### Structure Formation from primordial non-Gaussianity non-local scale-dependent bias and future constraints

TG & Porciani, Phys.Rev.D 81:063530,2010

TG, Porciani, Amara, Pillepich, Carron in prep.



#### Tommaso Giannantonio

**Excellence Cluster Universe, Garching by Munich** in collaboration with C. Porciani, A. Amara, A. Pillepich, J. Carron

Benasque, 18th August 2010

пп

## Outline

Introduction: how to measure non-Gaussianity Non-Gaussian halo mass functions Scale-dependent bivariate (or non-local) bias Statistics: Power spectra and Bispectra Comparison with N-body simulations How to measure NG from future surveys Conclusion



- $\odot$  < $\Theta\Theta\Theta$  = 0, < $\Theta\Theta\Theta\Theta$  = PP if Gaussian;
- WMAP: -10 < f<sub>NL</sub> < 74 (95%) [Komatsu et al 10]</p>
- → -3.80·10<sup>6</sup> < g<sub>NL</sub> < 3.88·10<sup>6</sup> [Smidt et al. 10]
- Planck will have  $\sigma(f_{NL}) = 5$



[Ferguson et al. 09]

- 3- and 4-point correlation functions
  of the CMB  $\Theta = \delta T/T$ 

  - WMAP: -10 < f<sub>NL</sub> < 74 (95%) [Komatsu et al 10]</p>

  - Planck will have  $\sigma(f_{NL}) = 5$
- same for Large-scale structure (LSS):
  - how to distinguish from late-time NG?
    mass distribution at high z [Scoccimarro et al. 04]
    very massive objects at low z [Loverde et al. 08]
    will need PanSTARRS, DES, EUCLID!



[Ferguson et al. 09]



- WMAP: -10 < f<sub>NL</sub> < 74 (95%) [Komatsu et al 10]</p>
- → -3.80·10<sup>6</sup> < g<sub>NL</sub> < 3.88·10<sup>6</sup> [Smidt et al. 10]
- Planck will have  $\sigma(f_{NL}) = 5$
- same for Large-scale structure (LSS):
  - how to distinguish from late-time NG?
    mass distribution at high z [Scoccimarro et al. 04]
    very massive objects at low z [Loverde et al. 08]
  - will need PanSTARRS, DES, EUCLID!



[Ferguson et al. 09]

#### An additional LSS technique: scale-dependent bias

[Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08, Taruya et al 08, Matarrese & Verde 08, ...]

[Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08, Taruya et al 08, Matarrese & Verde 08,

Wednesday, 18 August 2010



[Millennium run, Springel et al.

D.m. perturbations  $\delta_m > d.m.$  haloes  $\delta_h > galaxies \delta_g$ : in increasing high-density

•  $\delta_m$  + halo mass function: halo bias:  $\delta_h = b \delta_m$ 

 $\odot$   $\delta_h$  + halo occupation distribution = galaxy bias,  $\delta_g$ 



[Millennium run, Springel et al.

D.m. perturbations  $\delta_m > d.m.$  haloes  $\delta_h > galaxies \delta_g$ : in increasing high-density

- $\delta_m + halo mass function: halo bias: <math>\delta_h = b \delta_m$
- $\delta_h$  + halo occupation distribution = galaxy bias,  $\delta_g$

with NG: strongly scale-dependent! [Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08]

b → b' = b<sub>Gau</sub> + ∆b(k) for both halo & gal !
 b<sub>g</sub> ∝ ∫ b<sub>h</sub> n (M) HOD(M) dM

spectra <gal-gal> ~ b<sup>2</sup> and <gal-CMB> ~
 b: constraints on NG!

-29 < f<sub>NL</sub> < 69 (95%) [Slosar et al 08]</p>

•  $-3.5 \cdot 10^5 < g_{NL} < 8.2 \cdot 10^5$  [Desjacques et al. 10]



[Millennium run, Springel et al.

D.m. perturbations  $\delta_m > d.m.$  haloes  $\delta_h > galaxies \delta_q$ : in increasing high-density

- $\delta_m$  + halo mass function: halo bias:  $\delta_h = b \delta_m$
- $\delta_h$  + halo occupation distribution = galaxy bias,  $\delta_g$

with NG: strongly scale-dependent! [Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08]

b → b' = b<sub>Gau</sub> + ∆b(k) for both halo & gal !
 b<sub>g</sub> ∝ ∫ b<sub>h</sub> n (M) HOD(M) dM

spectra <gal-gal> ~ b<sup>2</sup> and <gal-CMB> ~
 b: constraints on NG!

-29 < f<sub>NL</sub> < 69 (95%) [Slosar et al 08]</p>

Agreement with simulations not excellent Theoretical derivation not fully consistent



[Pillepich et al. 08]

Simple prediction for local NG:
 \Delta b(k) = f\_{NL} (b\_0 - 1) / k^2 x const.



[Pillepich et al. 08]

 Simple prediction for local NG:
 Δb(k) = f<sub>NL</sub> (b<sub>0</sub> - 1) / k<sup>2</sup> x const.
 Not fully obeyed by simulations! [Pillepich et al. 08, Desjacques et al. 08, Grossi et al. 09]

Some correction seems needed



[Pillepich et al. 08]

 Simple prediction for local NG:
 Δb(k) = f<sub>NL</sub> (b<sub>0</sub> - 1) / k<sup>2</sup> x const.
 Not fully obeyed by simulations! [Pillepich et al. 08, Desjacques et al. 08, Grossi et al. 09]

Some correction seems needed

We calculate full one-loop corrections in a new, fully predictive and consistent way!

