Scale dependent non-Gaussianity

Christian Byrnes Faculty of Physics University of Bielefeld

CB, Sami Nurmi, Gianmassimo Tasinato & David Wands; 0911.2780 [astro-ph.CO] + JCAP CB, Mischa Gerstenlauer, Sami Nurmi, Gianmassimo Tasinato & David Wands; 1007.4277 [astro-ph.CO] CB, Kari Engvist, Tomo Takahashi; 1007.5148 [astro-ph.CO]

Benasque Modern Cosmology wokshop 16th August '10, 30 min

So far data is consistent with Gaussianity

So why is this field so popular? Komatsu et al; Decadel review, '09

- 1. Observations are sensitive to non-Gaussianity, so constraints are tight
- 2. Non-detection already constrains classes of models
- 3. Constraints are expected to tighten significantly with Planck - topical
- 4. LSS constraints are competitive and promising lots of talks here!
- 5. In the next two years we could move from no detection to a very high significance detection
- 6. So how much can we learn, and what should we look for with Planck and beyond?

Some scale dependence is expected

- Analogous to the power spectrum, fNL (local) should have a mild scale dependence
- Observational and theoretical interest
- Breaks degeneracy between early universe models
- As well as the trispectrum
 Predictions should come first
 Avoid posterior detections

Questions?

How large is the scale dependence? – How to calculate given a model? How does it arise? **Multiple fields** - Self interactions Are observations sensitive to it? What can we learn from it? Technical: What shape does it have? How to generalise local ansatz? How many new parameters?

The primordial curvature perturbation ζ

 $\zeta = \frac{5}{3} \Phi = -\frac{H}{\dot{\phi}} \delta \phi = -\frac{H}{\dot{\rho}} \delta \rho \text{ relates to the inflaton fluctuations}$

For adiabatic perturbations it is conserved on super horizon scales

$$\zeta \rightarrow \frac{\Delta T}{T}$$
 relates to the temperature perturbations on the CMB

Minimal local ansatz of non-Gaussianity

• Simplest and reasonably well motivated

$$\zeta(\mathbf{x}) = \zeta_G(\mathbf{x}) + \frac{3}{5} f_{NL} \zeta_G^2(\mathbf{x})$$

- f_{NL} is an amplitude, one number
- Useful description, but not exact

General definition of f_{NL}

- Power spectrum $\langle \zeta_{k_1} \zeta_{k_2} \rangle = P_{\zeta}(k)(2\pi)^3 \delta^3(k_1 + k_2)$
- Bispectrum

 $\langle \zeta_{k_1} \zeta_{k_2} \zeta_{k_3} \rangle = B_{\zeta}(k_1, k_2, k_3)(2\pi)^3 \delta^3(k_1 + k_2 + k_3)$

$$\frac{6}{5}f_{NL}(k_1, k_2, k_3) \equiv \frac{B_{\zeta}(k_1, k_2, k_3)}{P_{\zeta}(k_1)P_{\zeta}(k_2) + 2 \text{ perms}}$$

- Function of 3 wavenumbers
 side lengths of a triangle
- Usually reduced to an amplitude times scale-independent shape function
- Why scale-independent?

Definition of scale dependent f_{NL}

For the equilateral triangle (one k)

$$n_{f_{NL}} \equiv \frac{\partial \log |f_{NL}|}{\partial \log k}$$

- In general f_{NL} trivariate function, so definition needs care
- However $n_{f_{NL}}$ is independent of the shape provided one scales the triangle preserving the shape
 - Hence the above is a useful definition of a new observable
 Byrnes, Nurmi, Tasinato and Wands, '09
 - Not much change if the shape and size of triangle are changed together

Observable parameters, bispectrum and trispectrum

We define 3 non-linearity parameters

$$B_{\zeta}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}) = \frac{6}{5}f_{NL}\left[P_{\zeta}(k_{1})P_{\zeta}(k_{2}) + P_{\zeta}(k_{2})P_{\zeta}(k_{3}) + P_{\zeta}(k_{3})P_{\zeta}(k_{1})\right]$$

$$T_{\zeta}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) = \tau_{NL}\left[P_{\zeta}(|\mathbf{k}_{1}+\mathbf{k}_{3}|)P_{\zeta}(k_{3})P_{\zeta}(k_{4}) + (11 \text{ perms})\right]$$

$$+\frac{54}{25}g_{NL}\left[P_{\zeta}(k_{2})P_{\zeta}(k_{3})P_{\zeta}(k_{4}) + (3 \text{ perms})\right]$$

