
Quantum finite size effects for dyonic magnons in
AdS4 × CP3

Minkyoo Kim

Sogang University

July, 2010

Based on arXiv:1007.1598
Collaborators : Changrim Ahn, Bum-Hoon Lee

Minkyoo Kim July, Benasque



Motivation

There are many AdS/CFT examples which have integrability.

The most famous AdS5/CFT4 and Next AdS4/CFT3

Recently, AdS3/CFT2 and β-deformed AdS5/CFT4...

But, only first two duality were studied about their integrability in
detail.

All-loop Bethe ansatz, S-matrix and Y-system(TBA)...

However, We need to check more till before perfect proof.
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Motivation

Especially, in case of AdS4/CFT3, there are many remaining
problems.

One of them : IS EXACT S-MATRIX REALLY RIGHT?

Already passed many non-trivial tests : ABA, Correct degrees of
freedom...

CAN S-MATRIX REPRODUCE SEMI-CLASSICAL STRING
EFFECTS?

CAN WE EXPLAIN ALL-MAGNON SOLUTIONS IN STRING
SIGMA MODEL USING S-MATRIX?

In our work, we answer for these questions.
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Approaches

Integrability in the spectral problem of AdS/CFT

Gauge theory → Integrable spin chain → SMALL g
String theory → Lax representation of the string sigma model and
Semi-classics → LARGE g
From those, lead to All-loop Bethe ansatz and exact S-matrix
But, This ABA have shortcoming. ONLY TRUE at L ∼ ∞
At finite L, there are correction - wrapping correction.
We consider these finite size effects at strong coupling regime.
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Approaches

FINITE L and LARGE g , we use two independent approaches using
integrability in both sides :

ALGEBRAIC CURVE → Semi-classical effects in string theory

EXACT S-MATRIX → Lüscher F-term correction
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Integrability in AdS4/CFT3

Consider SU(2)A × SU(2)B ⊂ SU(4)R
Dilatation operator at two loop is integrable spin chain
Hamiltonian.

Two excitation Ai ,Bi ⇒ Two decoupled Heigenberg XXX 1
2

Hamiltonian
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Integrability in AdS4/CFT3

The string sigma model on AdS4×CP3 is classically integrable.

Based on that, the algebraic curve is also proposed.

From full superconformal coset model ⇒ Lax connection L(x)
Equation of motion ⇔ Flatness condition of L(x)
Using L(x), construct the monodromy Ω(x) (TrΩ(x) give the
transfer matrix T (x).)

Diagonalization of the monodromy → Chracteristic equations give
eigenvalues.

Ω(x) ∼ diag
(

eip̂1 , eip̂2 , eip̂3 , eip̂4 , eip̃1 , eip̃2 , eip̃3 , eip̃4

)
,

where p̂ denotes the eigenvalues corresponding to AdS4 and p̃ to
CP4.
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All-loop Bethe Ansatz equations - Gromov and Vieira

1 =

K2∏
j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4∏
j=1

1− 1/x1,kx
+
4,j

1− 1/x1,kx
−
4,j

K4̄∏
j=1

1− 1/x1,kx
+
4̄,j

1− 1/x1,kx
−
4̄,j

,

1 =

K2∏
j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K1∏
j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

K3∏
j=1

u1,k − u3,j + i
2

u1,k − u3,j − i
2

,

1 =

K2∏
j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4∏
j=1

x3,k − x+
4,j

x3,k − x−4,j

K4̄∏
j=1

x3,k − x+
4̄,j

x3,k − x−
4̄,j(

x+
4,k

x−4,k

)L

=

K4∏
j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K1∏
j=1

1− 1/x−4,kx1,j

1− 1/x+
4,kx1,j

K3∏
j=1

x−4,k − x3,j

x+
4,k − x3,j

×
K4∏
j=1

σBES(u4,k , u4,j )

K4̄∏
j=1

σBES(u4,k , u4̄,j ) ,

 x+
4̄,k

x−
4̄,k

L

=

K4̄∏
j=1

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K1∏
j=1

1− 1/x−
4̄,k

x1,j

1− 1/x+
4̄,k

x1,j

K3∏
j=1

x−
4̄,k
− x3,j

x+
4̄,k
− x3,j

×
K4̄∏
j 6=k

σBES(u4̄,k , u4̄,j )

K4∏
j=1

σBES(u4̄,k , u4,j ) .

Minkyoo Kim July, Benasque



Exact S-matrix - Ahn and Nepomechie

SAA(p1, p2) = SBB(p1, p2) = S0(p1, p2)Ŝ(p1, p2)

SAB(p1, p2) = SBA(p1, p2) = S̃0(p1, p2)Ŝ(p1, p2)

S0(p1, p2) =

1− 1

x+
1 x−2

1− 1

x−1 x+
2

σ(p1, p2)

S̃0(p1, p2) =
x−1 − x+

2

x+
1 − x−2

σ(p1, p2)

Minkyoo Kim July, Benasque



Various Magnons in AdS4 × CP3

Fundamental excitation of the spin chain : magnons ⇔ Their dual
string solutions : Giant Magnons

Three different kinds of giant magnon are founded - small, pair of
small and big magnon.

Small magnon → CP1 and CP2 magnon

Pair of small magnon → RP2 and RP3 magnon

Big magnon → Dressed solution

These magnon solutions can be reproduced in Algebraic Curve too.
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Algebraic curve and Semi-classical effects

The eigenvalues e ip(x) are the zeroes of the characteristic polynomial
of Ω(x), and thereby define the algebraic curve in the complex
parameter. The degree of the polynomial specifies the number of
sheets, which in the case of AdS4 × CP3 string is eight.

