Pushing the Void to the limits: a good fit to CMB, BAO, SN and HST.

Wessel Valkenburg, RWTH Aachen Modern Cosmology, Benasque, 2010

Biswas, Notari, WV, arXiv:1007.3065

Friday, 13 August, 2010

Outline

Outline

- Why is a large local void interesting?
- SN
- BAO
- CMB
- H₀
- Matter power spectrum
- Other work
- Conclusion

FLRW (hence ACDM) relies crucially on the Copernican Principle

- FLRW (hence ACDM) relies crucially on the Copernican Principle
- Today's constraints on Λ rely crucially on the assumption of homogeneity

- FLRW (hence ACDM) relies crucially on the Copernican Principle
- Today's constraints on Λ rely crucially on the assumption of homogeneity
- Can a model that ignores both these assumptions fit the data?

Λ: fine tuning in time (energy)

A: fine tuning in time (energy)
Void: fine tuning in space

• Observations are on past light cone

Observations are on past light cone
X(z) with z = z(t,r)

Observations are on past light cone
X(z) with z = z(t,r)
H₀, SN, (angular) BAO, CMB:

Observations are on past light cone
X(z) with z = z(t,r)
H₀, SN, (angular) BAO, CMB:
Expansion history through d_A(z)

Observations are on past light cone
X(z) with z = z(t,r)
H₀, SN, (angular) BAO, CMB:
Expansion history through d_A(z)
d_A(r) = ∫ dr d_A(t(r))/dr

 Observations are on past light cone • X(z) with z = z(t,r)• H₀, SN, (angular) BAO, CMB: • Expansion history through $d_A(z)$ $d_{A}(r) = \int dr \frac{d_{A}(t(r))}{dr}$ $d_{A}(r) = \int dr \frac{d_{A}(t(r), r)}{dr}$

Local energy density

$$-\frac{2}{3}\rho(r,t)\left(\frac{dt}{d\lambda}\right)^2 - \sigma^2$$

Beam area along geodesic

Time along geodesic

 $\lambda \equiv$ Affine parameter along geodesic

Local energy density

 $\frac{1}{\sqrt{A}} \frac{d^2 \sqrt{A}}{d\lambda^2} = -\frac{2}{3} \rho(r,t) \left(\frac{dt}{d\lambda}\right)^2 - \sigma^2$

Beam area along geodesic

Time along geodesic

 $\lambda \equiv$ Affine parameter along geodesic

 $\frac{1}{\sqrt{A}} \frac{d^2 \sqrt{A}}{d\lambda^2} = -\frac{2}{3} \rho(r,t) \left(\frac{dt}{d\lambda}\right)^2 - \sigma^2$

Local energy density

Time along geodesic

 $\lambda \equiv$ Affine parameter along geodesic

Local energy density

Beam area along geodesic

Time along geodesic

 $\lambda \equiv$ Affine parameter along geodesic

Local energy density

$$-\frac{2}{3}\rho(r,t)\left(\frac{dt}{d\lambda}\right)^2 - \sigma^2$$

Beam area along geodesic

Time along geodesic

 $\lambda \equiv$ Affine parameter along geodesic

Lemaître-Tolman-Bondi

 $ds^{2} = -dt^{2} + S^{2}(r, t)dr^{2} + R^{2}(r, t)(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$

$$S(r,t) = \frac{R'(r,t)}{\sqrt{1+2r^2k(r)\tilde{M}^2}}$$

 $S(r, t) = f(\Omega_M(r), \Omega_k(r), t)$

Each 'isoradial shell' obeys its own FLRW equation.

Lemaître-Tolman-Bondi

$$S(r, t) = \frac{R'(r, t)}{\sqrt{1 + 2r^2k(r)\tilde{M}^2}}$$

Two functions describing the configuration: $k(r) \& t_{BB}(r)$

Each 'isoradial shell' obeys its own FLRW equation.

Lemaître-Tolman-Bondi

$$S(r, t) = \frac{R'(r, t)}{\sqrt{1 + 2r^2k(r)\tilde{M}^2}}$$

Two functions describing the configuration: $k(r) \& t_{BB}(r)$

For all the following we chose $\ t_{BB}(r)\equiv 0$

Each 'isoradial shell' obeys its own FLRW equation.

Supernovae

CMB + BAO + SN + HST

Supernovae

CMB + BAO + SN + HST

Supernovae

CMB + BAO + SN + HST

Friday, 13 August, 2010

Friday, 13 August, 2010

Sound horizon at decoupling L_S
imprinted in large scale structure
subtends an angle Δθ(z) and redshift Δz(z)

• L_s subtends an angle $\Delta \theta(z)$ and redshift $\Delta z(z)$

$$(\Delta \theta^2 \Delta z)^{1/3} = \left[(1 + z_{\text{BAO}}) \dot{R}'_{\text{BAO}} \frac{1}{R'(r(z_{\text{BAO}}), t(z_{\text{rec}})) R^2(r(z_{\text{BAO}}), t(z_{\text{rec}}))} \right]^{1/3} \frac{L_S^{\text{LTB}}}{(1 + z_{\text{rec}})}$$

 $ds^{2} = -dt^{2} + S^{2}(r,t)dr^{2} + R^{2}(r,t)(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$

 $S(r, t) = \frac{R'(r, t)}{\sqrt{1 + 2r^2k(r)\tilde{M}^2}}$

BAO

• d_A to the last scattering surface is altered

- d_A to the last scattering surface is altered
- T_{CMB} is altered

- d_A to the last scattering surface is altered
- T_{CMB} is altered

• Calculate:

 $d_{\mathsf{A}} \ \mathcal{T}_{\mathsf{CMB}} \ \Omega_{\mathsf{m}} \ \Omega_{\mathsf{b}}$

 \rightarrow to/at $z \sim 1100$
• d_A to the last scattering surface is altered

 d_{A}

 $T_{\rm CMB}$

 $\Omega_{\rm m}$

 $\Omega_{\rm h}$

• T_{CMB} is altered

• Calculate:

ightarrow to/at $z \sim 1100$

 Construct FLRW observer with same conditions

• Ignoring ISW

 construct a best-guess template and marginalize [Moss, Zibin, Scott, 2010]

- Ignoring ISW
 - construct a best-guess template and marginalize
 - but not so relevant when focussing on best possible fit, and large error bars at low l

- Ignoring ISW
 - construct a best-guess template and marginalize
 - but not so relevant when focussing on best possible fit, and large error bars at low l
- For 'asymptotic' voids: ignoring effect of radiation on metric at high z.
 [Regis, Clarkson, 2010]

- Ignoring ISW
 - construct a best-guess template and marginalize
 - but not so relevant when focussing on best possible fit, and large error bars at low l
- For 'asymptotic' voids: ignoring effect of radiation on metric at high z.
 [Regis, Clarkson, 2010]
- Putting observer at center for simplicity (no dipole)

$$H_0 \equiv \lim_{z \to 0} \frac{d_A(z)}{z}$$

ΛCDM can fit any value from 60 to 80 km/s/Mpc

while fitting CMB+HST+BAO+SN using $H_0 = 62 \pm 6$ [HST team, Sandage et al., 2006]

How good is it?

Model	CMB	BAO	SN	$HST_{62\pm6}$	total χ^2
ΛCDM	3371.1	3.1	239.5	0.4	3614.1
Profile A	3376.6	5.0	240.3	6.6	3628.5
Profile B	3376.7	0.5	235.2	5.1	3617.5
Profile C	3376.9	1.0	234.9	3.7	3616.5
Profile D	3376.7	3.8	233.9	2.2	3616.6
Profile E	3372.9	3.4	241.5	0.8	3618.6

How good is it?

Model	CMB	BAO	SN	$HST_{74\pm4}$	total χ^2
ΛCDM	3372.7	1.8	239.7	2.1	3616.3
Profile C	3389.8	0.3	235.4	27.8	3653.3
Profile E	3373.3	3.0	242.7	15.3	3634.3

 $H_0 = 74 \pm 4$ from [Riess et al., 2009]

How crazy is it?

Profile	ZB	L [Mpc]	<i>r</i> _{3.355mK} [Mpc]	r/L
A	1.071	4853.935	22.357	0.00461
В	1.241	5179.389	19.922	0.00385
C	2.612	7279.830	18.110	0.00249
D	1.092	4935.030	6.408	0.00130
E	2.509	6636.189	13.774	0.00208

How crazy is it?

Profile	ZB	L [Mpc]	<i>r</i> _{3.355mK} [Mpc]	r/L
A	1.071	4853.935	22.357	0.00461
В	1.241	5179.389	19.922	0.00385
C	2.612	7279.830	18.110	0.00249
D	1.092	4935.030	6.408	0.00130
E	2.509	6636.189	13.774	0.00208

Ignoring kSZ: better data may rule out LTB immediately
 [García-Bellido, Hauboelle, 2008]

How crazy is it?

Profile	$(\Delta \chi^2 \text{ vs } \Lambda \text{CDM})$	$\Omega_{k,out}$	$\Omega_{k,in}$	δ_{0}	t ₀ [Gyr]
A	(13.7)	-0.20	0.76	-0.67	17.6
B	(3.2)	-0.18	0.80	-0.71	17.3
С	(1.5)	-0.19	0.83	-0.75	16.8
D	(1.6)	-0.15	0.98	-0.98	17.7
E	(3.1)	+0.40	0.94	-0.73	15.4

 $\Omega_k > 0 \equiv closed$

Friday, 13 August, 2010

Friday, 13 August, 2010

Reddest galaxies stopped evolving long ago:

Reddest galaxies stopped evolving long ago:
LTB void was still a perturbation on FLRW

- Reddest galaxies stopped evolving long ago:
 - LTB void was still a perturbation on FLRW
 - Origin and distribution not too different from known cosmology

- Reddest galaxies stopped evolving long ago:
 - LTB void was still a perturbation on FLRW
 - Origin and distribution not too different from known cosmology
- Need to assume $N(\rho_m)$

- Reddest galaxies stopped evolving long ago:
 - LTB void was still a perturbation on FLRW
 - Origin and distribution not too different from known cosmology
- Need to assume $N(\rho_m)$
- Hence useful if isocurvature perturbations are small (ρ_b / ρ_m = constant throughout void)

Realtime cosmology

[Quartin, Amendola, 2009]

Compton y distortion

Friday, 13 August, 2010

Compton y distortion

• kSZ is promising for ruling out the Void

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW
- Until then:

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW
- Until then:

first time good fit to CMB, BAO, HST and SN

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW
- Until then:

first time good fit to CMB, BAO, HST and SN

• in order to place Λ CDM on an even firmer foundation:
Conclusion

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW
- Until then:

first time good fit to CMB, BAO, HST and SN

 in order to place ΛCDM on an even firmer foundation: work has to be done

Conclusion

- kSZ is promising for ruling out the Void
- Realtime cosmology as well.
- Perturbation theory needed to test against LSS and to include ISW
- Until then:

first time good fit to CMB, BAO, HST and SN

- in order to place ΛCDM on an even firmer foundation: work has to be done
- CosmoMC module publicly available (see paper)