Seery & Lidsey '06; Byrnes, Sasaki & Wands '06

Note that τ_{NL} and g_{NL} both appear at leading order in the trispectrum The coefficients have a different k dependence, $P_\zeta \propto k^{-3}$

Constraints $|f_{NL}| \lesssim 100$, $|\tau_{NL}| \lesssim 10^5$, $|g_{NL}| \lesssim 10^6$

WMAP7; Desjacques & Seljak '09; Smidt et al '10 a

Planck forecasts $|f_{NL}| \lesssim 10, \ |\tau_{NL}| \lesssim 10^3, \ |g_{NL}| \lesssim 10^5$

Smidt et al '10 b

Simple extension of local fNL

The multivariate local model

 $\zeta(x) = \zeta_{G,\phi}(x) + \zeta_{G,\chi}(x) + f_{\chi}\zeta_{G,\chi}^2(x) + g_{\chi}\zeta_{G,\chi}^3(x)$

phi is the Gaussian inflaton field, chi generates non-Gaussianity (uncorrelated to phi)

applies to mixed inflaton and curvaton/modulated reheating scenarios, provided $f_\chi~$ is a constant

Two-component hybrid inflation
 CB, Choi, Hall '08
 Bispectrum has the usual local shape – not changed

$$P_{\zeta}(k) = P_{\zeta_{\phi}}(k) + P_{\zeta_{\chi}}(k), \quad P_{\zeta} \propto k^{n-4}, \quad P_{\zeta_{\chi}} \propto k^{n_{\chi}-4}$$
$$f_{NL}(k) = \frac{5}{3} \frac{B_{\zeta_{\chi}}}{3P_{\zeta}^{2}} = \frac{5}{3} \frac{P_{\zeta_{\chi}}(k)^{2}}{P_{\zeta}(k)^{2}} f_{\chi} \propto \left(\frac{k}{k_{p}}\right)^{2(n_{\chi}-n)}$$

So a scale dependence of f_{NL} is simple and natural

• Trispectrum $n_{\tau_{NL}} = n_{g_{NL}} = \frac{3}{2}n_{f_{NL}} = 3(n_{\chi} - n)$

Mixed inflaton-curvaton scenario

• The inflaton phi has Gaussian perturbations, the curvaton field chi (quadratic V) is non-Gaussian assume a small field model of inflation $\epsilon \ll \eta_{\phi\phi}$

$$\begin{aligned} n-1 &= 2(1-w_{\chi})\eta_{\phi\phi} \\ f_{NL}(k) &= w_{\chi}^2(k)f_{\chi} \\ n_{f_{NL}} &= 2(n_{\chi}-n) = -4(1-w_{\chi})\eta_{\phi\phi} \\ \end{aligned}$$
where $w_{\chi}(k) &= P_{\zeta_{\chi}}(k)/P_{\zeta}(k)$

- New consistency relation $n_{f_{NL}} = -2(n-1) \simeq 0.1$
- Trispectrum $au_{NL} = \left(\frac{6}{5}f_{NL}\right)^2 \frac{1}{w_{\chi}} \qquad n_{\tau_{NL}} = -3(n-1)$

Observational prospects

- Planck could reach a tight constraint
- Predicted to reach $\Delta n_{f_{NL}} = 0.1$ for $f_{NL} = 50$
- CMBPol has double this sensitivity
- LSS maybe best?

Ask Giannantonio, Huterer, Porciani, Shandera ...

- Error bar is inversely proportional to the fiducial value of $f_{\mbox{\scriptsize NL}}$
- So its possible that Planck will provide the first detection of non-Gaussianity, and simultaneously detect its scale dependence!

