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Measuring NG
3- and 4-point correlation functions 
of the CMB     Θ ≡ δT/T

‹ΘΘΘ› = 0, ‹ΘΘΘΘ› = PP if Gaussian; 
WMAP: -10 < fNL < 74 (95%) [Komatsu et al 10]

-3.80⋅106 < gNL < 3.88⋅106 [Smidt et al. 10]

 Planck will have σ(fNL) = 5
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Measuring NG
3- and 4-point correlation functions 
of the CMB     Θ ≡ δT/T

‹ΘΘΘ› = 0, ‹ΘΘΘΘ› = PP if Gaussian; 
WMAP: -10 < fNL < 74 (95%) [Komatsu et al 10]

-3.80⋅106 < gNL < 3.88⋅106 [Smidt et al. 10]

 Planck will have σ(fNL) = 5

 same for Large-scale structure (LSS):
how to distinguish from late-time NG?
mass distribution at high z [Scoccimarro et al. 04]

very massive objects at low z [LoVerde et al. 08]
will need PanSTARRS, DES, EUCLID!
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Measuring NG
3- and 4-point correlation functions 
of the CMB     Θ ≡ δT/T

‹ΘΘΘ› = 0, ‹ΘΘΘΘ› = PP if Gaussian; 
WMAP: -10 < fNL < 74 (95%) [Komatsu et al 10]

-3.80⋅106 < gNL < 3.88⋅106 [Smidt et al. 10]

 Planck will have σ(fNL) = 5

 same for Large-scale structure (LSS):
how to distinguish from late-time NG?
mass distribution at high z [Scoccimarro et al. 04]

very massive objects at low z [LoVerde et al. 08]
will need PanSTARRS, DES, EUCLID!

An additional LSS technique: 
scale-dependent bias

[Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08, Taruya et al 08, Matarrese & Verde 08, ...]
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Scale-dependent b in NG
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Scale-dependent b in NG
D.m. perturbations δm  > d.m. haloes δh  > 
galaxies δg:  in increasing high-density

δm + halo mass function: halo bias: δh = b δm

δh +  halo occupation distribution = galaxy bias, δg

4

[Millennium run, Springel et al. 

Wednesday, 18 August 2010



Scale-dependent b in NG
D.m. perturbations δm  > d.m. haloes δh  > 
galaxies δg:  in increasing high-density

δm + halo mass function: halo bias: δh = b δm

δh +  halo occupation distribution = galaxy bias, δg

with NG: strongly scale-dependent! [Dalal et 
al. 07, Afshordi et al. 08, Slosar et al. 08]

b → b’ = bGau + Δb(k) for both halo & gal !
bg ∝ ∫ bh n (M) HOD(M) dM

spectra <gal-gal> ∼ b2 and <gal-CMB> ∼ 
b: constraints on NG!

 -29 < fNL < 69 (95%) [Slosar et al 08]

-3.5⋅105 < gNL < 8.2⋅105 [Desjacques et al. 10]

4

[Millennium run, Springel et al. 

Wednesday, 18 August 2010



Scale-dependent b in NG
D.m. perturbations δm  > d.m. haloes δh  > 
galaxies δg:  in increasing high-density

δm + halo mass function: halo bias: δh = b δm

δh +  halo occupation distribution = galaxy bias, δg

with NG: strongly scale-dependent! [Dalal et 
al. 07, Afshordi et al. 08, Slosar et al. 08]

b → b’ = bGau + Δb(k) for both halo & gal !
bg ∝ ∫ bh n (M) HOD(M) dM

spectra <gal-gal> ∼ b2 and <gal-CMB> ∼ 
b: constraints on NG!

 -29 < fNL < 69 (95%) [Slosar et al 08]

-3.5⋅105 < gNL < 8.2⋅105 [Desjacques et al. 10]

Agreement with simulations not excellent
Theoretical derivation not fully consistent
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Comparison with simulations
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Comparison with simulations

Simple prediction for local NG:

Δb(k) = fNL (b0 - 1) / k2 x const.

5

[Pillepich et al. 08]
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Comparison with simulations

Simple prediction for local NG:

Δb(k) = fNL (b0 - 1) / k2 x const.

Not fully obeyed by simulations! 
[Pillepich et al. 08, Desjacques et al. 08, Grossi et al. 09]

Some correction seems needed
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Comparison with simulations

Simple prediction for local NG:

Δb(k) = fNL (b0 - 1) / k2 x const.

Not fully obeyed by simulations! 
[Pillepich et al. 08, Desjacques et al. 08, Grossi et al. 09]

Some correction seems needed

We calculate full one-loop corrections in a new, fully 
predictive and consistent way!

5

[Pillepich et al. 08]
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Plan: bias and LSS statistics
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Plan: bias and LSS statistics
Expand real-space (Eulerian) perturbations to 3rd order...

δh(x) = b0 + b1 δ(x) + b2 δ2(x) / 2 + b3 δ3(x) / 3! + ...                   
[Fry & Gaztanaga 93]

δ smoothed at scale R:    (R ≈ 10 Mpc/h, must be in this range)
to ensures locality: exclude smallest scales
to ensure consistency of perturbative expansion
we use SPT with Smith et al. 06 recipe
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δ smoothed at scale R:    (R ≈ 10 Mpc/h, must be in this range)
to ensures locality: exclude smallest scales
to ensure consistency of perturbative expansion
we use SPT with Smith et al. 06 recipe

The plan:

1. the b’s from a Mass Function (peak-background split) in 
Lagrangian (primordial) space

2. collapse model: transformation to Eulerian space
3. calculate the statistics [P(k), etc] and compare with simulations
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Plan: bias and LSS statistics
Expand real-space (Eulerian) perturbations to 3rd order...

δh(x) = b0 + b1 δ(x) + b2 δ2(x) / 2 + b3 δ3(x) / 3! + ...                   
[Fry & Gaztanaga 93]

δ smoothed at scale R:    (R ≈ 10 Mpc/h, must be in this range)
to ensures locality: exclude smallest scales
to ensure consistency of perturbative expansion
we use SPT with Smith et al. 06 recipe

The plan:

1. the b’s from a Mass Function (peak-background split) in 
Lagrangian (primordial) space

2. collapse model: transformation to Eulerian space
3. calculate the statistics [P(k), etc] and compare with simulations

All this in the non-Gaussian case. Locality won’t hold!
6
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NG halo mass functions
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NG halo mass functions
halo number density

dn/dM ∝ f (σ, fNL)

σ(M): variance of the linear δ smoothed at 
a scale Rf(M)

7
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NG halo mass functions
halo number density

dn/dM ∝ f (σ, fNL)

σ(M): variance of the linear δ smoothed at 
a scale Rf(M)

Gaussian models for f:
Press-Schechter (PS)

Sheth-Tormen (ST), Jenkins, Warren: extra 
parameters fit from simulations
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NG halo mass functions
halo number density

dn/dM ∝ f (σ, fNL)

σ(M): variance of the linear δ smoothed at 
a scale Rf(M)

Gaussian models for f:
Press-Schechter (PS)

Sheth-Tormen (ST), Jenkins, Warren: extra 
parameters fit from simulations

NG: with skewness S3 = ‹δ3› ∝ fNL 

Matarrese-Verde-Jimenez (MVJ)

LoVerde (LV),  Maggiore-Riotto (MR) Lam-
Sheth (LS)

Or just a fit to our simulations! 
(PPH)[Pillepich et al. 08] 7
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NG halo mass functions
halo number density

dn/dM ∝ f (σ, fNL)

σ(M): variance of the linear δ smoothed at 
a scale Rf(M)

Gaussian models for f:
Press-Schechter (PS)

Sheth-Tormen (ST), Jenkins, Warren: extra 
parameters fit from simulations

NG: with skewness S3 = ‹δ3› ∝ fNL 

Matarrese-Verde-Jimenez (MVJ)

LoVerde (LV),  Maggiore-Riotto (MR) Lam-
Sheth (LS)

Or just a fit to our simulations! 
(PPH)[Pillepich et al. 08] 7
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spherical collapse 
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Accuracy ∼ 10%
We will use LV, PPH fit
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Peak-background split
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[Bardeen et al 86, Cole & Kaisers 89]
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Peak-background split
Gaussian potential, Lagrange space:     φ(q) = φl(q) + φs(q)  

From NG definition:
 Φl = φl + fNL φl2 - ‹φ2›
 Φm = 2 fNL φl φs

 Φs = φs + fNL φs2 

8

Φ = ϕ+ fNL

�
ϕ2 − �ϕ2�

�
[Bardeen et al 86, Cole & Kaisers 89]

crucial point: coupling mode from 
the double product in φ2
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Peak-background split
Gaussian potential, Lagrange space:     φ(q) = φl(q) + φs(q)  

From NG definition:
 Φl = φl + fNL φl2 - ‹φ2›
 Φm = 2 fNL φl φs

 Φs = φs + fNL φs2 

Fourier space: Poisson equation: ∇2Φ(k) = Aδ(k),  ∇2φ(k) = AδG(k)
δl = δG,l (1 + 2fNL φl) + ...         modulate counts, large-scale motions
δm = 2 fNL (δG,s φl + δG,l φs) + ...        collapse to form d.m. haloes
δs = δG,s (1 + 2fNL φl) + ...                collapse to form d.m. haloes

δG,s can be eliminated
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crucial point: coupling mode from 
the double product in φ2
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Peak-background split
Gaussian potential, Lagrange space:     φ(q) = φl(q) + φs(q)  

From NG definition:
 Φl = φl + fNL φl2 - ‹φ2›
 Φm = 2 fNL φl φs

 Φs = φs + fNL φs2 

Fourier space: Poisson equation: ∇2Φ(k) = Aδ(k),  ∇2φ(k) = AδG(k)
δl = δG,l (1 + 2fNL φl) + ...         modulate counts, large-scale motions
δm = 2 fNL (δG,s φl + δG,l φs) + ...        collapse to form d.m. haloes
δs = δG,s (1 + 2fNL φl) + ...                collapse to form d.m. haloes

δG,s can be eliminated

Halo formation: when δs + δm > δc 

δs + δm ≈ δs (1 + 2fNL φl)

with r.m.s.  σ (1 + 2fNL φl)  
... + 3 gNL φl2 + ... + j QNLj φlj-1

8

Φ = ϕ+ fNL

�
ϕ2 − �ϕ2�

�

With NG, extra bias from the potential!

[Bardeen et al 86, Cole & Kaisers 89]

crucial point: coupling mode from 
the double product in φ2
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Bias from a mass function
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Bias from a mass function
halo density Lagrangian perturbation:                     ,  n∝f(δc/σ)

Then Taylor-expanded at 1st or 3rd order           [Mo & White 95 etc...]

δLh =
n(M)− n̄

n̄
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Bias from a mass function
halo density Lagrangian perturbation:                     ,  n∝f(δc/σ)

Then Taylor-expanded at 1st or 3rd order           [Mo & White 95 etc...]

Gaussian case: f = f (M, δl)

δLh =
n(M)− n̄

n̄

9

δLh (q) =
∞�

j=0

bLj
j!

δjl (q)δLh (q) =
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σ
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δc
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Bias from a mass function
halo density Lagrangian perturbation:                     ,  n∝f(δc/σ)

Then Taylor-expanded at 1st or 3rd order           [Mo & White 95 etc...]

Gaussian case: f = f (M, δl)

Non-Gaussian case: f = f (M, δl, φl)

explicitly dependent on both δl, φl!

Naturally Taylor-expanded in both variables

δLh =
n(M)− n̄

n̄
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l (q)
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Bias from a mass function
halo density Lagrangian perturbation:                     ,  n∝f(δc/σ)

Then Taylor-expanded at 1st or 3rd order           [Mo & White 95 etc...]

Gaussian case: f = f (M, δl)

Non-Gaussian case: f = f (M, δl, φl)

explicitly dependent on both δl, φl!

Naturally Taylor-expanded in both variables

obviously δl, φl related by Poisson eq, but non-local

δLh =
n(M)− n̄

n̄

9

δLh (q) =
∞�

j=0

bLj
j!

δjl (q)δLh (q) =
f
�

δc−δl(q)
σ

�

f
�
δc
σ

� − 1

δLh (q) =
f
�

δc−δl(q)
[1+2fnlϕl(q)]σ

�

f
�
δc
σ

� − 1 δLh (q) =
∞�

j=0

∞�

m=0

bLjm
j!m!

δjl (q)ϕ
m
l (q)

NG correcting the rms by 1+2fNLφl   [+ 3 gNL φl2 + ... + j QNLj φlj-1]
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Lagrangian bias
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Lagrangian bias
δLh (q) = bL0 + bL10 δ + bL01 ϕ+

+
1

2!

�
bL20 δ

2 + 2 bL11 δϕ+ bL02 ϕ
2
�
+

+
1

3!

�
bL30 δ

3 + 3 bL21 δ
2ϕ+ 3 bL12 δϕ

2 + bL03 ϕ
3
�

10

Third-order NG expansion:
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1st-order NG: recovers Dalal et al. 07, etc 
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+
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Gaussian, local part

1st-order NG: recovers Dalal et al. 07, etc 
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Third-order NG expansion:
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Lagrangian bias
δLh (q) = bL0 + bL10 δ + bL01 ϕ+

+
1

2!

�
bL20 δ

2 + 2 bL11 δϕ+ bL02 ϕ
2
�
+

+
1

3!

�
bL30 δ

3 + 3 bL21 δ
2ϕ+ 3 bL12 δϕ

2 + bL03 ϕ
3
�

Gaussian, local part

1st-order NG: recovers Dalal et al. 07, etc 

10

∝ fNL ∝ fNL2 ∝ fNL3

Linear comb. 
of the 

Gaussian bi0

e.g.:  b01 = 2 fNL δc b10

Third-order NG expansion:
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Lagrangian bias
δLh (q) = bL0 + bL10 δ + bL01 ϕ+

+
1

2!
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2 + 2 bL11 δϕ+ bL02 ϕ
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1st-order NG: recovers Dalal et al. 07, etc 
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∝ fNL ∝ fNL2 ∝ fNL3

Linear comb. 
of the 

Gaussian bi0

e.g.:  b01 = 2 fNL δc b10

Third-order NG expansion:

If also gNL: extra terms in b02, b12

can be computed from any mass function (PS, LV, PPH, ...)
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If also gNL: extra terms in b02, b12

can be computed from any mass function (PS, LV, PPH, ...)
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Eulerian bias
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Eulerian bias
derived quantities are 
Lagrangian: in terms of 
initial conditions

Observables are Eulerian: 
structure has evolved
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Eulerian bias
derived quantities are 
Lagrangian: in terms of 
initial conditions

Observables are Eulerian: 
structure has evolved

A collapse model + Continuity equation:  δL → δ(E)

Spherical collapse: a1 = 1 ; a2 = −17/21 ; a3 = 341/567
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Eulerian bias
derived quantities are 
Lagrangian: in terms of 
initial conditions

Observables are Eulerian: 
structure has evolved

A collapse model + Continuity equation:  δL → δ(E)

bias expansion in Eulerian theory bL → b(E)

Spherical collapse: a1 = 1 ; a2 = −17/21 ; a3 = 341/567

11

b10 = 1 + a1 b
L
10

b20 = 2(a1 + a2) b
L
10 + a21 b

L
20

b30 = 6(a2 + a3) b
L
10 + 3

�
a21 + 2a1a2

�
bL20 + a31 b

L
30
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Eulerian bias
derived quantities are 
Lagrangian: in terms of 
initial conditions

Observables are Eulerian: 
structure has evolved

A collapse model + Continuity equation:  δL → δ(E)

bias expansion in Eulerian theory bL → b(E)

3rd order perturbations expansion: δ = δ1 + δ2 + δ3; φ = φ1

Spherical collapse: a1 = 1 ; a2 = −17/21 ; a3 = 341/567

11
Finally: rewrite δh only in terms of δ1, φ1

δ̃n(k) =

�
d3q1

(2π)3
. . .

d3qn

(2π)3
δD

�
k−

n�

i=1

qi

�
Jn(q1, . . . ,qn) δ̃1(q1) . . . δ̃1(qn)

b10 = 1 + a1 b
L
10

b20 = 2(a1 + a2) b
L
10 + a21 b

L
20

b30 = 6(a2 + a3) b
L
10 + 3

�
a21 + 2a1a2
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bL20 + a31 b

L
30
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Statistics: Power spectra
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Statistics: Power spectra
To harmonic space  Φ(x) → Φ(k)

Spectra of Φ(k): spectra of φ + small corrections 
(2π)3 PΦ(k) δD(k+k’) = ‹Φ(k)Φ(k’)›
(2π)3 BΦ(k) δD(k+k’+k’’) = ‹Φ(k) Φ(k’) Φ(k’’)›
(2π)3 TΦ(k) δD(k+k’+k’’+k’’’) = ‹Φ(k) Φ(k’) Φ(k’’) Φ(k’’’)›

12

≈ Pφ
≈ 2fNL [Pφ Pφ + cyc.]

≈ 4fNL2 [Pφ Pφ (Pφ+Pφ)+c.]

aka τNL
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If also gNL:
ΔPΦ small,
ΔTΦ = 6 gNL Pφ Pφ Pφ + cyc.
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Statistics: Power spectra
To harmonic space  Φ(x) → Φ(k)

Spectra of Φ(k): spectra of φ + small corrections 
(2π)3 PΦ(k) δD(k+k’) = ‹Φ(k)Φ(k’)›
(2π)3 BΦ(k) δD(k+k’+k’’) = ‹Φ(k) Φ(k’) Φ(k’’)›
(2π)3 TΦ(k) δD(k+k’+k’’+k’’’) = ‹Φ(k) Φ(k’) Φ(k’’) Φ(k’’’)›

If also gNL:
ΔPΦ small,
ΔTΦ = 6 gNL Pφ Pφ Pφ + cyc.

linear density perturbations δ1(k) = α(k) Φ(k)
P0(k) = α2(k) PΦ(k) ≈ α2(k) Pφ(k)
B0(k), T0(k) similar

we can now move on to density full spectra...

12

α(k) =
2c2k2T (k)D(z)

3ΩmH
2
0

≈ Pφ
≈ 2fNL [Pφ Pφ + cyc.]

≈ 4fNL2 [Pφ Pφ (Pφ+Pφ)+c.]

aka τNL
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Matter spectra [Taruya et al. 08]
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Matter spectra [Taruya et al. 08]

‹δδ›, with δ = δ1 + δ2 + δ3

Pmm (k, z) = D2 P11 + D3 P12 + 
D4 (P22 + P13)

Compare with N-body 
simulations by Pillepich et al. 08

13

Pmm
11 (k) = P0(k)

Pmm
12 (k) = 2

�
d3q

(2π)3
J (s)
2 (q,k− q)B0(−k,q,k− q)

Pmm
22 (k) = 2

�
d3q

(2π)3

�
J (s)
2 (q,k− q)

�2
P0(q)P0(|k− q|)

Pmm
13 (k) = 6

�
d3q

(2π)3
J (s)
3 (k,q,−q)P0(q)P0(k)
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‹δδ›, with δ = δ1 + δ2 + δ3

Pmm (k, z) = D2 P11 + D3 P12 + 
D4 (P22 + P13)

Compare with N-body 
simulations by Pillepich et al. 08

13

Pmm
11 (k) = P0(k)

Pmm
12 (k) = 2

�
d3q

(2π)3
J (s)
2 (q,k− q)B0(−k,q,k− q)

Pmm
22 (k) = 2

�
d3q

(2π)3

�
J (s)
2 (q,k− q)

�2
P0(q)P0(|k− q|)

Pmm
13 (k) = 6

�
d3q

(2π)3
J (s)
3 (k,q,−q)P0(q)P0(k)

M=2e14 M❂/h

M=5e13 M❂/h
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Matter spectra [Taruya et al. 08]

‹δδ›, with δ = δ1 + δ2 + δ3

Pmm (k, z) = D2 P11 + D3 P12 + 
D4 (P22 + P13)

Compare with N-body 
simulations by Pillepich et al. 08

13

Pmm
11 (k) = P0(k)

Pmm
12 (k) = 2

�
d3q

(2π)3
J (s)
2 (q,k− q)B0(−k,q,k− q)

Pmm
22 (k) = 2

�
d3q

(2π)3

�
J (s)
2 (q,k− q)

�2
P0(q)P0(|k− q|)

Pmm
13 (k) = 6

�
d3q

(2π)3
J (s)
3 (k,q,−q)P0(q)P0(k)

