Probing the growth of non-linear structure with the Galaxy And Mass Assembly survey

Peder Norberg

Institute for Astronomy, University of Edinburgh, UK

LSS in the "low"-redshift Universe

A. Probing the growth of non-linear structure with the Galaxy And Mass Assembly survey:

- GAMA: a multi-wavelength redshift survey
- Main LSS goals: DM HMF evolution, growth of structure
- Preliminary results

B. An objective way to quantify the impact of superstructures: [with Baugh, Gaztanaga & Croton]

- Uncertainty in data induced clustering errors
- Our Method
- Results (applied to SDSS DR7)

CDM: standard cosmological model

Combined with $H_0 \& SN$ Ia measurements, CMB & LSS confirm a standard cosmological picture:

Growth of non-linear structure

Structure formation:

- $\Delta \rho_{DM} / \rho_{DM}$ grow under gravity \rightarrow DM haloes
- Gas cools in DM haloes \rightarrow stars \rightarrow galaxies in DM haloes

Key questions:

- Is the Cold Dark Matter (CDM) model correct?
- Dark Energy or new gravitational physics?

Fundamental research to our understanding of structure formation and galaxy evolution.

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

CDM halo mass function

Springel et al. (2005) Benasque, August 2010

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

CDM halo mass function

For a given cosmology, the CDM halo mass function is very well predicted (\sim 10% accuracy), but not tested...

2dF Galaxy Redshift Survey: a short summary

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

2dFGRS Percolation Inferred Galaxy Group Catalogue (2PIGG)

Dynamical group mass estimator: $\sigma^{2} = \sigma_{gap}^{2} \left(\frac{N}{N-1}\right) - \sigma_{err}^{2}$

$$M = \frac{0 r \sigma^2}{G}$$

with 5 so as to match DM FOF b=0.2 halo masses. σ_{gap} see Beers, Flynn & Gebhardt (1990). (Eke et al. 2004)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: la raison d'être

(with predictions from semi-analytic galaxy formation models)

GAMA: la raison d'être

(with predictions from semi-analytic galaxy formation models)

Galaxy And Mass Assembly Survey: Phase I (2008-2010)

- Next generation galaxy redshift survey:
 - ~150,000 galaxy spectra to r_{AB} ~19.8:
 - 2 mag. fainter than SDSS => L* at z~0.30 [~3 Gyr]
 - 150 sq. deg. wide, overlapping with SDSS and 2dFGRS
 - 75 nights on AAT with AAOmega over 3 years (2008-2010)
 - GAMA is also K-band limited, with $K_{AB} < 17.6$
- GAMA is a unique survey and fills an essential gap in the current generation of redshift surveys, between the very wide low-z and very narrow high-z.

Galaxy And Mass Assembly Survey: germane connection between shallow-wide & deep-narrow

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: germane connection between shallow-wide & deep-narrow

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: where are the fields?

GAMA: Contributing Facilites

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

GAMA: (some) follow up observations

GAMA:	Facility	Wavelength	Time	Depth (on GAMA)	(5ơ, AB)	Status
	aat/aaΩ (gama i)	Spectra	75nights	r < 19.8, K=3	17.6 mag	finished
	ĂAT/AAΩ (GAMA-II)	Spectra	~200nights	r < 19.8, K<	17.6 mag	submission (Sept-2010)
	UKIRT (LAS)	Near-IR (YJHK)	35nights	Y=22.0, J=20).9, H=20.2, K=20.4	in progress
	<mark>VISTA</mark> (VIKING)	Near-IR (YJHK)	75nights	Z=23.8, Y=2	3.0, J=22.8, K=21.9	in progress
Ê.	VST (VST)	Optical (ugriz)	120nights	u=24.8, g=2	25.4, r=25.2, i=24.2	early 2011
	HERSCHE (ATLAS)	L Far-IR	200hours	100, 160, 25 67, 94, 4	0, <mark>350, 500 microns</mark> 45, 62, 53 mJy	in progress
	ХММ	X-Ray		follow up of G	AMA groups	submission (Oct-2010)
	ASKAP (DINGO)	Radio (21cm)	phase-I proposal over 150 sq.deg.		Phase-1 "accepted"	
Peder Norberg	Institute for Astronomy, Royal Observatory Edinburgh Benasque, August 2010					

GAMA: Preliminary Results spectra quality & redshift success rate...

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: example spectra (improved with PCA sky-subtraction)

Wavelength / Å

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Redshift

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results survey redshift completeness...

GAMA: Preliminary Results *improved photometric redshifts*

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results *improved photometric redshifts*

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results N(z) for z_{spec} and z_{photo}

N(z) for the full GAMA sample: Photo-z trained on a representative subset....

Parkinson et al.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results N(z) for z_{spec} and z_{photo}

Parkinson et al.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results *r*-band galaxy luminosity function (z<0.1)

Impact of magnitude definitions

Inset: schechter function maximum likelihood parameters (α,M*)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Hill et al.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results Mock GAMA Galaxy Group (G³) catalogue

Example of a 4 Mpc/h thick slice of a mock GAMA galaxy catalogue: - HOD/CLF - modified semi-analytic (Durham/Munich)

Halo ~ 10^{14} Msol/h Halo ~ 10^{13} Msol/h Halo ~ 10^{12} Msol/h Halo ~ 10^{11} Msol/h

GAMA: Preliminary Results GAMA Galaxy Group (G³) catalogue

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results GAMA Galaxy Group (G³) catalogue

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Redshift-Space Distortions

- RSD due to peculiar velocities are quantified by correlation fn ξ(σ,π).
- Two effects visible:
 - Small separations on sky: 'Finger-of-God';
 - Large separations on sky: flattening along line of sight.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results Clustering & Redshift Space Distortions

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results Clustering & Redshift Space Distortions

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly: Growth rate (predictions)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: THE DATABASE (I)

Institute for Astronomy, Royal Observatory Edinburgh

Peder Norberg

GAMA: THE DATABASE (II)

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Galaxy And Mass Assembly Team Structure

WORKING GROUPS

SCIENCE Peacock (ROE)

Baldry Liske (LIMU) (ESO)

CATS

DATABASE OBS Driver (PI, StA)

Norberg (ROE)

MOCK/THEORY RADIO Hopkins (Sydney)

SPEC. P. Loveday Bamford (Sussex)

IMAGE P. (Nott.)

