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Renormalized Perturbation Theory (RPT)

- partial resummation of PT contributions

- truncation of RPT expansion accounts for all nonlinearities down to a given 
scale (the impact of smaller scales is highly suppressed in fluid limit).

- “Initial” conditions (density perturbations after decoupling) play a crucial role. 
They act as a (stochastic) source: observables (expectation values) correspond 
to averages over the statistics of initial conditions.

- In RPT, the linear propagator gets ``renormalized” due to nonlinearities,
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For Gaussian initial conditions, the nonlinear propagator can be related to the 
cross-correlation between initial and final conditions,

Gab(k, η) 〈φb(k)φc(k
′)〉 = 〈Ψa(k, η) φc(k

′)〉.

In this sense the propagator measures the memory of perturbations to their 
initial conditions.  The asymptotics are,

Gab(k → 0, η) = gab(η), Gab(k →∞, η) = 0

gab(η) =
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,

growing mode
φa(k) ∝ (1, 1)

decaying mode
φa(k) ∝ (1,−3/2)

impossible to recover at fixed order in PT!

η ≡ lnD+



The result is:
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The resummation of the propagator can be carried out exactly in the high-k 
limit!



P (k, z) = D2
+(z) P0(k) + P1loop(k, z) + P2loop(k, z) + . . .

For the power spectrum, RPT reorganizes the PT expansion,

into,

Thus, non linear effects can be divided (exactly) into two classes,

- those that are proportional to the initial power at same k.
- those that create power at k even if there was no power to begin 
with (mode-coupling)

P (k, z) = G2(k, z)P0(k) + PMC(k, z)

PMC(k, z) = P 1loop
MC (k, z) + P 2loop

MC (k, z) + . . .

with,



The Power Spectrum in RPT
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Different orders 
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 Explicit calculation of Mode-Coupling power to 2-loops in RPT

PMC ≡ P − G
2
P0



The Two-Point Function in RPT

Damping in Fourier
Space Leads to

broadening 
of acoustic peak

Mode-coupling
generates a 

shift of the peak



 Nonlinear Evolution of Acoustic Oscillations
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Power Spectrum: Dependence on Cosmology



Power Spectrum: Dependence on Cosmology



Power Spectrum: Dependence on Cosmology



Power Spectrum: Dependence on Cosmology



Power Spectrum: Dependence on Cosmology



Bispectrum
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Large-Scale Bias in local PNG

Φ = φ + fNLφ2

B = 2fNLP1P2 + cyc.

- In local models of primordial non-Gaussianity (PNG) we have for the 
Bardeen potential,

which implies for it a bispectrum,

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias 
at large scales (Dalal et al 2008),

b1(k) = b10 + ∆b1(k, fNL)

where b~1/k^2 at low-k.



where M relates the density to the Bardeen potential through the Poisson eqn

M(k) =
2c

2
k

2
T (k)D(z)

3ΩmH
2
0

∼ k
2 (k → 0)

There are basically three derivations of this effect:

- Peak Background Split (PBS): objects correspond to 

- Gaussian Field Peaks in high-threshold limit

- Local Eulerian bias model

∆b1(k, fNL) =
2fNL

M(k)
(b10 − 1)δc

∆b1(k, fNL) =
2fNL

M(k)
ν2

∆b1(k, fNL) =
2fNL

M(k)
b2 σ2

(ν � 1)

(δg = b1δ +
b2

2
δ2 + . . .)

δlin > δc

Slosar et al

Matarrese & Verde

Taruya et al



∆P (k) ∼
�

B(−k,q,k− q)d3q

=
�

M(k)M(q)M(|k− q|)BΦ(−k,q,k− q)d3q

In local Eulerian models and peaks there is a generic formula (for any type 
primordial non-Gaussianity) for the low-k power change

In PBS one splits long wavelength from small scale fluctuations,

φ = φ� + φs

δ ∼ δ� +∇2φs + fNL∇2(φ� + φs)2 ≡ δ� + δs

thus small scales perturbations (objects) will be sensitive to phi and its 
derivatives at long wavelength.

Grinstein & Wise 86
Matarrese, Lucchin &
Bonometto 86



δg = 2fNL(b1 − 1)δcφ + b1 δ

(b10 − 1)δc = ν2 − 1

which looks different from a local model where corrections are quadratic. We 
should be able to distinguish which one is correct... 

Or are they different ways of writing effectively the same biasing process? 
(McDonald 2009)

bpeaks
2 σ2 = 2(1− ν2)

ν2 − 1
ν2

δc + (ν2 − 3)

so all three formulae agree in the high-peak limit!

However, the nature of bias in these models is quite different...

In PBS, to linear order we have:

We can compare the three models by using PS and peak theory, in which case,

gravity



In RPT language, the 1/k^2 bias in local models arises through mode-coupling, 
in PBS through the propagator.  We can then distinguish between linear non-
local and non-linear local bias by computing the “galaxy propagator” G(k)

G(k) δD(k− k�) ≡ � ∂δg(k)
∂δI(k�)

�

G(k) =
2fNL

M(k)
(b1 − 1)δc + b1Gdm(k)→ 1/k2 (k → 0)

for PBS we get:

while for local models, if 

G(k) = Gdm(k)(b1 +
b3

2
σ2 + . . .)

then

δg = b1δ +
b2

2
δ2 +

b3

6
δ3 + . . .



