduced.

```
Testable: CMB C_l + P(k)
```

+ CMB spectrum + SZ from clusters + \ldots

伺下 イヨト イヨト

Precision Cosmology

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

・ロ・ ・ 日・ ・ 日・ ・ 日・

Precision Cosmology

parameter	ΛCDM	oΛCDM	wCDM	owCDM	owCDM+SN
Ω_m	0.289 ± 0.019	0.309 ± 0.025	0.328 ± 0.037	0.306 ± 0.050	0.312 ± 0.022
H_0	69.4 ± 1.6	66.0 ± 2.7	64.3 ± 4.1	$66.7^{+5.9}_{-5.6}$	65.6 ± 2.5
$D_V(0.35)$	1349 ± 23	1415 ± 49	1398 ± 45	1424 ± 49	1418 ± 49
$r_s/D_V(0.35)$	0.1125 ± 0.0023	0.1084 ± 0.0034	0.1094 ± 0.0032	$0.1078^{+0.0033}_{-0.0034}$	0.1081 ± 0.0034
Ω_k	-	$-0.0114^{+0.0076}_{-0.0077}$	-	-0.009 ± 0.012	-0.0109 ± 0.0088
w	-	-	-0.79 ± 0.15	-1.06 ± 0.38	-0.99 ± 0.11
Ω_{Λ}	0.711 ± 0.019	0.703 ± 0.021	0.672 ± 0.037	$0.703^{+0.057}_{-0.058}$	0.699 ± 0.020
Age (Gyr)	13.73 ± 0.13	14.25 ± 0.37	13.87 ± 0.17	14.27 ± 0.52	14.24 ± 0.40
Ω_{tot}	-	$1.0114_{-0.0076}^{+0.0077}$	-	1.009 ± 0.012	1.0109 ± 0.0088
$100\Omega_b h^2$	2.272 ± 0.058	2.274 ± 0.059	$2.293_{-0.063}^{+0.062}$	$2.279^{+0.066}_{-0.065}$	$2.276^{+0.060}_{-0.059}$
$\Omega_c h^2$	$0.1161\substack{+0.0039\\-0.0038}$	0.1110 ± 0.0052	$\substack{2.293\substack{+0.062\\-0.063}\\0.1112\substack{+0.0056\\-0.0057}$	$2.279\substack{+0.066\\-0.065}\\0.1103\substack{+0.0055\\-0.0054}$	$2.276^{+0.060}_{-0.059}\\0.1110^{+0.0051}_{-0.0052}$
τ	0.084 ± 0.016	0.089 ± 0.017	0.088 ± 0.017	0.088 ± 0.017	0.088 ± 0.017
n_s	0.961 ± 0.013	0.962 ± 0.014	0.969 ± 0.015	0.965 ± 0.016	0.964 ± 0.014
$\ln(10^{10}A_{05})$	$3.080^{+0.036}_{-0.037}$	3.068 ± 0.040	$3.071^{+0.040}_{-0.039}$	3.064 ± 0.041	3.068 ± 0.039
σ_8	0.824 ± 0.025	0.796 ± 0.032	0.735 ± 0.073	0.79 ± 0.11	$0.790\substack{+0.045\\-0.046}$

Reid et al. 2009

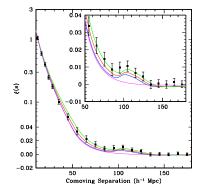
・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Successes of ΛCDM

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Good fit to most data ...


▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Good fit to most data... Ability to make prediction(s) that were verified!

白 ト く ヨ ト く ヨ ト

Good fit to most data ...

Ability to make prediction(s) that were verified!

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

MCMC on CMB, P(k), SNIa+evolution $\Delta m_e = K \Delta t$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Parameter	Vanilla	Vanilla + Ω_k	Vanilla + w	$Vanilla + \Omega_k + w$
$\Omega_b h^2$	0.0228 ± 0.0006	0.0227 ± 0.0005	0.0227 ± 0.0006	0.0226 ± 0.0006
$\Omega_c h^2$	0.110 ± 0.004	0.109 ± 0.005	0.113 ± 0.005	0.111 ± 0.005
θ	1.042 ± 0.003	1.042 ± 0.003	1.042 ± 0.003	1.042 ± 0.003
τ	0.088 ± 0.017	0.087 ± 0.017	0.085 ± 0.017	0.085 ± 0.016
n_s	0.968 ± 0.013	0.965 ± 0.013	0.963 ± 0.014	0.960 ± 0.014
$log(10^{10}A_{s})$	3.07 ± 0.04	3.06 ± 0.04	3.07 ± 0.04	3.06 ± 0.04
Ω_k	0	-0.002 ± 0.007	0	-0.017 ± 0.013
w	-1	-1	-1.112 ± 0.148	-1.33 ± 0.242
K	-0.042 ± 0.042	-0.035 ± 0.042	-0.105 ± 0.091	-0.133 ± 0.077
Ω_{Λ}	0.747 ± 0.017	0.745 ± 0.020	0.756 ± 0.022	0.744 ± 0.022
Age	13.6 ± 0.1	13.7 ± 0.4	13.6 ± 0.1	14.5 ± 0.7
Ω_m	0.253 ± 0.017	0.257 ± 0.025	0.244 ± 0.022	0.272 ± 0.029
σ_8	0.801 ± 0.026	0.794 ± 0.029	0.846 ± 0.068	0.867 ± 0.060
Zre	11.1 ± 1.5	11.0 ± 1.4	10.9 ± 1.5	10.8 ± 1.4
h	0.725 ± 0.017	0.720 ± 0.036	0.748 ± 0.038	0.703 ± 0.042

MCMC on CMB, P(k), SNIa+evolution $\Delta m_e = K \Delta t$

Ferramacho et al. 2009

(本部) (本語) (本語) (語)

Conclusions

Alain Blanchard, LATT, Toulouse The fifth Element: Astrophysical status of dark energy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Successes of ACDM

||◆聞 |> ||◆ 臣 |> ||◆ 臣 |>

Successes of ΛCDM

No need for $w \neq -1...$

(1日) (日) (日)

Successes of ΛCDM

No need for $w \neq -1...$

We need something in the gravitational sector ...

向下 イヨト イヨト