- Second real-space (Eulerian) perturbations to 3rd order...
  - $\delta_h(x) = b_0 + b_1 \delta(x) + b_2 \delta^2(x) / 2 + b_3 \delta^3(x) / 3! + ...$ [Fry & Gaztanaga 93]
  - - to ensures locality: exclude smallest scales
    - to ensure consistency of perturbative expansion
    - we use SPT with Smith et al. 06 recipe

- Second real-space (Eulerian) perturbations to 3rd order...
  - $\delta_h(x) = b_0 + b_1 \delta(x) + b_2 \delta^2(x) / 2 + b_3 \delta^3(x) / 3! + ...$ [Fry & Gaztanaga 93]
  - - to ensures locality: exclude smallest scales
    - to ensure consistency of perturbative expansion
    - we use SPT with Smith et al. 06 recipe
- The plan:
  - 1. the b's from a Mass Function (peak-background split) in Lagrangian (primordial) space
  - 2. collapse model: transformation to Eulerian space
  - 3. calculate the statistics [P(k), etc] and compare with simulations

- Second real-space (Eulerian) perturbations to 3rd order...
  - $\delta_h(x) = b_0 + b_1 \delta(x) + b_2 \delta^2(x) / 2 + b_3 \delta^3(x) / 3! + ...$ [Fry & Gaztanaga 93]
  - - to ensures locality: exclude smallest scales
    - to ensure consistency of perturbative expansion
    - we use SPT with Smith et al. 06 recipe
- The plan:
  - 1. the b's from a Mass Function (peak-background split) in Lagrangian (primordial) space
  - 2. collapse model: transformation to Eulerian space
  - 3. calculate the statistics [P(k), etc] and compare with simulations

#### All this in the non-Gaussian case. Locality won't hold!

#### halo number density

- o dn/dM  $\propto$  f ( $\sigma$ , f<sub>NL</sub>)
- σ(M): variance of the linear δ smoothed at a scale  $R_f(M)$



#### halo number density

- o dn/dM  $\propto$  f ( $\sigma$ , f<sub>NL</sub>)
- $\sigma(M)$ : variance of the linear  $\delta$  smoothed at 0 a scale  $R_f(M)$

#### Gaussian models for f: 0

- spherical collapse Press-Schechter (PS) 0  $f_{\rm PS} = \sqrt{\frac{2\delta_c}{\pi\sigma}} e^{-\frac{\delta_c^2}{2\sigma^2}}$
- Sheth-Tormen (ST), Jenkins, Warren: extra 0 parameters fit from simulations

threshold



#### halo number density

- $\circ$  dn/dM  $\propto$  f ( $\sigma$ , f<sub>NL</sub>)
- $\sigma(M)$ : variance of the linear  $\delta$  smoothed at a scale  $R_f(M)$

#### Gaussian models for f:

Ø Press-Schechter (PS)

spherical collapse threshold

 $f_{\rm PS} = \sqrt{\frac{2\delta_c}{\pi}e^{-\frac{\delta_c^2}{2\sigma^2}}}$ 

Sheth-Tormen (ST), Jenkins, Warren: extra parameters fit from simulations

- $\oslash$  NG: with skewness S<sub>3</sub> =  $\langle \delta^3 \rangle \propto f_{NL}$ 
  - Matarrese-Verde-Jimenez (MVJ)  $f_{\rm MVJ} = \sqrt{\frac{2}{\pi}} e^{-\delta_{\star}^2/(2\sigma^2)} \left| \frac{\delta_c^3}{6\sigma\,\delta_{\star}} \frac{dS_3(\sigma)}{d\ln\sigma} + \frac{\delta_{\star}}{\sigma} \right|,$
  - LoVerde (LV), Maggiore-Riotto (MR) Lam-0 Sheth (LS)
- Or just a fit to our simulations! (PPH)[Pillepich et al. 08]





#### a halo number density

- o dn/dM  $\propto$  f ( $\sigma$ , f<sub>NL</sub>)
- σ(M): variance of the linear δ smoothed at a scale R<sub>f</sub>(M)

#### Gaussian models for f:

Press-Schechter (PS)

spherical collapse threshold

 $f_{\rm PS} = \sqrt{\frac{2}{\pi} \frac{\delta_c}{\sigma}} e^{-\frac{\delta_c^2}{2\sigma^2}}$ 

 Sheth-Tormen (ST), Jenkins, Warren: extra parameters fit from simulations

- NG: with skewness  $S_3 = \langle \delta^3 \rangle \propto f_{NL}$ 
  - Matarrese-Verde-Jimenez (MVJ)

$$f_{\rm MVJ} = \sqrt{\frac{2}{\pi}} e^{-\delta_{\star}^2/(2\sigma^2)} \left| \frac{\delta_c^3}{6\sigma\delta_{\star}} \frac{dS_3(\sigma)}{d\ln\sigma} + \frac{\delta_{\star}}{\sigma} \right|$$

- LoVerde (LV), Maggiore-Riotto (MR) Lam-Sheth (LS)
- Or just a fit to our simulations! (PPH)[Pillepich et al. 08]



Accuracy ~ 10% We will use LV, PPH fit

#### Peak-background Split [Bardeen et al 86, Cole & Kaisers 89]

#### Peak-background Split [Bardeen et al 86, Cole & Kaisers 89]

• Gaussian potential, Lagrange space:  $\varphi(q) = \varphi_{l}(q) + \varphi_{s}(q)$ 