Excellent agreement with Taruya 
et al up to k = 0.2 h/Mpc

M=2e14 M❂/h

M=5e13 M❂/h
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Halo spectra

14
Wednesday, 18 August 2010



Halo spectra
‹δiδj› (i,j = halo or matter)

δh = full expansion (δ,φ)

Pij (k, z) = D2 Pij11 + D3 Pij12 + 
D4 (Pij22 + Pij13)

MANY terms now, of the types
‹δ1δ1› → P0

‹δ2δ2› → F2T0 ≈ F2P0P0

‹δ1δ3› → F3T0 ≈ F3P0P0

‹δ1δ2› → F2B0

for haloes some δ1 replaced by φ=δ1/α

14

Excellent agreement up 
to k = 0.2 h/Mpc

Non-
linearity

Offset: fNL 
in mass func.

M=2e14 M❂/h
M=5e13 M❂/h
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Halo spectra
‹δiδj› (i,j = halo or matter)

δh = full expansion (δ,φ)

Pij (k, z) = D2 Pij11 + D3 Pij12 + 
D4 (Pij22 + Pij13)

MANY terms now, of the types
‹δ1δ1› → P0

‹δ2δ2› → F2T0 ≈ F2P0P0

‹δ1δ3› → F3T0 ≈ F3P0P0

‹δ1δ2› → F2B0

for haloes some δ1 replaced by φ=δ1/α

Our result:
reproduces Dalal et al. 07 at linear order
gives standard 1-loop theory if fNL = 0
contains all terms by Taruya et al. 08, 
Sefusatti 09 + extra terms
is fully consistent and complete 14

Excellent agreement up 
to k = 0.2 h/Mpc

Non-
linearity

Offset: fNL 
in mass func.

M=2e14 M❂/h
M=5e13 M❂/h
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Mass dependency

15

Non-lin

Offset
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Mass dependency
Phm(M) at 3 scales

1-loop: superior accuracy
offset at all scales corrected by 
implicit fNL dependency in mass f.
non-linear behaviour well predicted at 
small scales

15

Non-lin

Offset
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Mass dependency
Phm(M) at 3 scales

1-loop: superior accuracy
offset at all scales corrected by 
implicit fNL dependency in mass f.
non-linear behaviour well predicted at 
small scales

15

Non-lin

Offset

Two effects of fNL:
corrections to P(k) from φ terms
implicit dependence of bij on fNL via 
the mass function
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Mass dependency
Phm(M) at 3 scales

1-loop: superior accuracy
offset at all scales corrected by 
implicit fNL dependency in mass f.
non-linear behaviour well predicted at 
small scales

15

Non-lin

Offset

Two effects of fNL:
corrections to P(k) from φ terms
implicit dependence of bij on fNL via 
the mass function

∆blin(k) = b10(fNL)− b10(fNL = 0) + 2fNLδc [b10(fNL)− 1]/α(k)
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The effect of gNL
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Preliminary plot!
The effect of gNL

New terms from two sources:
Trispectrum correction ΔT ∝ gNL

bias corrections ∝ gNL
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Preliminary plot!
The effect of gNL

New terms from two sources:
Trispectrum correction ΔT ∝ gNL

bias corrections ∝ gNL

Trispectrum correction ΔT ∝ gNL

In halo-halo only: add terms to Pij22 

(subdominant)
and to Pij13 (can be dominant for large 
gNL)
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Preliminary plot!
The effect of gNL

New terms from two sources:
Trispectrum correction ΔT ∝ gNL

bias corrections ∝ gNL

Trispectrum correction ΔT ∝ gNL

In halo-halo only: add terms to Pij22 

(subdominant)
and to Pij13 (can be dominant for large 
gNL)

Bias corrections ∝ gNL

Only b02, b12 are altered
In halo-matter, subdominant
In halo-halo, term in b022 ∝ gNL2 can be 
dominant for large gNL, small fNL

16
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Differences from local approach
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(non-local)

Differences from local approach

17

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08]
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(non-local)

