Simulating quintessence cosmologies: growth of structure and redshift space distortions

Carlton Baugh Institute for Computational Cosmology Durham University

Benasque 2010 Modern Cosmology: Early Universe, CMB and LSS

Outline: two main topics

- Quintessence N-body simulations Jennings et al. 2010 MNRAS, 401, 2181
- Redshift-space distortions Jennings et al. 2010, arXiv:1003.4282 in press

Collaborators:

Elise Jennings, Silvia Pascoli, Raul Angulo (MPA)

The BAO signal in galaxy clustering

SDSS Luminous Red Galaxy

Cabre & Gaztanaga 2009 Gaztanaga et al 2009

Sanchez et al. 2009

Evolution in the DE eqn of state?

Modelling the Gigaparsec Universe

- Why do we need simulations?
- Modelling quintessence dark energy
- Redshift space distortions

Why do we need simulations?

- Dark energy/modified gravity tests use LSS
- Isn't linear perturbation theory good enough?
- Need high precision measurements as models give similar predictions
- Need high precision theory too!

Baryonic Acoustic Simulations at the ICC BASICC

L = 1340/h Mpc V=2.4/h^3 Gpc^3

(20 x Millennium volume)

N=1448^3 (>3 billion particles)

Can resolve galactic haloes

130,000 hours CPU on Cosmology Machine

Combine with semi-analytical galaxy formation model GALFORM

50 low-res BASICC runs for errors (= 1000 Millenniums!)

Angulo et al. 2008

Combine with galaxy formation model

So, is linear theory good enough?

No! Because of

- Nonlinear growth of fluctuations
- Redshift space distortions
- Scale dependent halo and galaxy bias

Angulo et al. 2008

Scale dependent bias

Remove asymptotic bias: Scale dependent halo bias

Angulo et al. 2008

Quintessence Dark Energy

- Alternative to cosmological constant
- Solves fine tuning and coincidence problems
- Dynamical scalar field

Scalar Fields in Cosmology
$$H^{2} = \frac{8\pi G}{3} \left[\rho_{m} + \rho_{r} + \frac{\dot{\phi}^{2}}{2} + V(\phi)\right]$$
Dark Energy equation of state:
$$w(\varphi) = \frac{P_{\varphi}}{\rho_{\varphi}} = \frac{\dot{\phi}^{2}/2 - V(\phi)}{\dot{\phi}^{2}/2 + V(\phi)}$$

Lots of choice for potential V !

Inverse (INV) (Zlatev et al. 1999)

$$V(\varphi) \sim M^{(4+\alpha)} \varphi^{-\alpha}$$

Albrecht-Skordis (AS)

SUGRA (Brax & Martin 1999)

 $V(\varphi) \sim V_p(\varphi) e^{-\lambda \varphi}$ $V(\varphi) \sim 1/\varphi^{\alpha} e^{\varphi^2/2}$

$$V_p(\varphi) = (\varphi - B)^{\alpha} + A$$

How can we describe this range of models?

- Rich variety of w(z)
- Need to describe this accurately to z>100 in an N-body simulation
- Two parameter models out by 10% already at z=1
- Use 4 parameter model Corasaniti & Copeland
- Accurate to <5% to z=1000

Jennings et al. 2010 MNRAS, 401, 2181

Simulating quintessence DE

- Models have different expansion histories to LCDM
- Structure grows at different rates

Stage I: The growth of structure

- LCDM input P(K)
- Change expansion history using w(z)

Stage II : Quintessence and linear theory power

Stage III : Consistency with observational data

Cosmological distance priors

'Acoustic Scale'

$$l_{A}(z_{*}) = (1 + z_{*})\pi \frac{D_{A}(z_{*})}{r_{s}(z_{*})}$$
$$R_{conc}(z_{*}) = \frac{\sqrt{\Omega_{m}H_{0}^{2}}}{c}(1 + z_{*})D_{A}(z_{*})$$

'Shift parameter'

(Bond et al. 1997)

Redshift at decoupling (Hu & Sugiyama 1996) $z_* = z_*(\Omega_m h^2, \Omega_B h^2)$

	<i>z</i> *	$l_A(z*)$	R(z*)
WMAP 5-yr ML	1090.51 ± 0.95	302.10 ± 0.86	1.710 ± 0.019

Fit to the distance priors for each quintessence model using Λ CDM parameters

	$\chi^2_{ m total}/ u$
INV1	15.34
INV2	1.81
SUGRA	3.88
$2\mathrm{EXP}$	1.09
AS	2.04
CNR	1.37

Jennings et al 2010

Stage I : SUGRA linear Stage II : SUGRA linear

Jennings et al. 2010

Growth rate of structure

- Expansion history a(t) influences growth of structure
- Compare a(t) from zspace distortions with independent estimate derived from H(z)
- Distinguish dark energy and modified gravity

Guzzo et al. 2008

Measuring the growth factor: redshift space distortions of P(K)

Redshift space distortions: The Kaiser (1987) model

$$\frac{P_0^s(k)}{P^r(k)} = 1 + \frac{2}{3}f + \frac{1}{5}f^2 \qquad f = d\ln D/d\ln a_1$$

1. The small scale velocity dispersion can be neglected.

2. The velocity gradient $|d\vec{u}/dr| \ll 1$.

3. The velocity and density perturbations satisfy the linear continuity equation.

4. The real space density perturbation is assumed to be small, $|\delta(r)| \ll 1$, so that higher order terms can be neglected.

Accurate redshift space distortions

Kaiser formula: linear theory $\frac{P_0^s(k)}{P_r(k)} = 1 + \frac{2}{3}f + \frac{1}{5}f^2$

Nonlinear terms: Scoccimarro 2004 $P_0^s(k) = P_{\delta\delta}(k) + \frac{2}{3}fP_{\delta\theta}(k) + \frac{1}{5}f^2P_{\theta\theta}(k)$

Jennings et al 2010 arXiv:1003.4282

Accurate redshift space distortions

Impact on recovered growth factor

Summary

- Linear perturbation theory is not accurate enough even on surprisingly large scales
- Simulations DM + galaxies reveal: scale dependent bias and scale dependent redshift space distortions
- Quintessence simulations:
 - alter expansion rate
 - early dark energy: change linear P(k) shape
 - alter best fit parameters for consistency with obs.
- BAO (and mass function) cannot distinguish all quintessence models from cosmological constant
- Redshift space distortions more complicated than generally thought - but better models do exist

"QUICC" Quintessence at the ICC

L-Gadget2 (Springel 2005)

 $N_p = 2.69 \times 10^8$ particles $L_{box} = 1500 h^{-1} Mpc$

Softening: ∈=50 h⁻¹ kpc Starting redshift: z_i =200

Mass resolution: M_p =9.067 x 10¹¹ h⁻¹M_☉ r_{mean} ~2.3 h⁻¹ Mpc

$$\Omega_m = 0.261$$
 $\Omega_B = 0.044$
 $h = 0.715$ $n_s = 0.96$
 $\sigma_8 = 0.8$

