Primordial Non-Gaussianity and Bispectrum in N-Body Simulations

Marc Manera (NYU)

collaborators: - Roman Scoccimarro, K.C. Chan, L. Hui - Las Damas collaboration

Benasque Cosmology Meeting

August 2010

What to bring home: sneak peek at the conclusions:

I) We have a *fast* code to generate IC for Non-Local Primordial Non-Gaussian fluctuations

2) We have run a set of large N-Body simulations for the Local, Equilateral, and Orthogonal Primordial Bispectrum shapes.

3) We are currently analyzing the halo bias in these simulations.

Outline

- Local & Non-Local PNG models
- Generating IC for Non-Local Models
- Bispectrum Results from Simulations
- Halo biasing
- why use a 2LPT code?

notice: work still in progress, some plots are preliminary

Local Primordial NG model

- In local models of primordial non-Gaussianity (PNG) we have for the Bardeen potential,

$$\Phi = \phi + f_{\rm NL}(\phi^2 - \langle \phi^2 \rangle)$$

which implies for it a bispectrum,

$$B(k_1, k_2, k_3) = 2f_{\rm NL}P(k_1)P(k_2) + {\rm cyc.}$$

- Generating IC for local models is easy, we only need to Fourier transform the gaussian field back and forth to add the quadratic part.

- For biased tracers (galaxies, halos), this model leads to a scale-dependent bias at large scales (Dalal et al 2008), where $b_1 \sim 1/k^2$ at low-k

Non-local PNG

We are interested in single field inflationary models that correspond to nonlocal PNG. There are two shapes that we consider:

Equilateral shape (Creminelli 2006)

$$(6f_{\rm NL})^{-1}B_{\rm equil} = -P_1P_2 - 2(P_1P_2P_3)^{2/3} + P_1^{1/3}P_2^{2/3}P_3$$

Orthogonal shape (Senatore 2010)

"the parameter space of the most general single field models, where the inflaton fluctuations have an approximate shift symmetry, consists of a linear combination of two independent shapes: the equilateral one and one that we call orthogonal"

$$(6f_{\rm NL})^{-1}B_{\rm ortho} = -3P_1P_2 - 8(P_1P_2P_3)^{2/3} + 3P_1^{1/3}P_2^{2/3}P_3$$

(permutations are understood in the equations)

The EQ and ORT shapes are a basis of a theoretical bispectrum space from a single field effective theory inflation. They can have large Fnl because they have a non canonical kinetic term.

Non-local PNG

Another shape of the bispectrum in the literature:

Folded shape (Meerburg 2009)

$$(6f_{\rm NL})^{-1}B_{\rm folded} = P_1P_2 + 3(P_1P_2P_3)^{2/3} - P_1^{1/3}P_2^{2/3}P_3$$

The Folded shape however can be understood as a combination of the LOC, EQ, and ORT shapes.

Generating IC in Non-local PNG

We are interested generating IC for models with bispectra of the type

$$(6f_{\rm NL})^{-1}B_{
m general} = c_1P_1P_2 + c_2(P_1P_2P_3)^{2/3} + c_3P_1^{1/3}P_2^{2/3}P_3$$

We want to generate such models from a quadratic (non-local) potential.

$$\Phi = \phi + f_{\rm NL} \ K[\phi, \phi] \qquad \qquad \delta_{\mathbf{k}} = \frac{2}{3} \frac{k^2 T(k) D(z)}{\Omega_m H_0^2} \Phi_{\mathbf{k}}$$

where we need to find the appropriate non-local quadratic kernel that generates the desired bispectrum. For simplicity we assume scale-invariance.

$$\Phi = \phi + f_{\rm NL} \phi^2, \qquad \qquad B = 2 f_{\rm NL} P_1 P_2 + {\rm cyc.}$$

