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Which observables ?
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‣ Dark energy equation of state
‣ Neutrino mass
‣ fNL parameter
‣Theoretical uncertainties in 
the nonlinear evolution
‣ Not to mention biasing

Bispectra offer richer 
information... k1 ≈ 2k2

k1 ≈ 0.3h/Mpc

The power spectrum is 
the obvious choice



Introduction : a self-gravitating 
expanding dust fluid
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A self-gravitating expanding dust fluid
The Vlasov equation (collisionless Boltzmann equation) - f(x,p) 
is the phase space density distribution - are fully nonlinear.

This is what N-body codes aim at simulating...
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Peebles ’80 ;Fry ’84
FB, Colombi, Gaztañaga, 
Scoccimarro, ‘02

The rules of the game: 
single flow equations

df

dt
=

∂

∂t
f(x,p, t) +

p
ma2

∂

∂x
f(x,p, t)−m

∂

∂x
Φ(x)

∂

∂p
f(x,p, t) = 0

∆Φ(x) =
4πGm

a

(∫
f(x,p, t)d3p− n̄

)

+ expansion with respect to initial density fields

δ(x, t) = δ(1)(x, t) + δ(2)(x, t) + . . .

GR corrections effects:
Yoo et al. ’09 PRD
B, Bonvin, Vernizzi, ’10 PRD 
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‣Motion equations in Fourier space in the 
single flow approximation

1
H

δ̇(k, t) + θ(k, t) = −
∫

d3k1d3k2 δD(k− k1 − k2)

× α(k1,k2)δ(k1, t) θ(k2, t)
1
H

θ̇ + (2 +
Ḣ

H2
)θ +

3
2
Ωmδm = −

∫
d3k1d3k2 δD(k− k1 − k2)

× β(k1,k2)θ(k1)θ(k2)

α(k1,k2) =
k12.k1

k2
1

= 1 +
k1.k2

k2
1

β(k1,k2) =
k2

12(k1.k2)
2k2

1k
2
2

=
(k1.k2)2

k2
1k

2
2

+
k1.k2

2k2
1

+
k1.k2

2k2
2

‣ linear order = growth rate of structure
‣higher order terms = mode couplings
‣equations can be solved to any arbitrary order

δ(n)(k) =
∫

d3k1 . . .d3kn δD(k− k1...n) δ(1)(k1) . . . δ(1)(kn) F (s)
n (k1, . . . ,kn)

θ(n)(k)
f

=
∫

d3k1 . . .d3kn δD(k− k1...n) δ(1)(k1) . . . δ(1)(kn) G(s)
n (k1, . . . ,kn)

... this is the reduced velocity divergencef ≡ d log D+

d log a
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ν2(Ωm,ΩΛ, ω, . . . ) = 34/21 + ...

Gravity induced mode couplings have been computed and 
observed!

This shape is expected (for CDM) irrespectively of background evolution, neutrino 
mass, etc...

Einstein-de Sitter case

From PSCz catalogue,  Feldman et al. ‘01

k1 ≈ 2k2

k1 ≈ 0.3h/Mpc

Flattened configurations

Equilateral configurations

Related observables (cosmic shear, redshift galaxy gatalogues)
Observations are closely related (through projections, shape integration) to the density 
and the reduced velocity divergence power spectra

Bδ(k1,k2,k2) = F (s)
2 (k1,k2)P (k1)P (k2) + sym.

Bθ̃(k1,k2,k2) = G(s)
2 (k1,k2) P (k1) P (k2) + sym.
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Message 1: the bispectrum amplitude (as measured by 
ν2) is very weakly dependent (compared to the current 
precision level) on the energy content of the universe. 

ν2 =
4
3

+
2
7
Ω−1/143

m
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Benabed, FB, PRD, ’01



What is the sensitivity of F2 to 
the laws of gravity?
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Can its measurement be used to test gravity ?



1.  Changing gravity Jain, Zhang PRD ’08

1
H

θ̇(k) + (2 +
Ḣ

H2
)θ(k) +

3
2
Ωm ξ(k, t) δm(k) = ...

J-Ph Uzan, FB. PRD ’01; FB, ‘04 (astro-ph)

If the change is                           (large 

scale effective 5D gravity)

ξ(k, a) ≈ ak/kc

1 + ak/kc

ν2(γ) = νGR
2 − .075 (γ − γGR) (Ωm − 1)1.5 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Γ
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S 3
"
3Ν
2

GR ‘‘DGP’’

FB, Brax (in prep)

There are many ways of doing so...

If the change is such that

fk ≡
d log D+

d log a
= Ωm

γ (
γGR ≈ 0.55

)

standard parameterization (Amendola & Quercellini, ’04, 
Linder ’05, Reyes et al. Nature, etc.), 

work here based on Brax et al. astro-ph/
1005.3735



2.  In presence of a dilaton field 

This extra field φ that is responsible of massive gravity effects. Its 
effect are suppressed in dense regions through the Chameleon 
mechanism.

