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IPMU = Institute for Physics and Mathematics of the Universe

Location: Kashiwa (Chiba)

New building open in Jan10

Host Institute: U of Tokyo

21 Full-time faculty members

40+ postdocs
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OUTLINE

Excursion set approach -- moving barrier in non-Gaussian 
models

Doroshkevich’s formula in local fnl model

First crossing problem -- path integral or Edgeworth 
expansion?

Abundances of another extremes
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Signatures of primordial non-Gaussianity on LSS

✴Bispectrum

✴Halo mass function

✴Scale dependent halo bias

✴peculiar velocity (redshift-space distortion)

4

(TYL, Desjacques & Sheth 2010; Schmdit 2010; TYL, Nishimichi & Yoshida 2010)
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Signatures of primordial non-Gaussianity on LSS

✴Bispectrum

✴Halo mass function

✴Scale dependent halo bias

✴peculiar velocity (redshift-space distortion)

Need a good description of the halo mass function 

4

(TYL, Desjacques & Sheth 2010; Schmdit 2010; TYL, Nishimichi & Yoshida 2010)
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Excursion set approach

5

• study the evolution of !(R) as a function of R 
– at R=", !(R)=0.  Lowering R, !(R) evolves stochastically

– use S=#2(R) as “time”. At R=", S=0. As R decreases, S increases

Excursion set theory
Bond, Cole, Efstathiou and Kaiser (1991)

Peacock and Heavens (1990)

First-passage    
time problem

slide from Maggiore’s talk 
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Ingredients of excursion set approach
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Ingredients of excursion set approach

i. A barrier associated with halo formation - 

constant or moving
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i. A barrier associated with halo formation - 
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correlated or uncorrelated walk
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Ingredients of excursion set approach

i. A barrier associated with halo formation - 

constant or moving

ii. first-crossing probability across the barrier - 

correlated or uncorrelated walk

6

Assumption: halo formation depends only on the smoothed density field
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Halo mass function and primordial non-Gaussianity
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7

Halo mass function and primordial non-Gaussianity

1. Use the Press-Schechter (constant barrier) to calculate 

the correction ratio nPS(m;fnl)/nPS(m;fnl=0)
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Halo mass function and primordial non-Gaussianity

1. Use the Press-Schechter (constant barrier) to calculate 

the correction ratio nPS(m;fnl)/nPS(m;fnl=0)

2. Multiply the correction ratio by nST(m;fnl=0)

(Matarrese et al. 2000; Lo Verde et al. 2008)
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7

Halo mass function and primordial non-Gaussianity

1. Use the Press-Schechter (constant barrier) to calculate 

the correction ratio nPS(m;fnl)/nPS(m;fnl=0)

2. Multiply the correction ratio by nST(m;fnl=0)

OR

(Matarrese et al. 2000; Lo Verde et al. 2008)

Full calculations of first crossing barrier based on path-integral 

(Maggiore & Riotto 2009+; D’ Amico et al. 2010; De Simone et al. 2010) or bivariate 

Edgeworth expansion (TYL & Sheth 2009)
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Rationale: 

ST mass function (moving barrier) describes the mass function 

from simulations (N-body, Gaussian initial conditions) better 

than the PS mass function (constant barrier).
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Rationale: 

ST mass function (moving barrier) describes the mass function 

from simulations (N-body, Gaussian initial conditions) better 

than the PS mass function (constant barrier).

The moving barrier is associated with the ellipsoidal collapse

Distribution of ellipticity and prolateness
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Rationale: 

ST mass function (moving barrier) describes the mass function 

from simulations (N-body, Gaussian initial conditions) better 

than the PS mass function (constant barrier).

The moving barrier is associated with the ellipsoidal collapse

Distribution of ellipticity and prolateness

ST moving barrier: take the most probable values of e and p

B(σ) =
√

aδc[1 + β(σ/
√

aδc)2γ ] where a=0.7, β= 0.4, γ=0.6

8
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Question: Is the moving barrier the same for non-Gaussian models?

9
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Question: Is the moving barrier the same for non-Gaussian models?

OR

g(e, p|δ; fnl) = g(e, p|δ; fnl = 0)?

9
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10

Method: Look at the eigenvalues of the shear field tensor 
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Φ = φ+ fnl(φ
2 − �φ2�)

Local type:

Method: Look at the eigenvalues of the shear field tensor 
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10

Φ = φ+ fnl(φ
2 − �φ2�)

Local type:

Method: Look at the eigenvalues of the shear field tensor 

x = Φ11 + Φ22 + Φ33

y =
1

2
(Φ11 − Φ22)

z =
1

2
(Φ11 + Φ22 − 2Φ33)

Define:
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10

Φ = φ+ fnl(φ
2 − �φ2�)

Local type:

Method: Look at the eigenvalues of the shear field tensor 

x = Φ11 + Φ22 + Φ33

y =
1

2
(Φ11 − Φ22)

z =
1

2
(Φ11 + Φ22 − 2Φ33)

Define:

{x, y, z,Φ12,Φ23,Φ31} is an independent set of components
of the shear tensor
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Important: �y3� = �z3� = �Φ3
ij�i �=j = 0

up to 1st order of fnl and local fnl ONLY
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Important: �y3� = �z3� = �Φ3
ij�i �=j = 0

up to 1st order of fnl and local fnl ONLY

In addition x = tr(Φij) ∝ δl
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Important: �y3� = �z3� = �Φ3
ij�i �=j = 0

up to 1st order of fnl and local fnl ONLY

In addition x = tr(Φij) ∝ δl

p(�λ|δl; fnl) = p(�λ|δl; fnl = 0)

g(e, p|δl; fnl) = g(e, p|δl; fnl = 0)

11

p(�λ) = p(�λ|δl)p(δl) = p0(�λ|δl)p0(δl)
�
1 +

σS3

6
H3(ν)

�

= p0(�λ)

�
1 +

σS3

6
H3(ν)

�

Generation of Doroshkevich’s formula to the local fnl model

TYL, Sheth & Desjacques 2009

Tuesday, 17 August 2010



‣The moving barrier remains unchanged in local fnl model

‣Redshift space distortion in fnl model (TYL, Desjacques & Sheth 2010)

Applications
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‣The moving barrier remains unchanged in local fnl model

‣Redshift space distortion in fnl model (TYL, Desjacques & Sheth 2010)

Applications

Hamilton 1997
12

Tuesday, 17 August 2010



Ellipsoidal Collapse and Redshift distortion
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Ellipsoidal Collapse and Redshift distortion

✓ Use collapse model to compute redshift space distortion
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Ellipsoidal Collapse and Redshift distortion

✓ Use collapse model to compute redshift space distortion

✓ spherical collapse does not result the correct Kasier factor 
(Ohta et al. 2004)
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Ellipsoidal Collapse and Redshift distortion

✓ Use collapse model to compute redshift space distortion

✓ spherical collapse does not result the correct Kasier factor 
(Ohta et al. 2004)

✓ ellipsoidal collapse model gets the correct answer (Ohta et al. 

2004; TYL & Sheth 2008)
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Ellipsoidal Collapse and Redshift distortion

✓ Use collapse model to compute redshift space distortion

✓ spherical collapse does not result the correct Kasier factor 
(Ohta et al. 2004)

✓ ellipsoidal collapse model gets the correct answer (Ohta et al. 

2004; TYL & Sheth 2008)

✓ The Generalized Doroshkevich’s formula in local fnl type can 

apply to compute the effect on redshift space distortion (TYL, 

Desjacques & Sheth 2010)
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The zeroth order gives the original Kaiser 
factor:

�δ2
s� ≈ �(δ(1)

r )2� =
�

1 +
2
3
f1 +

1
5
f2
1

�
σ2
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14

The zeroth order gives the original Kaiser 
factor:

�δ2
s� ≈ �(δ(1)

r )2� =
�

1 +
2
3
f1 +

1
5
f2
1

�
σ2

The first order has the effect of fnl

�δ2
s�(2) = 2

σS3

6
σ3

�
3ν2 + (ν2 +

2
3
)f1 −

44
45

f2
1 +

4
9
f3
1 +

ν2

3
f1f2 + ν2f2

�

∝ fnl
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FIRST CROSSING PROBABILITY

Top-hat filter in real space: correlated walk

first crossing probability across moving barrier (height 
depends on smoothing scale/mass)

15
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FIRST CROSSING PROBABILITY

Top-hat filter in real space: correlated walk

first crossing probability across moving barrier (height 
depends on smoothing scale/mass)

Two approaches:

✴Path-integral (Maggiore & Riotto 2009+;D’Amico et al. 2010)

✴Iterative solution and Edgeworth expansion (TYL & Sheth 2009)
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FIRST CROSSING PROBABILITY

Top-hat filter in real space: correlated walk

first crossing probability across moving barrier (height 
depends on smoothing scale/mass)

Two approaches:

✴Path-integral (Maggiore & Riotto 2009+;D’Amico et al. 2010)

✴Iterative solution and Edgeworth expansion (TYL & Sheth 2009)

15

analogy to n-point path integral neglecting correlation walk
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Iterative solution (TYL & Sheth 2009):

Path Integral (neglecting correlation) (De Simone et al. 2010):

16
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Can we combine both the effect from correlation walk 

and moving barrier?
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Can we combine both the effect from correlation walk 

and moving barrier?

Path-Integral:

feasible, but the calculation is very involved. 

New computation for new barrier.

17
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Can we combine both the effect from correlation walk 

and moving barrier?

Path-Integral:

feasible, but the calculation is very involved. 

New computation for new barrier.

Monte-Carlo:

Easy for Gaussian initial conditions with no 

correlation between steps.

17
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Monte-Carlo simulation on correlated walk 
(TYL & Sheth, in preparation)

18
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a. Random walks with correlated steps are computational 

time consuming to generate

Monte-Carlo simulation on correlated walk 
(TYL & Sheth, in preparation)
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a. Random walks with correlated steps are computational 

time consuming to generate

b.Most models considered are not too far from Gaussian 

initial condition

Monte-Carlo simulation on correlated walk 
(TYL & Sheth, in preparation)
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a. Random walks with correlated steps are computational 
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d.Useful for halo merger, fnl models
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a. Random walks with correlated steps are computational 

time consuming to generate

b.Most models considered are not too far from Gaussian 

initial condition

c. Generate random walk with uncorrelated steps, weight 

each walk differently

d.Useful for halo merger, fnl models

e. Advantages: fast, no need to rerun for different barriers

Monte-Carlo simulation on correlated walk 
(TYL & Sheth, in preparation)

18
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Monte-Carlo simulation on correlated walk 

Characteristic function:

M(�t) = exp�exp(i�t · �x)�c

�x is a N-dim vector, xi is the height of the (uncorrelated) 

random walk at step i, whose variance is si

19
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Monte-Carlo simulation on correlated walk 

Characteristic function:

M(�t) = exp�exp(i�t · �x)�c

�x is a N-dim vector, xi is the height of the (uncorrelated) 

random walk at step i, whose variance is si

Gaussian, uncorrelated walk (sharp k-space filter): 

Mg(�t) = exp

�
n�

m=1

�x2
m�
2

(itm)2 +
�

m<l

�xmxl�(itm)(itl)

�

=1 = σm/σl
19
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Its Fourier transform is the multivariate normal distribution

Fg(�x) =
1

(2π)n/2|M |
exp

�
− 1

2|M |x
TM−1x

�

20
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Its Fourier transform is the multivariate normal distribution

Fg(�x) =
1

(2π)n/2|M |
exp

�
− 1

2|M |x
TM−1x

�

Write M(t) = G(t, x)Mg(t)

G(t, x) = exp

�
�

m<l

(�xmxl� − σm/σl) (itm)(itl) +
n�

m=0

�x3
m�
3!

(it3m)

+
�

m<l

�x2
mxl�
2

(itm)2(itl) +
�

m<l<k

�xmxlxk�(itm)(itl)(itk) + . . .

�

correction due to correlated walk

20
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Its Fourier transform is the multivariate normal distribution

Fg(�x) =
1

(2π)n/2|M |
exp

�
− 1

2|M |x
TM−1x

�

Write M(t) = G(t, x)Mg(t)

G(t, x) = exp

�
�

m<l

(�xmxl� − σm/σl) (itm)(itl) +
n�

m=0

�x3
m�
3!

(it3m)

+
�

m<l

�x2
mxl�
2

(itm)2(itl) +
�

m<l<k

�xmxlxk�(itm)(itl)(itk) + . . .

�

correction due to correlated walk

Fourier transform is derivative operator on Fg(x)

20
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Path-integral: compute the cumulative probability and 

calculate first cross probability

Expression of nth order derivative of Fg:

∂n

∂xi1 . . . ∂xik

Fg(x) = (−1)kFg(x)× correction

21
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Expression of nth order derivative of Fg:

∂n

∂xi1 . . . ∂xik

Fg(x) = (−1)kFg(x)× correction

Monte-carlo simulation: weight of the walk
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Expression of nth order derivative of Fg:

∂n

∂xi1 . . . ∂xik

Fg(x) = (−1)kFg(x)× correction

Monte-carlo simulation: weight of the walk

Approximation: M ~ tri-diagonal/penta-diagonal/ band matrix
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Expression of nth order derivative of Fg:

∂n

∂xi1 . . . ∂xik

Fg(x) = (−1)kFg(x)× correction

Monte-carlo simulation: weight of the walk

Approximation: M ~ tri-diagonal/penta-diagonal/ band matrix

i. Correlated steps with moving barrier
ii. Moving barrier with other types of primordial 

non-Gaussianity
iii. Another type of moving barrier

21
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ABUNDANCES OF VOIDS
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ABUNDANCES OF VOIDS

Void to constraint cosmology (Croton’s talk)
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ABUNDANCES OF VOIDS

Void to constraint cosmology (Croton’s talk)

Void abundances also sensitive to primordial non-
Gaussianity (Kamionkowski et al. 2009; TYL, Sheth & Desjacques 2009)
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ABUNDANCES OF VOIDS

Void to constraint cosmology (Croton’s talk)