TEAM MEMBERS (now incomplete...)

Bland-Hawthorn (Sydney) Croom (Sydney) Frenk (Durham) **Kuijiken (Leiden)** Nichol (Portsmouth) **Proctor (Swinburne)** Sutherland (OMUL) Warren (Imperial College) Cameron (StA. ETH)

Couch (Swinburne) Cross (ROE) **Graham** (Swinburne) Lahav (UCL) Phillipps (Bristol) Sharp (AAO) Tuffs (MPIK) Robotham (StA) Thomas (ICG)

Concelice (Nottingham) Edmondson (Portsmouth) Iones (AAO) Oliver (Sussex) **Popescu (UCLan) Staveley-Smith (UWA)** van Kampen (Innsbruck) Ellis (Sydney) Brough (AAO)....

More than 5 PhD students: Hill & Kelvin (StA), Parkinson (ROE), Prescott (LJMU), Gunawardhana (Macquarie U), Wijesinghe (Sydney)...

TEAM AFFILITATIONS

UKIRT/LAS, VST/KIDS, VISTA/VIKING, HERSCHEL/ATLAS, ASKAP/DINGO, DURHAM ICC

Galaxy And Mass Assembly: The next steps....

- GAMA-II:
 - Galaxy formation and large scale structure survey:
 - ~360 sq. deg.: ~200 sq.deg. at δ ~0 (mostly GAMA-I) & ~160 at δ ~-30.
 - 2 mags deeper than SDSS & 4 mags deeper than 6dFGS
 - Multi-wavelength: AAT, VST, VISTA, HERSCHEL (XMM, SCUBA II, ASKAP)
 - Comprehensive study of matter and energy on Mpc to kpc scales z < 0.5
- GAMA-II and the large scale structure case:
 - Groups: Halo Mass Function, Galaxy Formation Efficiency, X-ray follow up...
 - Environmental studies: from voids to clusters as function of redshift!
 - Growth rate of structure, $f_{\alpha}(z)$, and $\gamma(z)$ from the GAMA survey!
- GAMA-II and the multi-wavelength case (~15 bands):
 - SMF, SFH, SFR, ... as function of X...
 - Structural decomposition into bulge, bar, disk, ... in multiple (optical) bands
 - Herschel/ATLAS and ASKAP/DINGO fields \rightarrow Far-IR and H₁ Universe

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

An objective way to quantify the impact of superstructures

Motivation:

- coherent large scale structures influence clustering measurement in a non-trivial way
- data based methods to infer errors do not put any precise constraint on the sub-region sizes to be used (e.g. bootstrap and Jackknife)
- Errors on higher order statistics are non-trivial to estimate using mocks → errors from data...
- There must be a quantitative & objective way to validate the size of the sub-samples used.

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

An objective way to quantify the impact of superstructures

2005MNRAS. 364..620G

E. Gaztañaga et al.

Institute for Astronomy, Royal Observatory Edinburgh

The Jackknife quilts for SDSS DR7

N=25

N=225

Jackknife method consists in estimating the covariance from N samples, leaving one out each time.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Relative clustering of each JK sample

Sample: SDSS DR7, M*+0.5>M>M*-0.5, V ~ (258 Mpc/h)³

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

New statistic: JK ensemble fluctuation

Relative variance 1:
$$\sigma_{tot}^2 = \frac{1}{N_{sub}} \sum_{i=1}^{N_{sub}} \Delta_i^2$$

where Δ_i is the <u>relative difference</u> of our measurement in the Jackknife sample (everything minus the ith zone) with respect to the one of the whole sample, using N=N_{sub} samples.

Relative variance 2:
$$\sigma_{tot-i}^2 = \frac{1}{N_{sub} - 1} \sum_{j \neq i}^{N_{sub} - 1} \Delta_j^2$$

JK ensemble fluctuation: $\delta_{JK}^i \equiv \frac{\Delta_i}{\sigma_{tot-i}}$

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

JK ensemble fluctuation

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Different galaxies in the same volume

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

"Same" galaxies in different volumes

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Does this match ACDM simulations?

<u>L-BASICC</u>: 50 low-res. N-body L=1340 Mpc/h $M_p \sim 10^{12}$ Msol/h (Angulo et al. 2008)

Extract: 100 SDSS L* volumes

- → 2 from each box, >500Mpc/h apart
- → 99/100 truly independent
 Analyse DM only, with
 M* mean density.
 (Norberg et al. 2009)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

PDF for JK ensemble fluctuation

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

JK ensemble fluctuation: conclusion

- an objective way of finding large coherent superstructures, using a standard Jackknife resampling technique.

- a quantitative way of justifying the size of the Jackknife zones to be used for the error analysis of the clustering signal

- a quantitative way to study the influence of large coherent superstructures, even when they dominate the clustering signal.

But most importantly:

It is based on the data alone. It is easy to compute (so why not do it)

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh