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Strings on AdSs x S°/N = 4 SYM duality
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Strings on AdSs x S3 /non-SUSY deformation of N = 4 SYM

@ y-deformed Giant Magnons

@ Finite-size corrections
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Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

@ Lagrangian and Virasoro constraints

-
Ls = = (Goo — G11)» Gab = gundaXMap XV,
Goo + G11 =0, Go1 =0

@ Embedding
Zo= Relt(mr)’ W = er_(_r’ O_)el(ﬁ)(‘r,o—)’ VV]V-V] — R2
j=1
2
Gap = R?|~0atdpt + ) (0alidpr; + 2 dadiond))
j=1
2
L=Ls+Ns Zrﬁ—l]
j=1
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Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

Conserved Quantities

The string energy Es and two angular momenta J;

_ 0Ls o 0Ls
Es = f 4 B Get)” J"f % B@0d)
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Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

NR Quantities

@ Neumann-Rosochatius ansatz

tro)=«r,  n(rno)=1r(E), ¢(ro)=wr+5(¢),
& = ao 4+ fr, K, wj, @, f = constants

@ NR Lagrangian

l
ﬁ2)2

2
222

+(YO) As

Lnr = (@ —B)Z

(]

=

C;j are integration constants coming from single time integration of the equations of
motion for £;(£):




Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

NR Quantities

@ NR Hamiltonian The Virasoro constraints give the conserved Hamiltonian Hyz and a
relation between the parameters

@2 2
=(®-p )Z 52)2( j +02“’/'2r/'2]]: - +§2 0

Z Cjwj -i—ﬁK2 =0

=i
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Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

The Solution

In order to identically satisfy the embedding condition

irf—lﬂa
j=1

-

we introduce a new variable 6(¢£) by

() =sin6(g),  r(¢) = cosd(é)

Then
1/2
1 cZ c?
’ _ 2 2y, 2 1 2 2(, 2 qin2 2 o2
o) = ia?——ﬁz (o +B°)« —m—ﬁ—a (wlsln 0 + w5 cos 9)
1
= =+ Eay o(),
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Strings on Rt X 53 and the NR Integrable System

Strings on R; x S® and the NR Integrable System

The Solution

which can be integrated to give

— o) [ 2
6(9) - i(a/ ﬁ ) e(g)’
Bwi f do
i = +
1T <) se o)’
_ Pwé do
2= a? — 32 iczfcoszee(e)'

All these solve formally the NR system for the present case.
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Finite-Size Effects - Undeformed Case

Finite-Size Effects

@ Strings on R; x S2
@ Strings on R; x S°
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Finite-Size Effects - Undeformed Case

Strings on Ry x S?

The Giant Mag

@ String solution:

Wi = R /1 - (1 - B22/a?w?) dn? (Céim)

B
xexp{m [(1 - B4 [aPw)T + (1 —Kz/wf);(r]
iB(1 - k?/w?) m )}
L —— =|m);.

w1 V1 - B?/a?

Ws = R41 - Br2[aPwidn (CEm),  Zo = Rexp(ikt),

where o € [-09, 0] and

wh/l—ﬁsz/azwi (1 - B2/a?)

C=F——F——>—, ms —————,
w3 (1 - B2K? P w?)

a(1-p?/a?)

mn (am(C§ -K), -

o'
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Finite-Size Effects - Undeformed Case

Strings on Ry x S?

The Giant Magnon

@ The corresponding solution of the (C)SG:

K2 (l - Kz/wi) sn? (C& — K|m)

in2(4/2) = ’
sin“(¢/2) 2 (l _ﬁzKZ/QZw%) dn? (C¢ - K|m)

This solution of the CSG system reduces to that of the SG equation for M? = «2.

Benasque July 2010 Plamen Bozhilov



Finite-Size Effects - Undeformed Case

Strings on Ry x S?

The Giant Magnon

@ Conserved Quantities and Worldsheet Momentum:

8= 2B = 2.\J(1-v2)(1-eK(L-e),
J= Z—ZJl =) 11__‘:’225 [K(1-e€)-E(1-¢€)].

1-v2e| 1 1
p=2v vl kv (1—Fl—e)—K(1—e)],
where
p = Ap1 = ¢1(t, 00) — ¢1(7, —00), e=1-m, = —f/a. )
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Finite-Size Effects - Undeformed Case

Strings on Ry x S?

The Giant Mag

We are interested in the behavior of these quantities in the limit e — 0. Our approach is as
follows. We introduce v(e) according to the rule

v(€) = vo(p) + va(p)e + va(p)elog(e)

and expand &g, J and p about e = 0. For p to be finite, we find

vo(p) = cos(p/2), vi(p) = %sinz(p/z) cos(p/2)(1 - log(16)),

v2(p) = % sin?(p/2) cos(p/2).
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Finite-Size Effects - Undeformed Case

Strings on Ry x S?

The Giant Magnon

After that, from the expansion for J, we obtain € as a function of J and p

_ J
e_16exp(—sin(p/2) 2).

Finally, using all these in the expansion for Es — J, we derive

&s—J = 2sin(p/2) [1 — 4sin?(p/2) exp (—ﬁ - 2)]

which reproduces the leading finite-J correction to the GM energy-charge relation derived
earlier.

@ Remark: The length of the GM string is proportional to g
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

String solution

Zo = R exp(ikt),

: 2iB/a
Wy =R1- 22 dn? (C&lm) exp{iw1 T + ————=
zp 41— w%/w%

Kz/wi Zi— 2

x |F (am(C¢)im) — ) M|am(C¢), - 1 52 mi|¢,
+ +
2iBwy [aw;

W, = Rz dn (Cé&m) exp iwat + F (am(C&)im) ¢,

Z+,/l—w§/w§
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

String solution

where
wz wz (l.)z
7= —~ }/1-1-}’2——31r (Y1—Y2)2—[2(Y1+Y2—2)/1)/2)——; —; )
2(1- w_é) D || @

n=1-lf,  y2=1-p4lePu],

[2_ 2
(04 (J.)l (J.)z 2 2
_ m=1-2z2/z5.

C== z
a? — 32 A0

@ Note This string solution contains both cases: a? > 2 for the GM and o? < 2 for the
SS.
o
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

The “dual” CSG solution

For the present case, the CSG field ¢ = sin(¢/2) exp(ix/2) is defined by

a)i/M2
B?la? -1

A c
X = E(ﬂa'Jr at) - Cy(ao + Br) + C—’BI‘I (am(C&), njm),

sin?(¢/2) = [(1 - 2wl - (1 - w3 /w?) (25 cn?(C&lm) + zfsnz(Cflm))]

where

u)i/M2
Bt -1

()~ ]. =
1
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

The Giant Magnon
@ Conserved Quantities and Worldsheet Momentum:

_p2/.2
& = MK(l—ZE/Zi),

w1Z4 A/1— wz/w

1-— 2,27,2, 2

o= 22+ B Kz/a le(l—ZE/Zi)— E(l—zf/zi)],
. 22+w2/w1 2,2

Jz_iE(l_Z_/Z+)’

e

2
2,2
- Zi 1- z/z+] K(l—z,/z+).

Z+Jl—w%/w
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

The Giant Magnon

@ The Technology | : We introduce the new parameters

_ 2,2 _ _ 2,2
U= ws/wi, v = -B/a, €e=2z2/z5.

This will allow us to eliminate «/w1 and z.. from the coefficients in the previous
expressions and rewrite them as functions of u, v and € only:

Es = 2KeK (1 —€),

Jl = 2K11 [KlzK(l—E) - E(l—E)],
JQ = 2K2E(l—€),

p = 2Kp [Kp2l (Keall — €) =K (1 - €)].
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

The Giant Magnon

@ The Technology Il : We introduce u(e) and v(e) according to the rule

u(e) = up + tr€ + wpelog(e), v(€) = vo + vie + vzelog(e),

and expand &, J1, J2 and p about e = 0. Requiring J> and p to be finite, we find

J2 sin(p)
Up = 21 asini(0/2) W=—m—————
JZ +4sin?(p/2) JZ +4sin?(p/2)
up = ug(uo, Vo), Vi =vi(Uo,v0), Uz = Up(to, Vo), V2 = V2(Uo, Vo).
o
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Finite-Size Effects - Undeformed Case

Strings on Ry x S®

The Giant Magnon

@ The Technology Ill : The parameter e can be obtained from the expansion for 71

€= 16exp[—(,l1—uo—v§j1 +2(l—vg/(l—uo)))/(l—vg)].

Using all of the above in the expansion for &s — 91, one arrives at

ind
Es —J1 = T3 +4sin®(p/2) - _ 16sin’(p/2)
J2 + 4sin?(p/2)

2 (Jl + T2+ 4sin2(p/2)) T3 +4sin®(p/2) sin?(p/2)
J% + 4sin*(p/2) '

exp |-

@ Conclusion : This energy-charge relation coincides with the one found recently,
describing the finite-size effects for dyonic GM.

v
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

An interesting example of correspondence between gauge and string theory models with
reduced supersymmetry is provided by an exactly marginal deformation of N' = 4 SYM and
string theory on a B-deformed AdSs x S® background. When g8 = y is real, the deformed
background can be obtained from AdSs x S° by the so-called TsT transformation. It
includes T-duality on one angle variable, a shift of another isometry variable, then a second
T-duality on the first angle. Taking into account that the five-sphere has three isometric
coordinates, one can consider generalization of the above procedure, consisting of chain of
three TsT transformations. The result is a regular three-parameter deformation of

AdSs x S® string background, dual to a non-supersymmetric deformation of A’ = 4 super
Yang-Mills, which is conformal in the planar limit to any order of perturbation theory. The
action for this y;-deformed (i = 1, 2, 3) gauge theory can be obtained from the initial one
after replacement of the usual product with associative *-product.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

An essential property of the TsT transformation is that it preserves the classical integrability
of string theory on AdSs x S°. The y-dependence enters only through the twisted boundary
conditions and the level-matching condition. The last one is modified since a closed string in
the deformed background corresponds to an open string on AdSs x S° in general.

The finite-size correction to the giant magnon energy-charge relation, in the y-deformed
background, has been found by Bykov and Frolov, by using conformal gauge and the string
sigma model reduced to R; x S3. For the deformed case, this is the smallest consistent
reduction due to the twisted boundary conditions. It turns out that even for the
three-parameter deformation, the reduced model depends only on one of them - y3. As far
as there are two isometry angles ¢1, ¢» on S2, the solution can carry two non-vanishing
angular momenta J;, J2. Then, the giant magnon is an open string solution with only one
charge J; # 0. The momentum p of the magnon excitation in the corresponding spin chain
is identified with the angular difference A¢; between the end-points of the string, since in
the light-cone gauge t = 7, pg, = 1, itis equal to the worldsheet momentum pys of a
soliton . The other angle satisfies the following twisted boundary conditions

Ag¢y = 2n(ny —y3J1), where np is an integer winding number of the string in the second
isometry direction of the deformed sphere Sﬁ.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

An interesting extension of this study is the dyonic giant magnon. This state corresponds to
bound states of the fundamental magnons and stable even in the deformed theory.

Understanding its string theory analog in the strong coupling limit can be helpful to extend
the AdS/CFT duality to the deformed theories.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

The bosonic part of the Green-Schwarz action for strings on the y-deformed AdSs x S«y5
reduced to R; X S?

T
S = — fd‘rdrr{ \/—yyab [—qﬁatqﬁbt + dalidpli + Grl.2¢a¢,¢b¢, (1)
+ Grerzri (yivai) (7i009))|
=2@ & (i/srfr22¢aso1¢wz 4+ 91r2r2aprdpes + ;,2%2,12%%%%)}’
where T is the string tension, ¥ is the worldsheet metric, ¢; are the three isometry angles

of the deformed S?, and

Z r2=1, G l=1+49arrZ +y1r2r2 + yarir. )
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

The deformation parameters ¥; are related to y; which appear in the dual gauge theory as
i = 2nTy; = Vayi.

When ¥; = ¥ this becomes a supersymmetric background, and the deformation parameter
y enters the N = 1 SYM superpotential in the following way

W o tr (e’”7¢1¢2¢3 - e"'”7¢1¢3¢2) 0
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

By using the TsT transformations which map the string theory on AdSs x S® to the
vi-deformed theory, one can relate the angle variables ¢; on S® to the angles ¢; of the
yi-deformed geometry :

pi=m, i =r(¢ - 2ﬂ6ijk7jpk), i=1,23, ()]

where pj, wj are the momenta conjugated to ¢;, ¢; respectively, and the summation is over
J, k. The equality pj = xj implies that the charges

Ji= fdG'Pi

are invariant under the TsT transformation. )
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

If none of the variables r; is vanishing on a given string solution, one gets
¢ = ¢ — 2nEijy;Pr-

Integrating the above equations and taking into account that for a closed string in the
y-deformed background

Api = @i(r) = ¢i(=r) = 2zn;, el

one finds the twisted boundary conditions for the angles ¢; on the original S° space
r

AN (]5,'([’) — lf),‘(—f) =2 (I’),' — V,‘) s Vi = Sljk')/j-]k» J= f dop;.
-r

If the twists v; are not integer, then a closed string on the deformed background is mapped
to an open string on AdSs x S°.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

The particular case considered by Bykov and Frolov corresponds to J, = J3 = 0, v1 =0,
and as a result the angles ¢1 > of the undeformed S8 satisfy the following twisted boundary
conditions

p=A¢1=¢1(r)=g1(=r), 6= A¢2 = ¢o(r) = p2(-r) = 2n (2 — y3J1),
where in fact § plays the role of the deformation parameter. By using the ansatz
_ p
¢1 = wr + Z((r— v7) + ¢(o — vr),

¢2 =vT+ %((r— v7) + a(o - v1),
x = x(o - vr),

where ¢, @ and y satisfy periodic boundary conditions, they found that the giant magnon
string solution can be completely determined from the equations
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Es g
=—=2 do = 2r,
e==2] a
PZ3
J 2 . Xmax ]y
Jr=—= (rvAler dy ,
2—\/3 l—V2 X min IX"
Jl 5 Y max X
= — xIv°A dy=— =0, 4
NP a7 2+V‘£min Agw ()]
2n
p+ vo VA f*’”ﬂx dy
2 1-\2 1-v2 J, o (L=x)'I’
rv VA Xmax g
S+ = - zzf £
1-v 1-v2 Jyn X1
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

A1 and Az are parameters related by wAy +vAz +1 =0,y =1-r? = rZ, and

W] = 2 Vw? —v2 \/(X
- 1_v2 max

_X)(X _Xmin)(X _Xn),

0 < xmin <X <Xmax <1, Xn <0.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

The dispersion relation in the large g1 limit can be found from (4) as an expansion in

J1
exp(‘ sin(p/2) )
and up to the leading order it is
VA 4 ., J1
E-J = - sin(p/2) [1 ~ g2 sin (p/2) cos(®) exp (—W)]
where

)

== —-n<d6<m, —-r<p<n.
23/2 cos3(p/4) =

In the limit @ — 0 the formula (5) gives the result for the undeformed case.

Plamen Bozhilov
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

As explained already, instead of considering strings on the y-deformed background
AdSs x S3, we can consider strings on the original AdSs x S® space, but with twisted
boundary conditions. Actually, here we are interested in string configurations living in the
R; x S® subspace, which can be described by the NR integrable system.
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

If we introduce the variable

the NR Hamiltonian can be rewritten as

402 (1 — 1P 1-w? 1-v2w?2) — 2
S VG SRS LT B

T a?2(1-v2)2 1-u?
~ 1-— (1+ VZ)WZ L Vz[(WZ _ u2j)2 _jZ] ~ V2u2j2
1-u? Y
4w%(1—u2)
= m(/\/max = X)(x = Xmin)(x = xn)- (6)




Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

Correspondingly, the conserved quantities transform to

B ffr dfi (1—V2)W X max dX
a J_r V1-12 Jymin \/(Xmax_)( (X—Xmin)(/\/_)(")’

‘max —v2 (W2 - 12
o= 1 fx [l 1% (W u ) X] dy @
V1 - u? Xmin \/(Xmax (X Xmln)(X X")
ey [ (- v2)di
? V1 - u? Xmin \/(Xmax (X Xmln)(X X") y
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magn

The angular differences

p=A¢1=¢1(r) —ga(-r), 6= AD¢a = ¢2(r) — p2(-r) = 2w (n2 — y3J1) .

f aehi = i Vz)f[ W‘”’]dé ®

ﬁﬁi:ﬂx(wl_;l ) \/(Xmax _X)(/:{Xmin)(/\’_)(n)’

o= [ o=t [ 1) .

__u f"’""‘* (l 1) dy
l_uz ‘X min X \/(Xmax _X)(X_Xmin)(/\/_)(n)
. v




Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

For correspondence with the Bykov, Frolov notations, we fix xk = @ = 1, rename w; — w,
wp — v, introduce the parameters Az, Az, and the functions ¢(¢), a(£) as follows

C1 = —VA,, Co = —VA,,

hE) = Pet00)  B(E) = b +ale).
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

Then one finds

g —— % Ku-o).
(T-xn)(1-7?)
4k V2
J1= (1-v2) VT —xn)(L-72) [(w(l —Xn) — ;(1 + vAz)) K(1-e€)
- w(l-xn)(1-P)EQ-€)],
J2 = 4k [(v2A2 + VXn)) K(1-e€)

(1-v3) V(1 -xn)(1 - V?)
+v(1-xn)(1 - P)E(L-€)],
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

_ 4iv R L W W
SN e w(l—)cn)\"/zn( gz (L-eit ) K )],
= 2kv Az n 1-—xn (1—e)|l—5]

CL_VZ)W _VZ (1+Xn1 vz) 1+Xn1 vz
+vK(1-€)].
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

Notations

nasque July 2010 Plamen Bozhilov



Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

In order to obtain the finite-size correction to the energy-charge relation, we have to
consider the limit e — 0. We make the following ansatz for the parameters

vV = Vg + Vi€ + vaelog(e), V =y + V1€ + Telog(e), w=1+ we,

v=vo+vie+vzelog(e), Az =Ane,  xn=xniE
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

Now, we impose the conditions:
© o - finite
Q 9 - finite
2 [1-v2-,2 _y2_,2\3/2
Qe-J= 1y (S cos(P)e

1-v2 2(1-3)
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Finite-Size Effects - Deformed Case

Finite-Size Effects- Deformed Case

Dyonic Giant Magnons

Finally, the dispersion relation, including the leading finite-size correction, takes the form

4
E-J1= ‘ljzz +4sin?(p/2) - L@/Z) cos(®)

J3 + 4sin’(p/2)

2 (jl 4 \/322 4 4sin2(p/2)) \/jzz + 4sin?(p/2) sin?(p/2)
J? +4sin*(p/2) ’

exp |-

For J> = 0, this reduces to the result found by Bykov and Frolov.

Benasque July 2010 Plamen Bozhilov



Concluding Remarks

Concluding Remarks

Possible extensions to:
@ Finite-Size Strings on Ry X S>
@ Finite-Size Strings on Ry x CP3

An interesting open problem:

To reproduce the energy-charge relation by using the Liischer’s approach . To this end, we

need a generalization of the Lischer’s formulas for the case of nontrivial twisted boundary
conditions.

Benasque July 2010 Plamen Bozhilov



	Introduction
	Strings on RtS3 and the NR Integrable System
	Finite-Size Effects - Undeformed Case
	Finite-Size Effects - Deformed Case
	Concluding Remarks