Void abundances also sensitive to primordial non-
Gaussianity (Kamionkowski et al. 2009; TYL, Sheth & Desjacques 2009)

Combine with halo abundances to break degeneracy with σ8

22

Tuesday, 17 August 2010



ABUNDANCES OF VOIDS

Void to constraint cosmology (Croton’s talk)

Void abundances also sensitive to primordial non-
Gaussianity (Kamionkowski et al. 2009; TYL, Sheth & Desjacques 2009)

Combine with halo abundances to break degeneracy with

Void-in-cloud: two barriers problem 

σ8

22

δc and δv
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Two barriers problem (TYL, Sheth & Desjacques)

F(s, δv, δc) = f(s, δv)−
� s

0
dS1F(S1, δc, δv)f(s, δv|S1, δc)

Ordinary first crossing prob. conditional first crossing prob.

first crossing prob. of δv at s, without crossing δc for all s� < s

first crossing prob. of δc at S, without crossing δv for all S� < S

23

Tuesday, 17 August 2010



Two barriers problem (TYL, Sheth & Desjacques)

F(s, δv, δc) = f(s, δv)−
� s

0
dS1F(S1, δc, δv)f(s, δv|S1, δc)

Ordinary first crossing prob. conditional first crossing prob.

first crossing prob. of δv at s, without crossing δc for all s� < s

first crossing prob. of δc at S, without crossing δv for all S� < S

Swapping δv and δc

recurrence relation between F and f

23
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Two barriers problem (TYL, Sheth & Desjacques)

F(s, δv, δc) = f(s, δv)−
� s

0
dS1F(S1, δc, δv)f(s, δv|S1, δc)

Ordinary first crossing prob. conditional first crossing prob.

first crossing prob. of δv at s, without crossing δc for all s� < s

first crossing prob. of δc at S, without crossing δv for all S� < S

Swapping δv and δc

recurrence relation between F and f
F(s, δv, δc) = f(s, δv)

+
∞�

n=1

(−1)n

� S0

0
dS1 . . .

� Sn−1

0
dSn

n−1�

m=0

f(Sm, δm|Sm+1, δm+1)f(Sn, δn)

where S0 ≡ s, δn = δv (n even) or δc (n odd) 23
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Void abundances 

(TYL, Sheth & Desjacques)

24
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Effect of fnl

f(δn, s) = f0(δn, s)

�
1 +

σS3

6
H3

�
δn

σ

��

f(s, δv|S, δc) = f0(s, δv|S, δc)
�
1 +

σS3

6
ζ(s, δv, S, δc)

�

25

Tuesday, 17 August 2010



Effect of fnl

f(δn, s) = f0(δn, s)

�
1 +

σS3

6
H3

�
δn

σ

��

f(s, δv|S, δc) = f0(s, δv|S, δc)
�
1 +

σS3

6
ζ(s, δv, S, δc)

�

25
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fnl =100

Void Abundance

26
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fnl =100

fnl = 100

Halo Abundance

Void Abundance

26
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SUMMARY

Excursion set theory two ingredients: barrier and first crossing probability

Distribution of e and p does not change given     for local type

Moving barrier (ST02) is unchanged in local type; not necessarily true for 
other types

First crossing probability for correlated walk and moving barrier is rough 
to solve analytically: but easy to implement Monte-Carlo simulations

Void abundances is also sensitive to fnl and the excursion set approach 
provides a method to solve the two-barrier problem

δ

27
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PECULIAR VELOCITY

peculiar velocity field & redshift space distortions also affected by 
primordial non-Gaussianity

The idea was proposed almost 20 years ago (Scherrer 1992; Catelan & 
Scherrer 1995; Schmidt 2010) -- all used linear theory

TYL, Nishimichi & Naoki: Pairwise Vel PDF & evolution included

Non-vanishing three-point functions: 

Induces correlation between velocities in parallel and perp 
directions

28
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PECULIAR VELOCITY

peculiar velocity field & redshift space distortions also affected by 
primordial non-Gaussianity

The idea was proposed almost 20 years ago (Scherrer 1992; Catelan & 
Scherrer 1995; Schmidt 2010) -- all used linear theory

TYL, Nishimichi & Naoki: Pairwise Vel PDF & evolution included

Non-vanishing three-point functions: 

Induces correlation between velocities in parallel and perp 
directions

�v3�� and �v�v2⊥�

28
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Analytical model to describe the evolution of the pairwise 
velocity PDF:

Evolution of PDF
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Analytical model to describe the evolution of the pairwise 
velocity PDF:

Evolution of PDF
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Analytical model to describe the evolution of the pairwise 
velocity PDF:

Evolution of PDF
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RESULTS
parallel to the line of separation direction
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RESULTS
perpendicular to the line of separation direction
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