A(φ) = 1 +
A2

2
(φ− φ0)2 + . . .

k2(φ) = 3
(

d log A

dφ

)2

+
1
λ2

S =
∫

d4x
√
−g

{
M2

Pl

2
R−M2

Plg
µνk2(φ)∂µφ∂νφ− V (φ)

}
+

∫
d4x

√
−g̃Lm(ψ(i)

m , A2(φ)gµν) ,

V (φ) = A4(φ)V0 exp(−φ)

Brax et al. astro-ph/1005.3735

Veff.(φ) = A4(φ)V0 exp(−φ) + A(φ)ρm

Fi = − 1
a(t)

(
Φ(x, t),i +

d log A

dφ
(φ̄ + δφ)φ(x, t),i

)
A new force term:

Newton potentials, Φ=Ψ with 
standard Poisson equationAn effective potential for the 

dilaton field



Mass of the field at 1 Mpc 
scale

Mass of the field at 3 Mpc scale

Mass of the field at 0.3 Mpc scale



Simplified case: dilaton mass and coupling parameters 
are determined by the background evolution

δ̇(k, t) + Hθ(k, t) = −H α(k1,k2)δ(k1, t) θ(k2, t)

θ̇(k, t) +

(
2H +

Ḣ

H

)
θ(k, t) +

3
2
H2Ωm(1 + ε(k, t))δ(k, t) = −H β(k1,k2)θ(k1, t)θ(k2, t)

Eliminating φ leads to a new set of equation for the cosmic matter 
fluid,

ε(k, t) =
1

1 + m2a2/k2

(
d log A

k(φ̄) dφ

)2

k ! mϕk ! mϕ

non-modified gravity regime
modified gravity regime

(and ε is finite) 

: scale dependent amplification of gravity

k2ϕ(x, t) + m2(φ̄)ϕ = −4πG
d log A

k(φ̄)dφ
ρ(t) δm(x, t)



Horizon

log k

lo
g 

a

k = m!

k!kck"kc k=kc

Evolution of structure: from GR to modified 
gravity dynamics

GR
ε=0

Mod. Grav.
ε=Cte



The linear growth rate fk ≡
d log D+

d log a

dfk

dΩm
=

3/2 Ωm(fk + 1 + ε(k,Ωm)− fk(2 + fk)
3 Ωm(Ωm − 1)

fk(Ωm) =
1

4 2F1

(
f+
3 , 1

3 (f+ + 2) ; 1
6 (4f+ + 7) ; 1− 1

Ωm

)
(4f+ + 7) Ωm

×
{

12 2F1

[
1
3

(f+ + 3) ,
1
3

(f+ + 5) ;
1
6

(4f+ + 13) ; 1− 1
Ωm

]
(ε + f+ + 1) (Ωm − 1)

+ 4 2F1

(
f+

3
,
1
3

(f+ + 2) ;
1
6

(4f+ + 7) ; 1− 1
Ωm

)
(6ε + 5f+ + 6) Ωm

}

ε = Cte
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fk!!m"
f+ =

(25 + 24ε)1/2 − 1
4

f(Ωm) ≈ f+ Ω
2(2+f+)
4f++7

m .

ε = 0

ε = 1

dependence at variance with 
other types of models, see also di 
Porto,  Amendola ’07.



The mode coupling evolution

Ωm

f2
→ Ωm

f2
k

(1 + ε(k))

ν2(ε) =
2(8 + 9ξ)
3(4 + 3ξ)

with ξ =
1 + ε

f2
+

,

!2 !1 0 1 2 3 4

Log10!k"kc#
1.66

1.68

1.7

1.72

1.74

1.76

Q
!k,k,

k
#

for fixed ξ

δ′(k) + θ̃(k) = −α(k1,k2) δ(k1) θ̃(k2)
fk2

fk

θ̃′(k)−
(

1− 3
2

Ωm

f2
k

(1 + ε(k))
)

θ̃(k) +
3
2

Ωm

f2
k

(1 + ε(k))δ(k) = −β(k1,k2)θ̃(k1)θ̃(k2)
fk1fk2

f2
k

effectively :

ε = 0

ε = 1
f+ =

(25 + 24ε)1/2 − 1
4
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The resulting shape of the bispectrum (ns=-1, ns=-2)

5 to 10% level changes



The analysis of a fully working model
The mass is determined dynamically
The couplings are also determined dynamically

βϕ(φ̄) → βϕ(φ̄ + δφ)
m2

ϕ(φ̄) → m2
ϕ(φ̄ + δφ) which implies cubic couplings, etc.