- From NG definition:  $\Phi = \varphi + f_{
  m NL} \left[ \varphi^2 \langle \varphi^2 \rangle \right]$ 
  - $\Phi_{l} = \phi_{l} + f_{NL} \phi_{l}^{2} \langle \phi^{2} \rangle$
  - $\odot$   $\Phi_m = 2 f_{NL} \phi_l \phi_s$
  - $\Phi_s = \phi_s + f_{NL} \phi_s^2$

crucial point: coupling mode from the double product in  $\phi^2$ 

## Peak-background Split [Bardeen et al 86, Cole & Kaisers 89]

Gaussian potential, Lagrange space:  $\varphi(q) = \varphi(q) + \varphi(q)$ 

- $\odot$  From NG definition:  $\Phi=arphi+f_{
  m NL}\left[arphi^2-\langlearphi^2
  angle
  ight]$ 
  - $\Phi_{l} = \phi_{l} + f_{NL} \phi_{l}^{2} \langle \phi^{2} \rangle$ 0
  - $\odot$   $\Phi_m = 2 f_{NL} \phi_l \phi_s \leftrightarrow$

crucial point: coupling mode from the double product in  $\phi^2$ 

• Fourier space: Poisson equation:  $\nabla^2 \Phi(k) = A \delta(k)$ ,  $\nabla^2 \phi(k) = A \delta_G(k)$ 

- $\delta_m = 2 f_{NL} (\delta_{G,s} \phi_l + \delta_{G,l} \phi_s) + ...$  collapse to form d.m. haloes
- $\delta_s = \delta_{G,s} (1 + 2f_{NL} \phi_l) + ...$
- $\delta_{G,s}$  can be eliminated

modulate counts, large-scale motions collapse to form d.m. haloes

# With NG, extra bias from the potential!

#### $\delta_{\rm s} + \delta_{\rm m} \approx \delta_{\rm s} (1 + 2f_{\rm NL} \phi_{\rm l})$

#### modulate counts, large-scale motions collapse to form d.m. haloes collapse to form d.m. haloes

Tourier space: Poisson equation:  $\nabla^2 \Phi(k) = A \delta(k)$ ,  $\nabla^2 \phi(k) = A \delta_G(k)$ 

- $\Phi_{l} = \varphi_{l} + f_{NL} \varphi_{l}^{2} \langle \varphi^{2} \rangle$ 0
- $\Phi_{\rm m}$  = 2 f<sub>NL</sub>  $\varphi_{\rm l} \varphi_{\rm s}$ 0
- $\circ \Phi_s = \phi_s + f_{NL} \phi_s^2$

crucial point: coupling mode from the double product in  $\phi^2$ 

Peak-background Split [Bardeen et al 86, Cole & Kaisers 89]

Gaussian potential, Lagrange space:

 $\varphi(q) = \varphi_1(q) + \varphi_s(q)$ 

 $\odot$  From NG definition:  $\Phi=arphi+f_{
m NL}\left[arphi^2-\langlearphi^2
angle
ight]$ 

- $\delta_m = 2 f_{NL} (\delta_{G,s} \phi_l + \delta_{G,l} \phi_s) + ...$
- $\delta_s = \delta_{G,s} (1 + 2f_{NL} \phi_l) + \dots$

 $\delta_l = \delta_{G,l} (1 + 2f_{NL} \phi_l) + \dots$ 

- $\delta_{G,s}$  can be eliminated
- If  $\delta_s = \delta_s + \delta_m > \delta_c$

 $\oslash$  with r.m.s.  $\sigma (1 + 2f_{NL} \varphi_{l})$ 

... + 3  $g_{NL} \varphi_1^2$  + ... + j  $Q_{NLj} \varphi_1^{j-1}$ 

## Bias from a mass function

## Bias from a mass function

a halo density Lagrangian perturbation:  $\delta_h^L = rac{n(M) - \bar{n}}{\bar{m}}$  , n¤f( $\delta_c/\sigma$ )

Then Taylor-expanded at 1st or 3rd order [Mo & White 95 etc...]

## Bias from a mass function a halo density Lagrangian perturbation: $\delta_h^L = \frac{n(M) - n}{\overline{n}}$ , n×f( $\delta_c/\sigma$ ) Then Taylor-expanded at 1st or 3rd order [Mo & White 95 etc...] $\odot$ Gaussian case: f = f (M, $\delta_l$ ) $\delta_h^L(\mathbf{q}) = \frac{f\left(\frac{\delta_c - \delta_l(\mathbf{q})}{\sigma}\right)}{f\left(\frac{\delta_c}{\sigma}\right)} - 1 \qquad \longrightarrow \qquad \delta_h^L(\mathbf{q}) = \sum_{j=0}^{\infty} \frac{b_j^L}{j!} \,\delta_l^j(\mathbf{q})$



Naturally Taylor-expanded in both variables



## Lagrangian bias

• Third-order NG expansion:  $\delta_{h}^{L}(\mathbf{q}) = b_{0}^{L} + b_{10}^{L} \delta + b_{01}^{L} \varphi + \frac{1}{2!} \left( b_{20}^{L} \delta^{2} + 2 b_{11}^{L} \delta \varphi + b_{02}^{L} \varphi^{2} \right) + \frac{1}{3!} \left( b_{30}^{L} \delta^{3} + 3 b_{21}^{L} \delta^{2} \varphi + 3 b_{12}^{L} \delta \varphi^{2} + b_{03}^{L} \varphi^{3} \right)$ 

