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1. Correlations in Bipartite States

Correlations are encoded in multipartite

states. We only consider bipartite case.

• Classical world: bivariate probability

distribution pab with marginals pa and pb

Correlations in pab are usually quantified by

the Shannon mutual information:

I (pab) := H(pa) + H(pb)− H(pab)



• Quantum world: bipartite state ρab, a

density matrix in the tensor product Hilbert

space Ha ⊗ Hb, with marginals ρa and ρb

Total correlations in ρab are usually

quantified by the quantum mutual

information:

I (ρab) := S(ρa) + S(ρb)− S(ρab)



Fundamental difference

between classical and quantum worlds

Perfect correlations

• Classical world: pab
ij = piδij

Shannon mutual information:

I (pab) = H({pi}).

• Quantum world: ρab = |Ψab〉〈Ψab| with

|Ψab〉 =
∑

i

√
pi |i〉 ⊗ |i〉

Quantum mutual information:

I (ρab) = 2H({pi}).



Key issues: How to classify and quantify

correlations in a bipartite state?

• Classification issue: Different correlations,

Separate total correlations into classical part

and quantum part

• Quantification issue: Measures of various

correlations



Decomposition of bipartite states

• Any bipartite state ρab can always be

represented as

ρab =
∑

i

X a
i ⊗ X b

i

with {X a
i } a set of quantum states on Ha,

and {X b
i } a set of linearly independent

self-adjoint operators (not necessarily

non-negative) on Hb.



• Entanglement/separability (Werner, 1989):

A bipartite state ρab is called separable if

ρ =
∑

i

piρ
a
i ⊗ ρb

i .

Here p = {pi} is a probability distribution,

ρa
i and ρb

i are quantum states for Ha and Hb,

respectively.

Otherwise, it is called entangled.



Detection and quantification of entanglement

• Detection (Hard problem): How to tell if a

bipartite state is separable or entangled?

Various Bell inequalities

Peres’ positive partial transposition

Methods based on uncertainty relations

......



• Quantification (Complicated problem):

How to quantify the entanglement of a

bipartite state?

Entanglement of formation

Entanglement cost

Relative entropy of entanglement

Squashed entanglement

Negativity

......



A “paradox” for entanglement of formation

Li and Luo, Phys. Rev. A, 2007

Werner state

w = θ
P−
d−

+ (1− θ)
P+

d+
,

where P− (P+) is the projection from

C d ⊗ C d to the anti-symmetric (symmetric)

subspace of C d ⊗ C d , and d± = d2±d
2 .



Entanglement of formation

E (w) = H(
1

2
−

√
θ(1− θ)).

Quantum mutual information

I (w) = log
2d2

(d2 − d)θ(d2 + d)1−θ
− H(θ).

When d is sufficiently large,

E (w) > I (w).

“Entanglement” > “Total correlations”?



Entanglement is not the only kind of quantum

correlation

Certain quantum advantage is not based on

quantum entanglement, but rather on

separable states which still possess certain

quantum correlations.

A. Datta, A. Shaji, C. M. Caves, Quantum

discord and the power of one qubit, Phys.

Rev. Lett. 100, 050502 (2008).



Classicality/quantumness (of correlations)

• A state ρab shared by two parties a and b

is called classical (w.r.t. correlations, or more

precisely, classical-classical) if it is left

undisturbed by certain local von Neumann

measurement Π = {Πa
i ⊗ Πb

j }, that is,

ρab = Π(ρab) :=
∑

ij

(Πa
i ⊗ Πb

j )ρ
ab(Πa

i ⊗ Πb
j ).

• Otherwise, it is called quantum (w.r.t.

correlations).



• ρab is called classical-quantum, if it is left

undisturbed by a local von Neumann

measurement Πa = {Πa
i } for party a, that is,

ρab = Πa(ρab) :=
∑

i

(Πa
i ⊗ 1b)ρab(Πa

i ⊗ 1b).



Characterizations

• ρab is classical-classical iff

ρab =
∑

ij

pij |i〉〈i | ⊗ |j〉〈j |.

Here {pij} is a bivariate probability

distribution, {|i〉} and {|j〉} are orthogonal

sets for parties a and b, respectively.

• ρab is classical-quantum iff

ρab =
∑

i

pi |i〉〈i | ⊗ ρb
i .



Separability vs. classicality

Li and Luo, Phys. Rev. A, 2008

• ρab is separable iff it can be viewed as a

local reduction of a classical state in a larger

system:

ρab = tra′b′ρ
aa′bb′.

Here ρaa′bb′ is a classical state (w.r.t. the cut

aa′ : bb′) on (Ha ⊗ Ha′)⊗ (Hb ⊗ Hb′).



Quantum Discord

Ollivier and Zurek, Phys. Rev. Lett. 2001

• The quantum discord of ρab is defined as

Q(ρab) := I (ρab)− C (ρab).

Here

C (ρab) := sup
Πa

I (Πa(ρab)),

Πa = {Πa
i } is a von Neumann measurement

for party a, and

Πa(ρab) :=
∑

i

(Πa
i ⊗ 1b)ρab(Πa

i ⊗ 1b).



Luo, Quantum discord for two-qubit systems,

Phys. Rev. A, 2008
• For two-qubit state

ρab =
1

4
(1a ⊗ 1b +

3∑
j=1

cjσ
a
j ⊗ σb

j ),

we have

Q(ρab) =
1

4

3∑
j=0

λj logλj −
1 + c

2
log(1 + c)− 1− c

2
log(1− c)

where c = max{|c1|, |c2|, |c3|}, and

λ0 = 1− c1 − c2 − c3, λ1 = 1− c1 + c2 + c3

λ2 = 1 + c1 − c2 + c3, λ3 = 1 + c1 + c2 − c3.



Recent interests in quantum discord

• D. Girolami, M. Paternostro, G. Adesso,
arXiv:1008.4136
• V. Madhok and A. Datta, arXiv:1008.4135
• D. Cavalcanti, L. Aolita, S. Boixo, K. Modi, M.
Piani, and A. Winter, arXiv:1008.3205
• M. D. Lang and C. M. Caves, arXiv:1006.2775
• B. Dakic, V. Vedral and C. Brukner,
arXiv:1004.0190

......



Experimental investigation of classical and

quantum correlations

J. S. Xu et al., Nature Communications 1, 7

(2010).



An alternative quantum discord

Dakic, Vedral and Brukner, arXiv:1004.0190

Luo and Fu, Phys. Rev. A, 2010

• Geometric measure of quantum discord

D(ρab) := min
Πa

||ρab − Πa(ρab)||2,

where the min is over von Neumann

measurements Πa = {Πa
k} on system Ha,

and Πa(ρab) :=
∑

k(Π
a
k ⊗ 1b)ρab(Πa

k ⊗ 1b).



A formula

Let ρab =
∑

ij cijXi ⊗ Yj be a state on

Cm ⊗ C n expressed in local orthonormal

operator bases, then

D(ρab) = tr(CC t)−max
A

tr(ACC tAt),

where C = (cij), and the max is over m×m2

dimensional matrices A = (aki) such that

aki = tr|k〉〈k|Xi , and {|k〉} is any

orthonormal base for Ha.



In particular,

D(ρab) ≥ tr(CC t)−
m∑

i=1

λi =
m2∑

i=m+1

λi ,

where λi are the eigenvalues of CC t listed in

decreasing order (counting multiplicity).

Conjecture. D(ρab) ≤
∑m2

i=m λi ,



Observable correlations: symmetric version of

quantum discord

• The observable correlations of ρab is

defined as

C2(ρ
ab) := sup

Π
I (Π(ρab)).

Here Π(ρab) :=
∑

ij(Π
a
i ⊗ Πb

j )ρ
ab(Πa

i ⊗ Πb
j ).

The quantity

Q2(ρ
ab) := I (ρab)− C2(ρ

ab)

may be interpreted as a measure of quantum

correlations in ρab.



Lindblad conjecture, 1991

• The Lindblad conjecture states that

C2(ρ
ab) ≥ Q2(ρ

ab).

• Supporting evidence:

(1) It can happen C2(ρ
ab) > 0 and

Q2(ρ
ab) = 0, but never C2(ρ

ab) = 0 and

Q2(ρ
ab) > 0.

(2) For any classical state, we have

C2(ρ
ab) = I (ρab) and Q2(ρ

ab) = 0.

(3) For any pure state, we have

C2(ρ
ab) = Q2(ρ

ab) = 1
2I (ρ

ab).



Unfortunately, the Lindblad conjecture is false

Luo and Zhang, J. Stat. Phys. 2009

Counterexamples in two-qubit systems!



• Species of correlations:
 
 
Scheme 0 Total correlations 
Scheme 1 
Werner, 1989 Separable  Entanglement 
Scheme 2 
Ollivier ans Zurek, 2001 
Henderson and Vedral, 2001 

Classical I Quantum I 

Scheme 3 
Lindblad, 1991 
Piani et al, Luo, 2008 

Classical II Quantum II 

Scheme 4 
Modi et al, 2010 Classical II Dissonance Entanglement 
…… 
 

…… 

 



Broadcasting for quantum states

• A quantum state ρ on Hilbert space H is

broadcastable if there exists an operation

E : S(H) → S(H ⊗ H) such that both the

reduced states of E(ρ) are identical to ρ.

• A family of quantum states is called

broadcastable if all states in the family can

be broadcast by the same operation.



Broadcasting for correlations

• The correlations in ρab are locally

broadcastable if there exist two operations

Ea : S(Ha) → S(Ha1 ⊗ Ha2) and

Eb : S(Hb) → S(Hb1 ⊗ Hb2) such that

I (ρa1b1) = I (ρa2b2) = I (ρab).

Here I (ρab) := S(ρa) + S(ρb)− S(ρab) is the

quantum mutual information,

ρa1a2b1b2 := Ea ⊗ Eb(ρab) and

ρa1b1 := tra2b2ρ
a1a2b1b2, ρa2b2 := tra1b1ρ

a1a2b1b2.





No-broadcasting for non-commuting states

• Theorem 1 (Barnum et al. PRL, 1996)

A family of quantum states {ρi} can be

simultaneously broadcast if and only if the

states are commutative.



No-local-broadcasting for quantum correlations

• Theorem 2 (Piani et al. PRL, 2008)

The correlations in a bipartite state ρab can

be locally broadcast if and only if the

correlations are classical.



Question

What are the relations between Theorem 1

and Theorem 2?



Unification for no-broadcasting theorems

• Quantum discord helps to build a bridge

between Theorems 1 and 2.

Theorem 1 ⇔ Zero discord ⇔ Theorem 2.

• Three key ingredients in the proof:

Decomposition of bipartite states

Classical-quantum states

Monotonicity of relative entropy



Unilocal broadcasting for correlations

• The correlations in ρab is locally broadcast

by party a, if there exists an operation

Ea : S(Ha) → S(Ha1 ⊗ Ha2)

such that I (ρa1b) = I (ρa2b) = I (ρab). Here

ρa1b := tra2ρ
a1a2b, ρa2b := tra1ρ

a1a2b, and

ρa1a2b := Ea⊗Ib(ρab) ∈ S(Ha1 ⊗Ha2 ⊗Hb).



abρ ba2ρba1ρ

a1a 2a

b



No-unilocal-broadcasting for quantum correlations

• Theorem 11
2 (Luo and Sun, Phys. Rev.

A, 2010)

Correlations in a bipartite state ρab can be

locally broadcast by party a if and only if the

the quantum discord vanishes (i.e.,

correlations are classical-quantum).



In some sense, Theorem 11
2 interpolates

between Theorem 1 and Theorem 2.

A unified picture:

Theorem 1 ⇔ Theorem 11
2 ⇔ Theorem 2



2. Decoherent Capabilities of Operations

Eb: quantum operation on Hb

ρb: a quantum state on Hb, regarded as a

partial state of a pure state |Ψab〉 of a

composite system Ha ⊗ Hb such that

ρb = tra|Ψab〉〈Ψab|.

Fundamental question: How to quantify the

decoherence caused by Eb?



Let ρab := |Ψab〉〈Ψab| and Ia be the identity

operation on the system Ha. Now consider

the final bipartite state

ρa′b′ := Ia ⊗ Eb(ρab).

Idea: We may study the decoherent effects

of Eb by investigating the changes of

classical and quantum correlations between

the initial state ρab and the final state ρa′b′.





The decoherent information of Eb with

respect to ρb is defined as

D(ρb, Eb) := I (ρab)− I (ρa′b′),

which is the loss of total (classical +

quantum) correlations of the purification ρab

of ρb caused by the quantum operation Eb.



We may decompose the decoherent

information D(ρb, Eb) of Eb into a classical

part and a quantum part.

The classical decoherent information

(quantifies the loss of classical correlations):

Dc(ρ
b, Eb) := C (ρab)− C (ρa′b′).

The quantum decoherent information

(quantifies the loss of quantum correlations):

Dq(ρ
b, Eb) := Q(ρab)− Q(ρa′b′).



By the definitions, we apparently have,

D(ρb, Eb) = Dc(ρ
b, Eb) + Dq(ρ

b, Eb).

We may interpret D(ρb, Eb) as the total

decoherence of ρb under the operation Eb,

which is separated into the classical

decoherence Dc(ρ
b, Eb) and the quantum

decoherence Dq(ρ
b, Eb).



To get some intrinsic quantities independent

of ρb, we may define

Dc(Eb) := Dc(1
b/d , Eb)

and

Dq(Eb) := Dq(1
b/d , Eb)

as measures of classical decoherence and

quantum decoherence, respectively, of Eb. In

this case, the initial state ρab = |Ψab〉〈Ψab| is

a maximally entangled pure state.



Alternatively, we may define

Dc(Eb) := max
ρb

Dc(ρ
b, Eb)

and

Dq(Eb) := max
ρb

Dq(ρ
b, Eb)

as measures of classical decoherence and

quantum decoherence, respectively.



Open Question:

Dc(Eb) = Dc(Eb), Dq(Eb) = Dq(Eb)?

The intuitive idea for guessing the above

relations lies in that in order to evaluate the

maximum decoherence of a quantum

operation, it seems natural to start from a

maximally entangled state, which is most

vulnerable to decoherence.



Example 1. The Hadamard channel on a

qubit:

Eb(ρb) = M ◦ ρb, M =

(
1 α

α 1

)
.

The classical and quantum decoherence are

Dc(Eb) = 0, Dq(Eb) = H
(1− |α|

2

)
.

The Hadamard channel is a purely quantum

decoherent channel in the sense that its

classical decoherence vanishes.



Example 2. The Pauli channel:

Eb(ρ) = p0ρ +
3∑

j=1

pjσjρσj .

We have

Dc(Eb) = H(
1− c

2
)

Dq(Eb) = −
3∑

j=0

pj logpj − H(
1− c

2
).



The bit-flip channel is an example of the

Pauli channel with

p = (p, 1− p, 0, 0), p ∈ [0, 1].

We have

Dc(Eb) = 0, Dq(Eb) = H(p).

This means that the bit-flip channel is also a

purely quantum decoherent channel.



Example 3. The amplitude damping channel:

Eb(ρ) = E1ρE †
1 + E2ρE †

2

with

E1 =

(
1 0

0
√

1− p

)
, E2 =

(
0
√

p

0 0

)
.