These functions can be computed explicitly (given values of A2 and 
λ)



1
H

θ̇(2)+(2+
Ḣ

H2
)θ(2)+

3
2
Ωm(1+ε(k))δ(2)

m = −β(k1,k2)θ2−[SEul.(k1,k2) + SIntr.(k1,k2)] (δ(1)
m )2

A new Euler equation (up to second order)

SEul.(k1,k2) =
(k2.k)

k2
1

a2m2(φ̄)
k2
2

S(k1)η(k2)

SIntr.(k1,k2) =
a2m2(φ̄)

k2
2

S(k)η̃(k2) +
a2m2(φ̄)

k2
1

a2m2(φ̄)
k2
2

S(k1)S(k2)µ(k)

η(k) = S(k)
H2

m2(φ̄)
d(βeff(φ))
k(φ̄)dφ

, η̃(k) = S(k)
H2

m2(φ̄)
d(A(φ)βeff(φ))

k(φ̄)dφ

µ(k) =
S(k)
3Ωm

H2

m4(φ̄)
d3Veff

2M2
Pldϕ3

(negligible inλ→∞ limit)  

(negligible inλ→0 limit)  



Equilateral configurations



Squeezed configurations

k2 = 10 kc

k1 = 0.1 kc
ϕ k1 = 0.1 kc



5 % effect change for the density field



10 % effect change for the reduced velocity divergence



Conclusions
- Details on astrophysical observations in 
paper by Brax et al.

- Small-scale non-linear evolution (with 
RPT ?) has to be taken into account for 
accurate prediction on the spectra/
bispectra.

- Effects here are more important than for 
DGP type models (R. Scoccimarro PRD ’09) 

FIG. 10: The ratio of reduced bispectra Q in brane-
induced gravity to GR for triangles with k1 =
0.1 h Mpc−1 and k2 = 2k1 as a function of angle θ be-
tween k1 and k2.

gives rise to a cubic kernel

k2
1 k2

2 k2
3 + 2(k1 · k2)(k2 · k3)(k3 · k1)

−k2
1(k2 · k3)

2 − k2
2(k3 · k1)

2 − k2
3(k1 · k2)

2 (128)

for the trispectrum that vanishes for squeezed
trispectrum configurations (where all wavectors are
parallel or antiparallel to each other). It’s easy to
show that the same is true for the last invariant E5

as far as the five-point function in Fourier space is
concerned.

Finally, it is worth noting that in the normal
branch (instead of the self-accelerated branch as we
worked so far), the signature in the bispectrum is
of opposite sign (suppression for isosceles triangles),
since (δG/G) changes sign (gravity is stronger than
in GR). This should be a generic outcome in mod-
els where the extra scalar degree of freedom is not a
ghost. For a calculation of the bispectrum and skew-
ness in f(R) models see [105] and [106], respectively.

D. Implications for BAO, Weak Lensing

We now comment briefly on implications of our
results for the Baryon Acoustic Oscillations (BAO)
method and weak gravitational lensing as tools to
study cosmic acceleration. BAO constraints have
been applied to the DGP model [60, 61, 107] with
the assumption that nonlinear effects coming from
the modified gravity sector would not affect the de-
termination of the acoustic scale done in observa-
tions [108]. We are now in a better position to assess
this assumption.

In GR nonlinearities do shift the acoustic scale
compared to linear theory but the effect is small,
at the percent level [109–112]. The effect can be
understood by the contribution of a 90-degree out
of phase oscillation by mode-coupling effects [109],
which develops because nonlinear corrections are a
strong function of spectral index [113] that is mod-
ulated by the linear spectrum BAO’s. The bulk of
the acoustic scale shift is due to the power spectrum
of the second-order density field, Eq. (122), in par-
ticular the dipole term " = 1 which describes the
(v · ∇) transport terms in the equation of motion,
Eq. (120). The " = 0, 2 terms contribute to the shift
as the mode-coupling power has cross terms of " = 1
with them. Except perhaps for creation of order
one higher " amplitudes, there are thus two possible
changes to the shift in a modified theory of gravity:
a change in the " = 0, 2 amplitudes, and a change
on the " = 1 amplitude itself.

As we have seen, due to the particular form of the
nonlinearities in the DGP model (related to the shift
symmetry mentioned above), only " = 0, 2 are sig-
nificantly changed, but from the calculation of the
bispectrum, we know that this change is very small,
at the few percent level. Therefore, such modifica-
tion induces changes in the acoustic scale shift by a
few percent of a percent, which is negligibly small.
The other possible source of concern is a change in
the " = 1 amplitude. Such terms are indeed present
in this theory, but are highly suppressed. They arise
through terms such as ∇C ·∇Φ in the Gauss-Codazzi
equation, Eq. (76). It’s easy to see that these are of
order (aH/k)2 times smaller (<∼ 10−4 at the acoustic
scale) than the GR dipole, and that’s why we have
neglected them.

To summarize, to appreciably change the acous-

28

Message 2 : changing strength/form of gravity laws is 
our best chance to induce significant (although mild) 
changes in the shape/amplitude of the observable 
bispectra. 

Scoccimarro, ’09