# Lagrangian bias Third-order NG expansion:

$$\begin{split} \delta_{h}^{L}(\mathbf{q}) &= \left( b_{0}^{L} + b_{10}^{L} \,\delta + b_{01}^{L} \,\varphi \right) + \left( \begin{array}{c} \text{1st-order NG: recovers Data et al. 07, etc} \\ &+ \frac{1}{2!} \left( b_{20}^{L} \,\delta^{2} + 2 \, b_{11}^{L} \,\delta\varphi + b_{02}^{L} \,\varphi^{2} \right) + \\ &+ \frac{1}{3!} \left( b_{30}^{L} \,\delta^{3} + 3 \, b_{21}^{L} \,\delta^{2} \varphi + 3 \, b_{12}^{L} \,\delta\varphi^{2} + b_{03}^{L} \,\varphi^{3} \right) \end{split}$$

## Lagrangian bias

Third-order NG expansion:

$$\delta_h^L(\mathbf{q}) =$$

+

+

 $\begin{array}{c} b_0^L + b_{10}^L \delta + b_{01}^L \varphi \\ \hline 1 \\ \frac{1}{2!} \left( b_{20}^L \delta^2 + 2 b_{11}^L \delta \varphi + b_{02}^L \varphi^2 \right) + \end{array}$ 

$$\frac{1}{3!} \left( b_{30}^L \,\delta^3 + 3 \, b_{21}^L \,\delta^2 \varphi + 3 \, b_{12}^L \,\delta \varphi^2 + b_{03}^L \,\varphi^3 \right)$$

Gaussian, local part
# Lagrangian bias Third-order NG expansion:

$$\begin{split} \delta_{h}^{L}(\mathbf{q}) &= \left( \begin{array}{c} b_{0}^{L} + b_{10}^{L} \delta + b_{01}^{L} \varphi \\ + b_{01}^{L} \varphi + b_{01}^{L} \varphi + \left( \begin{array}{c} 1 \\ \frac{1}{2!} \left( b_{20}^{L} \delta^{2} + 2 b_{11}^{L} \delta \varphi + b_{02}^{L} \varphi^{2} \right) + \\ + \left( \begin{array}{c} \frac{1}{3!} \left( b_{30}^{L} \delta^{3} + 3 b_{21}^{L} \delta^{2} \varphi + 3 b_{12}^{L} \delta \varphi^{2} + b_{03}^{L} \varphi^{3} \right) \\ \end{array} \right) \end{split}$$
Gaussian, local part
$$\begin{array}{c} \alpha \quad f_{NL} \quad \alpha \quad f_{NL}^{2} \quad \alpha \quad f_{NL}^{3} \end{array}$$
Equation (e.q.: b\_{01} = 2 f\_{NL} \delta\_{c} b\_{10}) = 2 f\_{NL} \delta\_{c} b\_{10} \\ \end{array}

## Lagrangian bias Third-order NG expansion:

$$\begin{split} \delta_{h}^{L}(\mathbf{q}) &= \underbrace{b_{0}^{L} + b_{10}^{L} \delta + b_{01}^{L} \varphi}_{1} + \underbrace{\text{1st-order NG: recovers Datal et al. 07, etc}}_{1} \\ &+ \underbrace{\frac{1}{2!} \left( b_{20}^{L} \delta^{2} + 2 b_{11}^{L} \delta \varphi + b_{02}^{L} \varphi^{2} \right) +}_{1} \\ &+ \underbrace{\frac{1}{3!} \left( b_{30}^{L} \delta^{3} + 3 b_{21}^{L} \delta^{2} \varphi + 3 b_{12}^{L} \delta \varphi^{2} + b_{03}^{L} \varphi^{3} \right)}_{12} \\ \end{bmatrix} \\ \begin{array}{c} \text{Linear comb.} \\ \text{of the} \\ \text{Gaussian, local part} \\ & \alpha \quad f_{NL} \\ \end{array} \\ \begin{array}{c} \alpha \quad f_{NL}^{2} \\ \text{If also } g_{NL}: \text{ extra terms in } b_{02}, \\ b_{12} \\ \end{array} \\ \end{split}$$

In can be computed from any mass function (PS, LV, PPH, ...)

0

#### Lagrangian bias

Third-order NG expansion:

 $\delta_h^L(\mathbf{q}) = \left[ b_0^L + b_{10}^L \delta + b_{01}^L \varphi + \right]$  1st-order NG: recovers Dalal et al. 07, etc.

10

 $\frac{1}{2!} \left( b_{20}^L \,\delta^2 + 2 \, b_{11}^L \,\delta\varphi + b_{02}^L \,\varphi^2 \right) +$ 