Sefusatti, Ligouri, Yadav, Jackson, Pajer; '09

Single-field scale dependence I

- Models where any single field generates the perturbations
 - Not assumed to be the inflaton
- fNL can be scale dependent
- Arises from the non-linearity of the field evolution just after horizon exit
- Only exception is a free test field (quadratic potential)
 has a linear equation of motion
- The assumption that f_{NL} is scale independent is only valid in the simplest toy models!
- Example is the simplest curvaton scenario
- Including the inflaton field fluctuations or self interactions will generate a scale dependence

Single field II

• In models with large non-Gaussianity the single field is isocurvature during inflation

$$n_{f_{NL}} \sim \frac{\sqrt{r_T}}{f_{NL}} \frac{V'''}{3H^2} \qquad r_T = \frac{P_T}{P_{\zeta}}$$
$$\tau_{NL} = \left(\frac{6}{5}f_{NL}\right)^2 \Rightarrow n_{\tau_{NL}} = 2n_{f_{NL}}$$
$$n_{g_{NL}} \sim \frac{r_T}{g_{NL}} \frac{V''''}{3H^2} \sim \frac{\mathcal{P}_{\zeta}^{-1}}{g_{NL}} V''''$$

- Model dependent size, could be large
- Neither spectral index nor its running probe higher derivatives of the isocurvature's field potential
- Only way to probe self-interactions?

Interacting curvaton scenario I

$$V(\chi) = \frac{1}{2}m^2\chi^2 + \lambda m^4 \left(\frac{\chi}{m}\right)^p$$

Strength of self interaction (at horizon exit, *)

$$s = 2\lambda \left(\frac{\chi_*}{m}\right)^{p-2}$$

In the limit of s=0 recover scale invariance

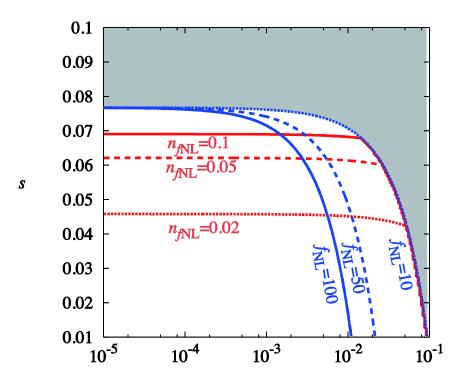
Energy density of curvaton at time of decay

$$r_{dec} \equiv \frac{\rho_{\chi}}{4\rho_{rad} + 3\rho_{\chi}} \qquad f_{NL} \sim \frac{1}{r_{dec}}$$

CB, Enqvist, Takahashi; 1007.5148

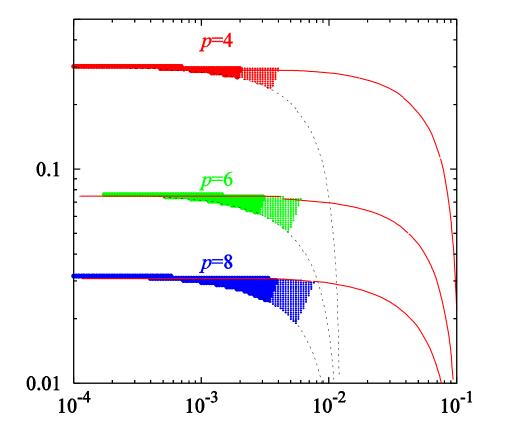
Interacting curvaton scenario II

p = 6 $\eta_{\chi\chi} = 0.005$ $f_{NL} < 10$ is shaded $n_{f_{NL}} > 0.1$ is possible even for small s



 $r_{\rm dec}$

Interacting curvaton scenario III testable region



S

shaded regions are testable with CMBPol at 1 and $2 - \sigma$

top redline $f_{NL=10}$ lower dashed line $f_{NL} = 100$

 $r_{\rm dec}$

Interacting curvaton scenario IV Summary

- Knowledge of f_{NL} , $n_{f_{NL}}$, g_{NL} would give us information on the curvaton parameters m, p, s
- Even a small self interaction significantly changes the model predictions
 - Makes all of the non-linearity parameters scale dependent
- The curvaton is required to have a quadratic minimum
 - Models which could have a pure self interaction potential (eg modulated reheating) may have larger scale dependence

CB, Gerstenlauer, Nurmi, Tasinato & Wands '10; see also Bernardeau '10

Easy to calculate

Scale dependence of non-Gaussianity parameters depends only on derivatives of N (delta N formalism) and slow-roll parameters evaluated at Hubble-exit