Computing the propagator for non-Gaussian ICs is tricky, but can be done. 
Bernardeau, Crocce and Sefusatti (2010) showed that to leading order in PNG,
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Take halos in mass bin of 1e13-1e14 Msun/h at z=0:

they have b1>1 but b2<0! (There are no cancellations in G-formula if PBS right)

- PBS says P(k=0) and G(k=0) should be enhanced as 1/k^2

- local bias says that P(k=0) should be suppressed as -1/k^2 and G(k=0) 
constant at low-k.
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The local model expectations do not match results:
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Large-Scale Bias in non-local PNG

- In single-field inflationary models, we are instead interested in models that 
correspond to non-local PNG. For example, the equilateral model has a 
Bardeen potential bispectrum,

(permutations are understood), whereas the orthogonal model reads

(6fNL)−1Bequil = −P1P2 − 2(P1P2P3)2/3 + P 1/3
1 P 2/3

2 P3

(6fNL)−1Bortho = −3P1P2 − 8(P1P2P3)2/3 + 3P 1/3
1 P 2/3

2 P3

We are interested in generating such bispectra from quadratic (non-local)
models, i.e.

Φ = φ + fNL K[φ, φ]

where K is the appropriate non-local quadratic kernel that generates the 
desired bispectrum. For simplicity we assume scale-invariance.



K loc
12 = (1− u) + u

(k3
1 + k3

2)
2|k1 + k2|3 ,

For the local model, to leading order one can find a general solution

where u is a free parameter that leaves invariant the bispectrum. However, if 
one has an admixture of second term (nonzero u), it does contribute a 
significant low-k (k^-6) component to the power spectrum through loops 
(which are UV sensitive). Then one must then set u=0.

For more complicated models these regularity constraints similarly restrict the 
free parameters that leave the bispectrum invariant. 

In the EQ and ORT case, there is k^-6 and k^-4 contributions that one must 
take care of.

IF, however, one does leave e.g. the k^-4 in, the PBS formula leads to a different 
large-scale bias scaling than GW/MLB to leading order in fnl. 



What’s the predicted low-k power for non-local PNG? Local models predict

∆P (k) ∼
�

M(k)M(q)M(|k− q|)BΦ(−k,q,k− q)d3q ∝ P (k) (k → 0)

Using PBS, one gets generically

∆P (k) ∼
�

M(k)M(q)M(|k − q|)BφΦΦ(−k, q, k − q)d3q

Which differs slightly (apart from the usual prefactors in nu) in one term absent 
in the bispectrum. Again this difference is due to MC (local) vs Propagator (PBS, 
mediated by a Gaussian Field).

If the kernel K is not too singular as k->0 (1-loop power constraint), the low-k 
bias scalings agree. 



Name Sample Lbox Npar mpar Nrealiz

Oriana (G) LRG
+Main -22

2400 1280^3 4.57E+11 42

Oriana 
fnl_local=+100

LRG
+Main -22

2400 1280^3 4.57E+11 12

Oriana 
fnl_equi=-400

LRG
+Main -22

2400 1280^3 4.57E+11 12

Oriana 
fnl_orto=-400

LRG
+Main -22

2400 1280^3 4.57E+11 12

Carmen Main -21 1000 1120^3 4.98E+10 42

Esmeralda Main -20 640 1250^3 9.31E+09 50

Consuelo Main -19-18 420 1400^3 1.87E+09 50

LasDamas Simulations

Nmocks=4 x Nrealiz,    2LPT ICs,   Gaussian Mocks available at http://lss.phy.vanderbilt.edu/lasdamas/

http://lss.phy.vanderbilt.edu/lasdamas/
http://lss.phy.vanderbilt.edu/lasdamas/
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Adding Bispectrum information helps a lot...

V = 2.43 (Gpc/h)3
n̄ = 9.5× 10−5 (Mpc/h)−3

(S/N)→ (S/N) /3.4

(local)



Some features of the analysis:

- Blind analysis: clustering data scrambled by random numbers, method of 
analysis decided on mock catalogs (including challenge cosmologies+NGICs) 
and then fixed before unscrambling.

- Gaussian and inflationary-motivated non-Gaussian initial conditions

- 2-loop RPT for the mass (Crocce & Scoccimarro; Bernardeau at al)
- Redshift distortions beyond PT (extension of Scoccimarro 04)
- Galaxy bias beyond local approximation (even for Gaussian ICs) 

- Full (non-Gaussian) power+bispectrum covariance matrix determined from 
analytic (beat-coupling approx) and numerical approaches (PTHalos, and N-
body simulations + HOD from LasDamas). Includes luminosity-dependent bias.

- Bispectrum Eigenmodes + non-Gaussian likelihood (Scoccimarro 00; 
Gaztanaga &  Scoccimarro 05)

The Bispectrum of SDSS Galaxies

~



Conclusions
- RPT provides adequate description of DM nonlinearities at the level needed 
in current observations.

- Local bias does not explain the low-k behavior of the bias of mid-size halos.

- PBS calculations have been generalized to non-local PNG models. Currently 
testing these in detail.
 
- Bispectrum adds significant (S/N) to constrain PNG. 

- SDSS bispectrum shows expected configuration dependence generated 
by gravity, multiple scales/configurations detected at high signal-to-noise. 

- Stay tuned for quantitative constraints on cosmology, bias, gravity and PNG!