Wednesday, 18 August 2010

 derived quantities are
 Lagrangian: in terms of initial conditions

Observables are Eulerian: structure has evolved

derived quantities are
 Lagrangian: in terms of initial conditions

Observables are Eulerian: structure has evolved

Spherical collapse:  $a_1 = 1; a_2 = -17/21; a_3 = 341/567$ 

 derived quantities are
 Lagrangian: in terms of initial conditions

Observables are Eulerian: structure has evolved

Spherical collapse:  $a_1 = 1; a_2 = -17/21; a_3 = 341/567$ 

If bias expansion in Eulerian theory  $b^{L} \rightarrow b^{(E)}$ 

$$b_{10} = 1 + a_1 b_{10}^L$$
  

$$b_{20} = 2(a_1 + a_2) b_{10}^L + a_1^2 b_{20}^L$$
  

$$b_{30} = 6(a_2 + a_3) b_{10}^L + 3(a_1^2 + 2a_1a_2) b_{20}^L + a_1^3 b_{30}^L$$

 derived quantities are
 Lagrangian: in terms of initial conditions

Observables are Eulerian: structure has evolved

Spherical collapse:  $a_1 = 1; a_2 = -17/21; a_3 = 341/567$ 

 $\odot$  bias expansion in Eulerian theory  $b^{L} \rightarrow b^{(E)}$ 

$$b_{10} = 1 + a_1 b_{10}^L$$

$$b_{20} = 2(a_1 + a_2) b_{10}^L + a_1^2 b_{20}^L$$

$$b_{30} = 6(a_2 + a_3) b_{10}^L + 3(a_1^2 + 2a_1a_2) b_{20}^L + a_1^3 b_{30}^L$$
**3rd order perturbations expansion**

$$\delta = \delta_1 + \delta_2 + \delta_3$$

$$\varphi = \varphi_1$$

$$\tilde{\delta}_n(\mathbf{k}) = \int \frac{d^3 \mathbf{q}_1}{(2\pi)^3} \dots \frac{d^3 \mathbf{q}_n}{(2\pi)^3} \delta_D \left(\mathbf{k} - \sum_{i=1}^n \mathbf{q}_i\right) J_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \tilde{\delta}_1(\mathbf{q}_1) \dots \tilde{\delta}_1(\mathbf{q}_n)$$

Finally: rewrite  $\delta_h$  only in terms of  $\delta_1$ ,  $\phi_1$ 

• Spectra of  $\Phi(k)$ : spectra of  $\phi$  + small corrections

- (2π)<sup>3</sup> B<sub>Φ</sub>(k) δ<sub>D</sub>(k+k'+k'') = <Φ(k) Φ(k') Φ(k'') ≈ 2f<sub>NL</sub> [P<sub>φ</sub> P<sub>φ</sub> + cyc.]
- $(2\pi)^{3} T_{\Phi}(k) \delta_{D}(k+k'+k''+k''') = \langle \Phi(k) \Phi(k') \Phi(k'') \Phi(k''') \rangle \approx 4 f_{NL^{2}} [P_{\phi} P_{\phi} (P_{\phi}+P_{\phi})+c.]$

aka T<sub>NL</sub>

• Spectra of  $\Phi(k)$ : spectra of  $\phi$  + small corrections

- (2π)<sup>3</sup> B<sub>Φ</sub>(k) δ<sub>D</sub>(k+k'+k'') = <Φ(k) Φ(k') Φ(k'') ≈ 2f<sub>NL</sub> [P<sub>φ</sub> P<sub>φ</sub> + cyc.]

aka T<sub>NL</sub>

#### 

 $\odot \Delta P_{\Phi}$  small,

 $\odot \quad \Delta T_{\Phi} = 6 g_{NL} P_{\phi} P_{\phi} P_{\phi} + cyc.$ 

• Spectra of  $\Phi(k)$ : spectra of  $\phi$  + small corrections

- ≈ P<sub>φ</sub>  $(2π)^3 P_{\Phi}(k) \delta_D(k+k') = \langle \Phi(k) \Phi(k') \rangle$
- (2π)<sup>3</sup> B<sub>Φ</sub>(k) δ<sub>D</sub>(k+k'+k'') = <Φ(k) Φ(k') Φ(k'') ≈ 2f<sub>NL</sub> [P<sub>φ</sub> P<sub>φ</sub> + cyc.]
- $(2\pi)^{3} T_{\Phi}(k) \delta_{D}(k+k'+k''+k''') = \langle \Phi(k) \Phi(k') \Phi(k'') \Phi(k''') \rangle \approx 4 f_{NL}^{2} [P_{\varphi} P_{\varphi} (P_{\varphi}+P_{\varphi})+c.]$

aka T<sub>NL</sub>

 $\oslash \Delta P_{\Phi}$  small,

Φ  $ΔT_Φ = 6 g_{NL} P_φ P_φ P_φ + cyc.$ 

Inear density perturbations  $\delta_1(k) = \alpha(k) \Phi(k)$  $\alpha(k) = \frac{2c^2k^2T(k)D(z)}{3\Omega_m H_0^2}$ 

- $P_0(k) = \alpha^2(k) P_{\Phi}(k) \approx \alpha^2(k) P_{\phi}(k)$
- $\odot$  B<sub>0</sub>(k), T<sub>0</sub>(k) similar

we can now move on to density full spectra...

 $\oslash$  < $\delta\delta$ >, with  $\delta = \delta_1 + \delta_2 + \delta_3$ 

 $P^{mm}(k, z) = D^2 P_{11} + D^3 P_{12} + D^4 (P_{22} + P_{13})$ 

$$P_{11}^{mm}(k) = P_0(k)$$

$$P_{12}^{mm}(k) = 2 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} J_2^{(s)}(\mathbf{q}, \mathbf{k} - \mathbf{q}) B_0(-\mathbf{k}, \mathbf{q}, \mathbf{k} - \mathbf{q})$$

$$P_{22}^{mm}(k) = 2 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} \left[ J_2^{(s)}(\mathbf{q}, \mathbf{k} - \mathbf{q}) \right]^2 P_0(q) P_0(|\mathbf{k} - \mathbf{q}|)$$

$$P_{13}^{mm}(k) = 6 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} J_3^{(s)}(\mathbf{k}, \mathbf{q}, -\mathbf{q}) P_0(q) P_0(k)$$

Compare with N-body simulations by Pillepich et al. 08

Compare with N-body simulations by Pillepich et al. 08



• 
$$\delta \delta \delta$$
, with  $\delta = \delta_1 + \delta_2 + \delta_3$   
•  $P^{mm}(\mathbf{k}, \mathbf{z}) = D^2 P_{11} + D^3 P_{12} + D^4 (P_{22} + P_{13})$   
•  $D^{mm}(\mathbf{k}) = P_0(\mathbf{k})$   
•  $D^{mm}_{12}(\mathbf{k}) = 2 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} J_2^{(s)}(\mathbf{q}, \mathbf{k} - \mathbf{q}) B_0(-\mathbf{k}, \mathbf{q}, \mathbf{k} - \mathbf{q})$   
•  $D^{mm}_{22}(\mathbf{k}) = 2 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} [J_2^{(s)}(\mathbf{q}, \mathbf{k} - \mathbf{q})]^2 P_0(q) P_0(|\mathbf{k} - \mathbf{q}|)$   
•  $D^{mm}_{13}(\mathbf{k}) = 6 \int \frac{d^3 \mathbf{q}}{(2\pi)^3} J_3^{(s)}(\mathbf{k}, \mathbf{q}, -\mathbf{q}) P_0(q) P_0(\mathbf{k})$ 

Compare with N-body simulations by Pillepich et al. 08



Excellent agreement with Taruya et al up to k = 0.2 h/Mpc

#### Halo spectra



Excellent agreement up to k = 0.2 h/Mpc



- $\checkmark$  reproduces Dalal et al. 07 at linear order
- $\checkmark$  gives standard 1-loop theory if  $f_{NL} = 0$
- contains all terms by Taruya et al. 08,
   Sefusatti 09 + extra terms
- ✓ is fully consistent and complete

Excellent agreement up to k = 0.2 h/Mpc









$$\Delta b_{\rm lin}(k) = b_{10}(f_{\rm NL}) - b_{10}(f_{\rm NL} = 0) + (2f_{\rm NL}\delta_c [b_{10}(f_{\rm NL}) - 1]/\alpha(k)$$



- New terms from two sources:
  - $\odot$  Trispectrum correction  $\Delta T \propto g_{NL}$
  - $\odot$  bias corrections  $\propto g_{NL}$





#### Differences from local approach

#### Differences from local approach

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08]



#### we recover $\Delta b \propto b_{10}-1$ from $\langle \delta_1 \phi \rangle$ . 1 15 No strong dependence on R 0 smoothing at leading order P<sup>hm</sup>(k,f<sub>NL</sub>) [(Mpc/h)<sup>3</sup>] 0 10 10 10 20 LV full in local approach is found 0 $\Delta b \propto b_{20} \sigma^2(R)$ from $\langle \delta_1 \delta_1^2 \rangle$ This is $\propto$ R smoothing equivalent only if: high peaks ( $\delta_c b_{10}^{L2} \sim b_{10}^{L} b_{20}^{L}$ 0 $\sim \delta_c^3$ ), smoothing R = halo Lagrangian R 104 but then $\sigma \sim 1$ , so pert. theory problematic 0

#### Differences from local approach

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08] At leading order:



#### Wednesday, 18 August 2010

#### Differences from local approach

Bivariate (or non-local) b vs. local b [Taruya et al. 08, Sefusatti 09, Matarrese & Verde 08] At leading order:

- we recover  $\Delta b \propto b_{10}-1$  from  $<\delta_1 \phi > .$ 0
- No strong dependence on R smoothing at leading order
- in local approach is found ;  $\Delta b \propto b_{20} \sigma^2(R)$  from  $\langle \delta_1 \delta_1^2 \rangle$
- This is « R smoothing 0

equivalent only if: high peaks ( $\delta_c b_{10}^{L2} \sim b_{10}^{L} b_{20}^{L}$ 0  $\sim \delta_c^3$ ), smoothing R = halo Lagrangian R

but then  $\sigma \sim 1$ , so pert. theory problematic 0

#### Asymptotic k-dependence identical

- so no problem if b's are free fitting parameters, or renormalised a la McDonalds 08
- but non-local (bivariate) method 0 needed for predictive bias theory



Physical meaning: large-scale  $\delta_h$  trace  $\phi$ , not  $\delta!$ 

#### Bispectra



## Bispectra



#### Measuring NG with future surveys

#### Measuring NG with future surveys

Euclid



Euclid: proposed ESA mission

L2 orbiter, launch: 2018?

 full sky imaging (40 gal/arcm) + spectroscopy (70 M gal)

#### Measuring NG with future surveys

Euclid



Euclid: proposed ESA mission

- L2 orbiter, launch: 2018?
- full sky imaging (40 gal/arcm) + spectroscopy (70 M gal)
- Key probes: weak lensing, BAO and full P(k)
- o goals:

  - o growth factor  $\gamma @ 2\%$
  - improving Planck constraints 20x
  - testing LSS and DM paradigm
  - and non-Gaussianity?
# Measuring NG with future surveys

Euclid



Euclid: proposed ESA mission

- L2 orbiter, launch: 2018?
- full sky imaging (40 gal/arcm) + spectroscopy (70 M gal)
- Key probes: weak lensing, BAO and full P(k)
- o goals:

  - o growth factor  $\gamma @ 2\%$
  - improving Planck constraints 20x
  - testing LSS and DM paradigm
  - and non-Gaussianity?