Differences from local approach
At leading order:

we recover Δb ∝ b10-1  from <δ1φ>

No strong dependence on R 
smoothing at leading order

in local approach is found          
Δb ∝ b20 σ2(R) from <δ1δ12>

This is ∝ R smoothing
equivalent only if: high peaks (δc b10L2 ∼ b10L b20L 

∼ δc3), smoothing R = halo Lagrangian R

but then σ ∼ 1, so pert. theory problematic

17

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08]
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(non-local)

Differences from local approach
At leading order:

we recover Δb ∝ b10-1  from <δ1φ>

No strong dependence on R 
smoothing at leading order

in local approach is found          
Δb ∝ b20 σ2(R) from <δ1δ12>

This is ∝ R smoothing
equivalent only if: high peaks (δc b10L2 ∼ b10L b20L 

∼ δc3), smoothing R = halo Lagrangian R

but then σ ∼ 1, so pert. theory problematic

Asymptotic k-dependence identical
so no problem if b’s are free fitting 
parameters, or renormalised a la McDonalds 08

but non-local (bivariate) method 
needed for predictive bias theory 17

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08]

Physical meaning: large-scale 
δh trace φ, not δ!
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Bispectra

18

from 
Sefusatti talk
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Bispectra
‹δhδhδh› in local bias 
[Sefusatti 09, Jeong & Komatsu 
09]:

Bh(k,k,k) = b13 Bδ(k,k,k) + b12 
b2 [Pδ(k) Pδ(k) + cyc. + ∫ Tδ]

Non-local approach:
many new terms!

SEE TALKS BY Sefusatti & 
Baldauf! (last week)

Higher-order terms depend on 
all fNL, gNL, τNL: interesting!

18

from 
Sefusatti talk
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Measuring NG with future surveys
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Measuring NG with future surveys
Euclid: proposed ESA mission

L2 orbiter, launch: 2018?

full sky imaging (40 gal/arcm) + 
spectroscopy (70 M gal)
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Measuring NG with future surveys
Euclid: proposed ESA mission

L2 orbiter, launch: 2018?

full sky imaging (40 gal/arcm) + 
spectroscopy (70 M gal)

Key probes: weak lensing, BAO 
and full P(k)

goals:
measure w0 @ 2%, wa @ 10%
growth factor γ @ 2%
improving Planck constraints 20x
testing LSS and DM paradigm
and non-Gaussianity?
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Measuring NG with future surveys

Fisher matrix forecasts for NG [TG et al, in prep]

Euclid: proposed ESA mission

L2 orbiter, launch: 2018?

full sky imaging (40 gal/arcm) + 
spectroscopy (70 M gal)

Key probes: weak lensing, BAO 
and full P(k)

goals:
measure w0 @ 2%, wa @ 10%
growth factor γ @ 2%
improving Planck constraints 20x
testing LSS and DM paradigm
and non-Gaussianity?

19(See also Fedeli & Moscardini 09, Carbone Verde et al. 08, 10)
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The non-linear regime

20

k [h/Mpc]
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The non-linear regime
For lensing, deep into non-lin.

20

k [h/Mpc]

1-halo

2-halo
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The non-linear regime
For lensing, deep into non-lin.

Halo model: P(k) = P1 + P2

within one halo and 2-haloes
Mass function:

LoVerde, as correction to PPH fit
Bias:

Linear theory:
b (k) = b10 + Δblin (k)

Halo profile
NFW fitting concentration from simul

20

k [h/Mpc]

1-halo

2-halo

P1(k, z, fNL) =

�
n(M, z, fNL)

�
ρ̃(M, z, k)

ρm

�2
dM

P2(k, z, fNL) =

��
n(M, z, fNL) b(M, z, k, fNL)

ρ̃(M, z, k)

ρm
dM

�2
P0(k, z)

[Ma & Fry 00, Seljak 00]

Agreement to 10% level 
up to k = 10 h/Mpc
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Redshift distributions

21

[following Geach et al, 09]
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Redshift distributions

Photometric
for WL and 2D galaxy spectrum
10 z bins and nuisance bias 
parameters 21

[following Geach et al, 09]
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Redshift distributions

Photometric
for WL and 2D galaxy spectrum
10 z bins and nuisance bias 
parameters

Spectroscopic
for 2D and 3D galaxy spectrum
21 z bins and nuisance bias 
parameters 21

[following Geach et al, 09]
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Fisher matrix

22

Preliminary!
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Fisher matrix
Weak lensing

10 z bins, photo-z: 2D lensing spectra:

+ errors (intrinsic ellipticities + shot noise):

derivatives:

Fisher matrix:

22

Preliminary!

