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Cluster sensitivity to cosmology 

For models with larger w:  

•  less volume -->  less 
clusters at low redshift. 

•  structure grows less rapidly 
--> more clusters at high 
redshift. 

Models are normalized to 
produce same cluster 
abundance at low redshifts 

Mohr, J. 2005 



Cluster counts and mass estimation 

Cluster mass is not an observable. We must rely on observable 
proxies for mass, which have intrinsic scatter. For example: 

•  Sunyaev Zel’dovich (SZ): 
Inverse Compton scatter of 
CMB photons off cluster 
gas (electrons) 
-  No redshift dependence, 
low scatter, but high Mth 
(~1014.2 h-1 Msun) 

Carlstrom et 
et al. 2002 

1’ 
Cluster Abell 1914 



Cluster counts and mass estimation 

Cluster mass is not an observable. We must rely on observable 
proxies for mass, which have intrinsic scatter. For example: 

Optical/IR: clustering of galaxies in 
physical and color space 
-  High-scatter, but lowest Mth 
(~1013.5 -1014 h-1 Msun). 

Cluster Abell 1914 SDSS image 



Cluster counts and mass estimation 

Cluster mass is not an observable. We must rely on observable 
proxies for mass, which have intrinsic scatter. For example: 

X-ray: thermal emission from hot 
cluster gas 

-  Many choices of observables. 
Temperature (from spectrum), 
luminosity, fgas . 
-  Assumes hydrostatic 
equilibrium. Lowest scatter, but 
risk of bias, depending on 
observable. 

Cluster Abell 1914 1’ Chandra image 
Jeltema et al. 2005 



Cluster counts and mass estimation 

Cluster mass is not an observable. We must rely on observable 
proxies for mass, which have intrinsic scatter. For example: 

Weak Lensing: Directly 
probes (projected) total 
mass.   
-  Low redshift. Requires  
stacking (does it? -> 
shear peaks) 

Cluster Abell 1914 

1’ 
Shear map from 
Dahle et al. 2002 



Things get more complicated when we include errors in redshift 
and mass, selection effects, and observational errors … 
€ 

m(Mi,zk ) = dΩ∫ dz DA
2 (z)
H(z)zk

zk+1∫ d lnM dn
d lnMM i

M i+1∫

Mass Function (eg. Jenkins). 
Derived from power spectrum. 
Depends on cosmology through 
growth of structure. 

Depends on 
geometry. 

€ 

m(M > Mth ,z) = dV∫ d lnM dn
d lnMM th

∞

∫

The mean number of clusters with mass M > Mth is given by 

Can get more information by binning in redshift and mass: 

Predicting cluster counts 



€ 

dn
d lnM

P(Mobs,zphot M,z)P(Mobs)φ(Mobs,zphot )

Predicting cluster counts 

The mean number of clusters in a bin of Mobs=(Mobs, Mobs , … , Mobs ) 
and zphot is 

€ 

m(Mobs,zphot ) = dzphot∫ dΩ∫ d lnM∫ d lnMobs∫

Selection 
function Observational 

errors (photon 
counts, …) 

Errors in observables 
and photometric 
redshifts 

1 2 n 

Mass is not directly observable => must rely on 
indirect proxies for mass which are statistically 

related to the true mass.  

Theoretical 
uncertainties 



Modeling P(Mobs|M ) 

Simulations and observations suggest mass-observable errors are 
(mostly) well-represented by log-normal distributions: 

€ 

x(Mobs
i ,M) =

lnMobs
i − lnM − lnMbias

2σ lnM
2

€ 

P(Mobs
i |M) =

1
2πσ lnM

2
exp −x 2(Mobs

i ,M)[ ]
where 

€ 

lnMbias = lnMbias(M,z)

€ 

σ lnM
2 =σ lnM

2 (M,z)



Cluster Counts 

Cosmological and mass nuisance parameters affect 
counts in similar ways: 

€ 

σ lnM = 0.25

€ 

Mth =1014.2h−1Msun



Using clustering information is one of the techniques 
referred to as self-calibration.  

Noise in Counts 

•  Counts in an angular bin will deviate from the mean 
because of Poisson errors (shot noise) and large-scale 
clustering.  
•  If we can predict the noise given the cosmology and 
mass-nuisance parameters, then we can use the noise to 
improve constraints! 

Lima & Hu (2004, 2005, 2007) 



Predicting the Noise 

The sample covariance of the counts due to clustering is  

€ 

Sij = (mi −mi)(m j −m j )

€ 

=
bimi b j m j

Vi V j

d3k
(2π )3

Wi
*(k)W j (k)P(k)∫

i, j: Correspond to redshift bins. 

Overbars correspond to spatial averages at fixed redshift bins. 