Dc(Eb) = H(
1 +

√
1− p

2
),

Dq(Eb) = 1− H(
1 + p

2
)− H(

1 +
√

1− p

2
)

+H(
p

2
).

The amplitude damping channel is hybrid.



Example 4. The phase damping channel

Eb(ρ) = E1ρE †
1 + E2ρE †

2

with

E1 =

(
1 0

0
√

1− p

)
, E2 =

(
0 0

0
√

p

)
.

Dc(Eb) = 0, Dq(Eb) = H
(1−

√
1− p

2

)
.

The phase damping channel is purely

quantum.



Interesting observations:

(1) The classical decoherence vanishes for

the Hadamard channel, the bit-flip channel

and the phase damping channel. In these

channels, quantum correlations decohere

without the decoherence of classical

correlations, and consequently the

decoherence is purely quantum.



(2) For amplitude damping channel, both the

classical decoherence and quantum

decoherence are nonzero. Moreover, the

classical decoherence dominates the quantum

decoherence, i.e., classical correlations

decohere more rapidly than quantum

correlations.



(3) Although the total decoherence

Dc(Eb) + Dq(Eb) of the amplitude channel is

larger than that of the phase damping

channel, the quantum decoherence is smaller.

Moreover, the amplitude damping channel

causes both classical and quantum

decoherence, while the phase damping

channel causes only quantum decoherence.

The classical decoherence of the amplitude

damping channel turns out to be equal to

the quantum decoherence of the phase

damping channel.



3. Questions
The Araki-Lieb inequality

|S(ρa)− S(ρb)| ≤ S(ρab) is actually

equivalent to

I (ρab) ≤ 2 min{S(ρa), S(ρb)}.
Conjecture 1. For the classical correlations

C (ρab) and the quantum correlations Q(ρab),

C (ρab) ≤ min{S(ρa), S(ρb)},
Q(ρab) ≤ min{S(ρa), S(ρb)}.

Here ρa = trbρ
ab and ρb = traρ

ab are the

two marginals.



Supporting evidence:

(1) True for any pure state ρab since

C (ρab) = Q(ρab) = S(ρa) = S(ρb).

(2) True for any product state ρab since

C (ρab) = Q(ρab) = 0.

(3) True for any classical-quantum state ρab.



Classical correlations may decohere either

more slowly or more rapidly than quantum

correlations.

There are channels with purely quantum

decoherence (Dq(Eb) > 0) without classical

decoherence (Dc(Eb) = 0).

Conjecture 2. There does not exist a

channel Eb such that Dc(Eb) > 0 while

Dq(Eb) = 0.



The point here is that both the classical

decoherence Dc(Eb) and quantum

decoherence Dq(Eb) are defined from initial

joint states ρab which, as purifications of

ρb = 1b/d , are pure.

When the initial joint state can be mixed, Xu

et al. (Nat. Phys. 2010) have demonstrated

experimentally, and Mazzola et al. (PRL,

2010) have shown theoretically, that there

exists classical decoherence without quantum

decoherence.



Quantum correlations cannot exits alone

without classical correlations, they are

actually parasitized on classical correlations:

They can be wiped out without changing the

underlying classical correlations, but

whenever we wipe out certain amount of

classical correlations, we have to wipe out

some parasite (quantum correlations) on

them. This is an intuitive underlying

rationale leading to Conjecture 2.



Conjecture 2 naturally motivates the

following closely related (and presumably

equivalent) conjecture concerning the

classical correlations and quantum

correlations (as measured by the quantum

discord) in any bipartite state.

Conjecture 3. There does not exist a

bipartite state ρab such that Q(ρab) = S(ρb)

and C (ρab) < S(ρb).



All the three above conjectures have

equivalent formulations when C (·) and Q(·)
are replaced by C2(·) and Q2(·), respectively.