F lens
αβ = fsky

lmax�

l=lmin

(2l + 1)∆l

2
Tr

�
Dlens

lα

�
C̃ lens

l

�−1
Dlens

lβ

�
C̃ lens

l

�−1
�

�
C lens

l

�
ij�

C̃ lens
l

�

ij�
Dlens

lα

�
ij
=

∂
�
C lens

l

�
ij

∂Θα

[Hu & Jain 04, Amara ea 07]
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Fisher matrix
Weak lensing

10 z bins, photo-z: 2D lensing spectra:

+ errors (intrinsic ellipticities + shot noise):

derivatives:

Fisher matrix:

2D galaxy clustering
as with lensing for photo-z, + 21 z bins for spectroscopic

lmax = 1200  (→ kmax = 0.5 h/Mpc  at  z = 1)

22

Preliminary!

F lens
αβ = fsky

lmax�

l=lmin

(2l + 1)∆l

2
Tr

�
Dlens

lα

�
C̃ lens

l

�−1
Dlens

lβ

�
C̃ lens
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�−1
�

�
C lens

l

�
ij�

C̃ lens
l

�

ij�
Dlens

lα

�
ij
=

∂
�
C lens

l

�
ij

∂Θα

[Hu & Jain 04, Amara ea 07]

2D gal, spectro
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Fisher matrix
Weak lensing

10 z bins, photo-z: 2D lensing spectra:

+ errors (intrinsic ellipticities + shot noise):

derivatives:

Fisher matrix:

2D galaxy clustering
as with lensing for photo-z, + 21 z bins for spectroscopic

lmax = 1200  (→ kmax = 0.5 h/Mpc  at  z = 1)

3D galaxy clustering
redshift-space distorsions +  Alcock-Pacinsky effect

kmax = 0.5 h/Mpc  at  z = 1

Fisher matrix: 

22

Preliminary!

F lens
αβ = fsky

lmax�

l=lmin

(2l + 1)∆l

2
Tr

�
Dlens

lα

�
C̃ lens

l

�−1
Dlens

lβ

�
C̃ lens

l

�−1
�

�
C lens

l

�
ij�

C̃ lens
l

�

ij�
Dlens

lα

�
ij
=

∂
�
C lens

l

�
ij

∂Θα

[Hu & Jain 04, Amara ea 07]

F 3D
αβ = π

� 1

−1

� kmax

kmin

∂ lnP (k, µ)

∂Θα

∂ lnP (k, µ)

∂Θβ
w(k, µ) d ln k dµ

[Tegmark 97, Song ea 08]

2D gal, spectro
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Forecasts
Preliminary!
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Forecasts
1D-marginalised forecasts

lensing

2D galaxy clustering, photo & spectro

3D galaxy clustering

Euclid, Euclid+Planck

Gaussian, non-Gaussian

fNL less constrained by lensing

with P spectrum: σ(fNL) = 3

not very degenerate with other 
parameters

Combining WL+P(k): σ(fNL) = 2

Preliminary!

23
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Scale-dependent fNL

In many models of inflation, fNL is scale-dependent 
[e.g. Byrnes, Wands 09]

spectral index of fNL:   nfNL

additional parameter in Fisher forecasts

preliminary result:    if  fNL = 50

marginalised over all other parameters

24

fNL(k) = f̄NL

�
k

kpivot

�nfNL

σ (nfNL) � 0.08

IF scale dependency simply applied to final b(k)...
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Polynomial bias fit
Instead of one b parameter for each bin

bias is expected to be smooth

polynomial fit:

Fisher forecasts improve

preliminary result: 

up to 30% improvement in the parameter 
constraints

25

b(z) = b0 + b1(z − 1) + b2(z − 1)2 + b3(z − 1)3
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Conclusions
Non-Gaussianity: a very important imprint of the early 
Universe

Scale-dependent bias: an additional powerful probe of NG

Bias becomes non-local or bivariate

1-loop calculation SPT

Good agreement with simulations

Very accurate LSS measurements of NG soon possible!
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