Theoretical 
Prediction 

Observable 



Cross-Calibration 



Parametrization of OPT + SZ 

Optical: 
 - Lower Mth (1013.5 – 13.7) 

 - Lower max. redshift (zmax~1) 
 - Larger scatter (σlnM=0.5) 

Based on expected 
sensitivities of DES (optical) 
and SPT (SZ) surveys. 

SZ: 
 - Higher Mth (1014.2 – 14.4) 
 - Higher max. redshift (zmax~2) 
 - Lower scatter (σlnM=0.25) 

10 nuisance 
parameters  

6 nuisance 
parameters  

Describing redshift 
and mass evolution of 
mass-observable 
relation (3rd order 
polynomials). 



Cross-Calibration 

Method I 

Method II € 

m (Mobs
1 ,z)

€ 

m (Mobs
2 ,z)
€ 

lnL1

€ 

lnL2

€ 

lnLtot

Method I 

Method II 

€ 

m (Mobs
1 ,Mobs

2 ,z)

€ 

lnLtot

Old: 

New: 



Results 

Cross. cal. using only 
SZ ∩ OPT 

Full cross-calibration 

SZ 

OPT 

SZ + OPT 

Correlation: ρ=0 (fixed) 
1% priors on: Ωmh2, Ωbh2, n (tilt), ln As  Cunha (2009) 

No priors on 16 
nuisance parameters 

WMAP3 



Results 

Priors on nuisance parameters will further improve constraints 

A sample of ~100 clusters with detailed mass modeling is 
needed to achieve σ(σ2  ) ~ (0.1)2 at z~1. lnM 

Cunha (2009) 



Degeneracies 

•  A model for the cluster counts is a function of the 
cosmological and the mass nuisance parameters, which 
can be degenerate. 
•  Choice of parametrization affects results only up to a 
point. 
•  Dark energy effects on growth and geometry are very 
smooth, so only low-order evolution of systematics 
matters. 
•  If we can trust simulations and physical models for 
errors, much stronger constraints are possible.  
•  Simulations do not need to estimate parameters 
correctly, the cross-calibration can do that.  



Uncertainties in the mass function 



The mass function 

Recall: 

€ 

m(M > Mth ,z) = dV∫ d lnM dn
d lnMM th

∞

∫

Choice: Tinker mass function (Tinker et al. 2008) 

€ 

dn(M,z)
dM

= f (σ) ρ m
M

d lnσ−1

dM

€ 

f (σ) = A σ
b
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−a

+1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ e−c /σ

2

€ 

A(z) = A0(1+ z)Ax

a(z) = a0(1+ z)ax

b(z) = b0(1+ z)−α

Parameters: 

€ 

A0 = 0.186
a0 =1.47
b0 = 2.57
c =1.19

€ 

Ax = −0.14
ax = −0.06
α = 0.0107



The galaxy bias 

€ 

b(M;z) =1+
acδc

2 /σ 2 −1
δc

+
2pc

δc 1+ (acδc
2 /σ 2)pc[ ]

€ 

ac = 0.75

€ 

δc =1.69

€ 

pc = 0.30 Bias is only needed to calculate 
clustering of clusters (self-calibration). 

Sheth & Tormen (1999) 

In total, we have 7+3 nuisance parameters for the mass-
function and linear bias, and 6 nuisance parameters 
describing the mass-observable relation, P(Mobs|M). 



Degradation in σ(ΩDE) 

Cunha & Evrard 
(2010) 

Baseline constraints 
(infinitely sharp 
priors): 

SZ Survey 

€ 

σ(ΩDE ) = 0.01
σ(w) = 0.05



Scatter 

Bias 

Mobs 

Correlations (are complicated) 

Mass 
Function 

€ 

f (σ) = A σ
b
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−a

+1
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⎣ 
⎢ 

⎤ 

⎦ 
⎥ e−c /σ

2

Cunha & Evrard 
(2010) 

2 

€ 

σ lnM
2 =σ 0

2 + Siz
i

i=1

3

∑

€ 

lnMbias = B0 + B1 ln(1+ z)



Very Complicated 

€ 

f (σ) = A σ
b
⎛ 

⎝ 
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⎟ 
−a

+1
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⎣ 
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⎦ 
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Cunha & Evrard 
(2010) 



Mass function nuisance parameters 

Nuisance parameters describing redshift evolution of 
mass function only dominate when prior uncertainty 
is large (nearly flat priors). 