Fisher matrix forecasts for NG [TG et al, in prep]

(See also Fedeli & Moscardini 09, Carbone Verde et al. 08, 10)

# The non-linear regime

# The non-linear regime

For lensing, deep into non-lin.



# The non-linear regime



# Photometric: 10 bins Defined and a second s





[following Geach et al, 09]

#### Photometric

- o for WL and 2D galaxy spectrum
- 10 z bins and nuisance bias parameters



Photometric

- for WL and 2D galaxy spectrum
- 10 z bins and nuisance bias parameters

- [following Geach et al, 09]
  - o for 2D and 3D galaxy spectrum
  - 21 z bins and nuisance bias parameters

#### Weak lensing

- 10 z bins, photo-z: 2D lensing spectra:  $[C_l^{\text{lens}}]_{ij}$
- + errors (intrinsic ellipticities + shot noise):  $\left[\tilde{C}_{l}^{\text{lens}}\right]_{ij}$  derivatives:  $\left[D_{l\alpha}^{\text{lens}}\right]_{ij} = \frac{\partial \left[C_{l}^{\text{lens}}\right]_{ij}}{\partial \Theta_{\alpha}}$
- So Fisher matrix:  $F_{\alpha\beta}^{\text{lens}} = f_{\text{sky}} \sum_{l=l_{\min}}^{l_{\max}} \frac{(2l+1)\Delta l}{2} \operatorname{Tr} \left[ D_{l\alpha}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} D_{l\beta}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} \right]$ [Hu & Jain 04, Amara ea 07]

#### Weak lensing

- 10 z bins, photo-z: 2D lensing spectra:  $[C_l^{\text{lens}}]_{ii}$
- + errors (intrinsic ellipticities + shot noise):  $\left[\tilde{C}_{l}^{\text{lens}}\right]_{ij}$ derivatives:  $\left[D_{l\alpha}^{\text{lens}}\right]_{ij} = \frac{\partial \left[C_{l}^{\text{lens}}\right]_{ij}}{\partial \Theta_{\alpha}}$
- So Fisher matrix:  $F_{\alpha\beta}^{\text{lens}} = f_{\text{sky}} \sum_{l=l_{\min}}^{l_{\max}} \frac{(2l+1)\Delta l}{2} \operatorname{Tr} \left[ D_{l\alpha}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} D_{l\beta}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} \right]$
- 2D galaxy clustering 0
  - as with lensing for photo-z, + 21 z bins for spectroscopic 0
  - $l_{max} = 1200 (\rightarrow k_{max} = 0.5 h/Mpc at z = 1)$ 0











#### 2D gal, spectro

#### Weak lensing

- 10 z bins, photo-z: 2D lensing spectra:  $\begin{bmatrix} C_l^{\text{lens}} \end{bmatrix}_{ii}$
- + errors (intrinsic ellipticities + shot noise):  $\left[\tilde{C}_{l}^{\text{lens}}\right]_{ij}$  derivatives:  $\left[D_{l\alpha}^{\text{lens}}\right]_{ij} = \frac{\partial \left[C_{l}^{\text{lens}}\right]_{ij}}{\partial \Theta_{\alpha}}$
- So Fisher matrix:  $F_{\alpha\beta}^{\text{lens}} = f_{\text{sky}} \sum_{l=l_{\min}}^{l_{\max}} \frac{(2l+1)\Delta l}{2} \operatorname{Tr} \left[ D_{l\alpha}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} D_{l\beta}^{\text{lens}} \left( \tilde{C}_{l}^{\text{lens}} \right)^{-1} \right]$ [Hu & Jain 04, Amara ea 07]
- 2D galaxy clustering
  - as with lensing for photo-z, + 21 z bins for spectroscopic
  - Imax = 1200 (→  $k_{max} = 0.5 h/Mpc$  at z = 1)

#### 3D galaxy clustering

- redshift-space distorsions + Alcock-Pacinsky effect 0
- $k_{max} = 0.5 h/Mpc$  at z = 10

• Fisher matrix:  $F_{\alpha\beta}^{3D} = \pi \int_{-1}^{1} \int_{k_{\min}}^{k_{\max}} \frac{\partial \ln P(k,\mu)}{\partial \Theta_{\alpha}} \frac{\partial \ln P(k,\mu)}{\partial \Theta_{\beta}} w(k,\mu) d \ln k d\mu$ [Tegmark 97, Song ea 08]