Conclusions

- Non-Gaussianity is an important and topical way of constraining the many models of inflation
- It is not given by just one amplitude
- Should include a scale-dependence
 - New observable
 - Easy to calculate in many models
- Can arise due to:
 - a) Multiple field effects
 - b) Self interactions of the fields
- The scale dependence could be large
- CB, Nurmi, Tasinato & Wands; 0911.2780 [astro-ph.CO]
- CB, Gerstenlauer, Nurmi, Tasinato & Wands;1007.4277 [astro-ph.CO]
- CB, Enqvist, Takahashi; 1007.5148 [astro-ph.CO]

Loop corrections?

• With extreme parameter values, the bispectrum can be large through a "loop" correction

$$\zeta = \zeta_\phi + \zeta_\chi^2$$

Boubekeur & Lyth; '05 Suyama & Takahashi; '08

• Applying a sharp IR cut-off L

$$f_{NL} = f_{NL}^{\text{loop}} \sim \frac{P_{\zeta_{\chi}}^3(k)}{P_{\zeta}^2(k)} \ln(kL)$$

If we take L~1/H

$$n_{f_{NL}} \sim 1/\ln(kL) \sim 0.2$$

Kumar, Leblond & Rajaraman; '09

 Some controversy if this is physical or artifact of the cut off

Non-Gaussianity during slow-roll

- Possible to generate a large non-Gaussianity during slowroll inflation (with canonical kinetic terms)
- Requires trajectory sensitive to Hubble exit value of the (subdominant) isocurvature field
- Requires curved trajectory during inflation, this breaks the conservation of zeta

Gordon et al '00

- f_{NL} generated on super-horizon scales (in common with nearly all local models)
- Difference from all other local models is that here the non-Gaussianity is generated during inflation

General conditions: CB, Choi & Hall '08 a) Without slow roll (exact solution): CB & Tasinato '09

Two-component hybrid inflation

$$W = W_0 \left(1 + \frac{1}{2} \eta_{\varphi\varphi} \frac{\varphi^2}{M_P^2} + \frac{1}{2} \eta_{\chi\chi} \frac{\chi^2}{M_P^2} \right)$$

If we choose initial conditions to maximise $f_{\mbox{\tiny NL}}$ then

$$f_{NL} = \frac{5}{24} \eta_{\chi\chi} e^{2N(\eta_{\varphi\varphi} - \eta_{\chi\chi})}, \quad n_{\zeta} - 1 = \eta_{\varphi\varphi} + \eta_{\chi\chi}$$

N is the number of e-foldings from horizon crossing till the end of inflation; Scales which exit earlier are more non-Gaussian

$$n_{f_{NL}} \equiv \frac{\partial \log |f_{NL}|}{\partial \log k} = -2(\eta_{\varphi\varphi} - \eta_{\chi\chi})$$

$\boxed{\eta_{\varphi\varphi}}$	$\eta_{\chi\chi}$	$arphi_*$	χ_*	f_{NL}	$n_{f_{NL}}$	$n_{\zeta}-1$	r
0.04	-0.04	1	6.8×10^{-5}	-123	-0.16	0	0.006
0.08	0.01	1	0.0018	9.27	-0.14	0.09	0.026
-0.01	-0.09	1	3×10^{-6}	-132	-0.276	-0.04	0.0007

First to calculate scale dependence: Byrnes, Choi & Hall '08 b)

Inflaton field

- Can find analytic results using the slow-roll approximation
- Neglecting the non-Gaussianity of the fields at horizon exit, i.e. taking only the local part

$$\frac{6}{5}f_{NL} = \frac{N''}{N'^2} = 2\epsilon - \eta$$
$$n_{f_{NL}} = \frac{6\epsilon\eta - 8\epsilon^2 - \xi^2}{\eta - 2\epsilon}$$

Can see how this arises from the secondorder field evolution

$$\delta_2 \phi(t_i) = \delta_2(\phi_*) + \frac{H(t_i - t_*)}{\sqrt{2\epsilon}} (8\epsilon^2 - 6\epsilon\eta + \xi^2) \delta_1^2 \phi$$