Cunha & Evrard (2010) 



Complementarity to other DE probes 



The DETF figure of merit 

€ 

FOM =
1

σ (wp ) ×σ(wa )
€ 

w(z) = w0 + (1− a)wa

€ 

= wp + (ap − a)wa

Fiducial: FOM0=116 WL+SNIa
+Planck+BAO 

w/ Clusters: FOM=206 - 512 WL+SNIa
+Planck+BAO+Clusters 

Cunha, Huterer & Frieman (2009) 



Sensitivity to modifications of gravity 

Fiducial: γFOM0=4.8 
WL+SNIa+Planck+BAO 

w/ Clusters:  γFOM=10 - 50 
WL+SNIa+Planck+BAO+Clusters 

€ 

lng(a) = d lna Ωm
γ −1[ ]0

a
∫

For General Relativity: 

€ 

γ = 0.55

Fit to growth equation: 

Cunha, Huterer & Frieman (2009) 

€ 

γFOM =
1

σ(γ)



Primordial non-Gaussianity from Clusters 

Counts + Clustering of Clusters is relatively insensitive to 
systematics – see Dragan Huterer’s talk, Cunha et al (2010), 
Sartoris et al (2010), Oguri (2009). 

Clusters vs. Galaxies 

•  Galaxy catalogs will be much bigger but, 

•  It’s the large halo-halo separations that have the signal 

•  Clusters are more directly related to the haloes. 



Conclusions 

•  Cross-cal:  
- constrain mass-observable relations 
-  understand selection 

- test with simulations, real data 

•  Better/more simulations to constrain mass function 
are very desirable. Simulations to understand mass-
observable relation are essential (and feasible). 

•  Interesting constraints are possible even with large 
uncertainties in sources of errors.  

•  Very interesting constraints if priors are available. 

Applications 

Future 



Cluster Research in Michigan 
•  Gus Evrard 
•  Tim McKay 
•  Dragan Huterer 
•  Elena Rasia 
•  David Gerdes 
•  Chris Miller 
•  Jeff McMahon 
•  Oleg Gnedin 
•  Brian Nord 
•  Rebecca Stanek 
•  Anbo Chen 
•  Brandon Smith 
•  CC 
•  Jorg Dietrich 

•  Optical 
•  SZ 
•  X-Ray 
•  WL 
•  Simulations 
•  Observations 
•  Selection 
•  Contamination 
•  Mass-observable relation 
•  Substructure 
•  Photometric redshifts 
•  Cross-calibration 
•  Cosmological constraints 



Modeling P(Mobs|M ) 

If all the P(M|M) are Gaussians, so is their product. For two mass-
observables the total probability P(Mobs|M ) can expressed as a 
bivariate lognormal distribution. 

€ 

P(Mobs |M) =
1
2π C

exp −xTC−1x[ ]

Where C is the covariance matrix, defined as  

€ 

C =
σ1
2 ρσ1σ 2

ρσ1σ 2 σ1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

And ρ is the correlation coefficient (-1 < ρ < 1). 



33 

OPT+SZ parameter space 

1014.2 

1014.2 

1013.5 

1013.5 MSZ 
OBS 

MOPT 
OBS 

SZ+OPT 

OPT 

TRULY EMPTY 

NEARLY EMPTY 

Selection 

0 < z < 1 



34 

OPT+SZ parameter space 

1014.2 

1014.2 

1013.5 

1013.5 MSZ 
OBS 

MOPT 
OBS 

SZ 

EMPTY 

TRULY EMPTY 

TRULY EMPTY 

Selection (0<z<2) 

1 < z < 2 



•  Work in range of Mobs and zphot where selection is nearly 
complete:  

•  Ignore observational errors: 

•  Mobs errors are separable from zphot errors: 

•  Fixed σ(zphot)=0.02 errors for this talk. 

Predicting cluster counts 

€ 

P(Mobs) =1

€ 

P(Mobs,zphot M,z) = P(Mobs M)P(zphot z)

€ 

φ(Mobs,zphot ) =1

Simplifying assumptions 



The importance of being clustered 

SZ + OPT 

WMAP3 

Full cross-calibration 

Full cross-cal. no clustering 

With full cross-calibration, 
clustering information only 
relevant for ΩDE constraints. 

Correlation: ρ=0 (fixed) 

SZ + OPT (no clustering) 

Cunha (2009) 



Parametrization of OPT + SZ 

Optical: 

€ 

lnMbias = lnMbias
0 + a1(1+ z) + a2(lnMobs − lnMpivot )

€ 

σ lnM
2 =σ 0

2 + biz
i +

i=1

3

∑ ci(lnMobs − lnMpivot )
i

i=1

3

∑

Mth=1013.5 h-1 Msun 
0 < z < 1 

€ 

lnMbias
fiducial = 0

€ 

σ 0
fiducial = 0.5

€ 

lnMbias = lnMbias
0 + a1(1+ z)

€ 

σ lnM
2 =σ 0

2 + biz
i

i=1

3

∑

€ 

lnMbias
fiducial = 0

€ 

σ 0
fiducial = 0.25Mth=1014.2 h-1 Msun 

0 < z < 2 

SZ: 
Based on expected 
sensitivities of DES (optical) 
and SPT (SZ) surveys. 