2D gal, spectro

## Forecasts Preliminary!

| Gaussian case                                                                                                                                                                          | Non-Gaussian case                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| lens                                                                                                                                                                                   | lens.                                       |
| 0.85 0.70 0.75 0.80<br>Ω                                                                                                                                                               | 0.65 0.70 0.75 0.80<br>Ω                    |
| lens.<br>2D pho.<br>2D spec.<br>3D HHH                                                                                                                                                 | lens.<br>2D pho.<br>2D spec.<br>3D          |
| 0.02 0.03 0.04 0.05 0.06 0.07<br>Ω                                                                                                                                                     | 0.02 0.03 0.04 0.05 0.08 0.07<br>G          |
| lens.         μ           2D pho.         2D pho.           2D spec.         3D           3D         1           0.26         0.27         0.28         0.29         0.30           Ω_ | lens.                                       |
| lens.<br>2D pho.<br>2D spec.<br>3D H                                                                                                                                                   | lens.                                       |
| 0.5 0.6 0.7 0.8 0.§<br>L                                                                                                                                                               | 0.5 0.6 0.7 0.8 0.9<br>h                    |
| lens.<br>2D pho.<br>2D spec.<br>3D                                                                                                                                                     | lens.                                       |
| 0.92 0.94 0.96 0.98 1.00<br>n                                                                                                                                                          | 0.92 0.94 0.96 0.98 1.00<br>n               |
| lens.<br>2D pho.<br>2D spec.<br>3D                                                                                                                                                     | 2D pho.                                     |
| 0.80 0.81 0.82 0.83 0.84<br>°a                                                                                                                                                         | 0.80 0.81 0.82 0.83 0.84<br>°a              |
| 2D pho.                                                                                                                                                                                | 2D pho.                                     |
| -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7<br>W <sub>0</sub>                                                                                                                                   | -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7<br>¥0    |
| lens.         lens.           2D pho.         2D spec.           3D         -1.0                                                                                                       | lens.                                       |
| Euclid + Planck                                                                                                                                                                        | Iens.       2D pho.       2D spec.       ap |
|                                                                                                                                                                                        | -20 -10 0 10 20<br>f <sub>SL</sub>          |

## Forecasts Preliminary!

- ID-marginalised forecasts
  - lensing
  - 2D galaxy clustering, photo & spectro
  - 3D galaxy clustering
- Second Euclid + Planck
- Gaussian, non-Gaussian
- o  $f_{NL}$  less constrained by lensing
- $\odot$  with P spectrum:  $\sigma(fNL) = 3$
- not very degenerate with other parameters

• Combining WL+P(k):  $\sigma(fNL) = 2$ 

| Gaussian case                                              | Non-Gaussian case                                                                                               |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| lens                                                       | lens.<br>2D pho.,<br>2D spec.<br>3D                                                                             |
| 0.65 0.70 0.75 0.80<br>Ω                                   | 0.65 0.70 0.75 0.80<br>Ω                                                                                        |
| lens.            2D pho.            2D spec.            3D | Iens.     2D pho.     2D spec.     3D                                                                           |
| 0.02 0.03 0.04 0.05 0.08 0.07<br>Ω                         | 0.02 0.03 0.04 0.05 0.08 0.07<br>Ω                                                                              |
| lens.<br>2D pho.<br>2D spec.                               | lens.            2D pho.            2D spec.            3D                                                      |
| 0.26 0.27 0.28 0.29 0.30<br>Ω_                             | 0.26 0.27 0.28 0.29 0.30<br>Ω_                                                                                  |
| lens.<br>2D pho.<br>2D spec.<br>3D H                       | lens.         H         I           2D pho.         I         IIII         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |
| 0.5 0.6 0.7 0.8 0.9<br>L                                   | 0.5 0.6 0.7 0.8 0.9<br>h                                                                                        |
| lens.<br>2D pho.<br>2D spec.<br>3D                         | lens.<br>2D pho.<br>2D spec.<br>3D                                                                              |
| 0.92 0.94 0.96 0.98 1.00<br>n                              | 0.92 0.94 0.96 0.98 1.00<br>n                                                                                   |
| 2D pho.                                                    | lens.       2D pho.       2D spec.                                                                              |
| 0.80 0.81 0.82 0.83 0.8                                    | 4 0.80 0.81 0.82 0.83 0.84<br>°a                                                                                |
| lens.<br>20 pho.<br>20 spec.                               | lens.<br>2D pho.<br>2D spec.<br>3D H                                                                            |
| -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.<br>W <sub>0</sub>        | 7-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7<br>¥0                                                                       |
| lens.<br>2D pho.<br>2D speç.                               | Iens.    2D pho.    2D spec.    3D                                                                              |
| -1.0 -0.5 0.0 0.5 1.0                                      | -1.0 -0.5 0.0 0.5 1.0<br>¥.                                                                                     |
| Euclid + Planck                                            | 2D pho.                                                                                                         |
|                                                            | 3D -20 -10 0 10 20                                                                                              |
|                                                            | f <sub>81</sub>                                                                                                 |

# Scale-dependent fNL

In many models of inflation, fNL is scale-dependent
 [e.g. Byrnes, Wands 09]

 $\odot$  spectral index of fNL: nfNL

$$f_{\rm NL}(k) = \bar{f}_{\rm NL} \left(\frac{k}{k_{\rm pivot}}\right)^{n_{f_{\rm NL}}}$$

additional parameter in Fisher forecasts

### IF scale dependency simply applied to final b(k)...

The preliminary result: if  $f_{NL} = 50$ 

 $\sigma\left(n_{f_{\rm NL}}\right) \simeq 0.08$ 

marginalised over all other parameters

# Polynomial bias fit

- Instead of one b parameter for each bin
  bias is expected to be smooth
  polynomial fit:
  b(z) = b<sub>0</sub> + b<sub>1</sub>(z 1) + b<sub>2</sub>(z 1)<sup>2</sup> + b<sub>3</sub>(z 1)<sup>3</sup>
  Fisher forecasts improve
  preliminary result:
- up to 30% improvement in the parameter constraints

Conclusions

- Non-Gaussianity: a very important imprint of the early Universe
- Scale-dependent bias: an additional powerful probe of NG
- Bias becomes non-local or bivariate
- I-loop calculation SPT
- Good agreement with simulations
- Very accurate LSS measurements of NG soon possible!