 $\Phi = \phi + f_{\rm NL} \nabla^{-2} (\partial \phi)^2, \qquad \qquad B = -6 f_{\rm NL} (P_1 P_2 P_3)^{2/3}$

$$\Phi = \phi + f_{\rm NL}[(1-t)\partial^{-1}(\phi\partial\phi) + t\nabla^{-2}(\phi\partial^{2}\phi)] \quad B = f_{\rm NL}P_{1}P_{2}^{2/3}P_{3}^{1/3} + \text{cyc.}$$

$$\partial^{-1}A \equiv \sqrt{-\nabla^{-2}}A \equiv \int e^{-i\boldsymbol{k}\cdot\boldsymbol{x}}\left(\frac{1}{k}\right)A(\boldsymbol{k}) d^{3}k$$

Recent Limits on Fnl

-29 < Local Fnl < 70 SDSS (Slosar et al. 2008) -10 < Local Fnl < 74 WMAP (Komatsu et al. 2010)

-214 < Equil Fnl < 266 WMAP7 (Komatsu et al. 2010) -125 < Equil Fnl < 435 WMAP5 (Smith et al 2009)

-410 < Orthog Fnl < 6 WMAP7 (Komatsu et al. 2010) -369 < Orthog Fnl < 71 WMAP5 (Senatore et al. 2009)

LasDamas Simulations

Name	Sample	Lbox	Npar	mpar	Nrealiz
Oriana (G)	LRG +Main -22	2400	1280^3	4.57E+11	42
Oriana (LOC)	LRG +Main -22	2400	1280^3	4.57E+11	12
Oriana (EQ)	LRG +Main -22	2400	1280^3	4.57E+11	12
Oriana (ORT)	LRG +Main -22	2400	1280^3	4.57E+11	12
Carmen (G+loc)	Main -21	1000	1120^3	4.98E+10	42
Esmeralda	Main -20	640	1250^3	9.31E+09	50
Consuelo	Main -19-18	420	I 400^3	I.87E+09	50

Nmocks=4 x Nrealiz, 2LPT ICs, Gaussian Mocks available at <u>http://lss.phy.vanderbilt.edu/lasdamas/</u>

Large Suite of Dark Matter Simulations (LasDamas)

VANDERBILT U. Andreas Berlind Cameron McBride SLAC Michael Busha **Risa Wechsler** YALE Frank van den Bosch NYU Roman Scoccimarro Marc Manera

$$\Omega_b = 0.04$$
 $n_s = 1$
 $\Omega_\Lambda = 0.75$ $h = 0.7$
 $\Omega_m = 0.25$ $\sigma_8 = 0.8$

more details on PNG simulations

Initial conditions

- 2LPT IC at zi=49
- FAST code few minutes only
 60 cpu-hours / Np=1280³
 EQ,ORT take only 20% longer than LOC

Simulations

- Run at Kraken (Tennessee)
- ~ 27.000 cpu-hours, less than three days

blue = LOC (fnl=100), red = EQ (fnl=-400), green = ORT(fnl=-400)

blue = LOC (fnl=100), red = EQ (fnl=-400), green = ORT(fnl=-400)

Matter is OK, now let's look at HALOS

The Zeldovich approximation assumes that particles move in straight lines between t=0 and the starting redshift of a simulation.

This causes *transients* that affect the collapse of the most massive structures. Scoccimarro (1998), Crocce et al. (2006), Jenkins (2010)

ZA initial conditions converge very slowly, use 2LPT always!!

This is true also for SO halos

plot from LasDamas Collaboration, (McBride et al in prep)

comment on 2LPT IC

ZA initial conditions can mimic primordial non-Gaussianities.

Conclusions

Simulations

• We have a set of N-Body simulations with PNG of the LOC, ORT, and EQ type. These simulations are part of LasDamas.

• We are currently analyzing halo biasing in these simulations. We have also mocks that match SDSS wp(rp). The Bispectrum adds significant S/N when all configurations are used.

Initial Conditions

- We have produced a code that generates IC for PNG models.
- This code:
 - is fast and takes advantage of a factorizable kernel for the potential.
 - It will be <u>made public</u>.
 - Uses 2LPT, and it is implemented in parallel.
- Using 2LPT is easy to use and avoids transients in the high mass end of the mass function. ZA takes long to converge.