Linear combination of pi (x) i = 1, 2, ..., 8 ⇒ qi (x) i = 1, 2, ..., 10
But, only five of them are linearly independent.

qi (x) are defined on a multi-sheet Riemann surface with particular
analytic properties.

We study classical string solutions and their one-loop effects using
this algebraic curve.

Different string solutions are mapped to different sets of eigenvalues
of the monodromy.

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

The eigenvalues e ip(x) are the zeroes of the characteristic polynomial
of Ω(x), and thereby define the algebraic curve in the complex
parameter. The degree of the polynomial specifies the number of
sheets, which in the case of AdS4 × CP3 string is eight.

Linear combination of pi (x) i = 1, 2, ..., 8 ⇒ qi (x) i = 1, 2, ..., 10
But, only five of them are linearly independent.

qi (x) are defined on a multi-sheet Riemann surface with particular
analytic properties.

We study classical string solutions and their one-loop effects using
this algebraic curve.

Different string solutions are mapped to different sets of eigenvalues
of the monodromy.

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

The eigenvalues e ip(x) are the zeroes of the characteristic polynomial
of Ω(x), and thereby define the algebraic curve in the complex
parameter. The degree of the polynomial specifies the number of
sheets, which in the case of AdS4 × CP3 string is eight.

Linear combination of pi (x) i = 1, 2, ..., 8 ⇒ qi (x) i = 1, 2, ..., 10
But, only five of them are linearly independent.

qi (x) are defined on a multi-sheet Riemann surface with particular
analytic properties.

We study classical string solutions and their one-loop effects using
this algebraic curve.

Different string solutions are mapped to different sets of eigenvalues
of the monodromy.

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

The eigenvalues e ip(x) are the zeroes of the characteristic polynomial
of Ω(x), and thereby define the algebraic curve in the complex
parameter. The degree of the polynomial specifies the number of
sheets, which in the case of AdS4 × CP3 string is eight.

Linear combination of pi (x) i = 1, 2, ..., 8 ⇒ qi (x) i = 1, 2, ..., 10
But, only five of them are linearly independent.

qi (x) are defined on a multi-sheet Riemann surface with particular
analytic properties.

We study classical string solutions and their one-loop effects using
this algebraic curve.

Different string solutions are mapped to different sets of eigenvalues
of the monodromy.

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

The eigenvalues e ip(x) are the zeroes of the characteristic polynomial
of Ω(x), and thereby define the algebraic curve in the complex
parameter. The degree of the polynomial specifies the number of
sheets, which in the case of AdS4 × CP3 string is eight.

Linear combination of pi (x) i = 1, 2, ..., 8 ⇒ qi (x) i = 1, 2, ..., 10
But, only five of them are linearly independent.

qi (x) are defined on a multi-sheet Riemann surface with particular
analytic properties.

We study classical string solutions and their one-loop effects using
this algebraic curve.

Different string solutions are mapped to different sets of eigenvalues
of the monodromy.

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

String solutions living in mostly CP3 are mapped to the following
quasi-momenta.

q1 =

∆
2g

x

x2 − 1

q2 =

∆
2g

x

x2 − 1

q3 =

∆
2g

x

x2 − 1
+ Gu (0)− Gu

(
1

x

)
+ Gv (0)− Gv

(
1

x

)
+ Gr (x)− Gr (0) + Gr

(
1

x

)

q4 =

∆
2g

x

x2 − 1
+ Gu (x) + Gv (x)− Gr (x) + Gr (0)− Gr

(
1

x

)
q5 = Gu (x)− Gu (0) + Gu

(
1

x

)
− Gv (x) + Gv (0)− Gv

(
1

x

)
.

And (q6, q7, q8, q8, q10) = −(q5, q4, q3, q2, q1)
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Algebraic curve and Semi-classical effects

These quasi-momenta satisfy following analytic properties:

lim
x→∞


q1(x)
q2(x)
q3(x)
q4(x)
q5(x)

 '
1

2gx


∆
∆
J1

J2

J3

 .


q1 (1/x)
q2 (1/x)
q3 (1/x)
q4 (1/x)
q5 (1/x)

 =


0
0
πm
πm
0

+


−q2(x)
−q1(x)
−q4(x)
−q3(x)
+q5(x)

 .

lim
x→±1


q1(x)
q2(x)
q3(x)
q4(x)
q5(x)

 '
1

2(x ∓ 1)


α±
α±
α±
α±
0

 .

Minkyoo Kim July, Benasque



Algebraic curve and Semi-classical effects

Three kinds of GM solutions in CP3

Gu = Gmagnon and Gv = Gr = 0 → Small GM on CP2.

Gu = Gv = Gmagnon and Gr = 0 → Pair of small GM on RP3

Gu = Gv = Gr = Gmagnon → Big GM (dressed solution)

In our case, resolvents are :

Gmagnon = −i log

(
x − X+

x − X−

)
.
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Algebraic curve and Semi-classical effects

Small magnon

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− i log

(
X+

X−

)
+ i log

(
1
x
− X+

1
x
− X−

)
+ τ

q4 = −q7 =
αx

x2 − 1
− i log

(
x − X+

x − X−

)
+ τ

q5 = −q6 = −i log

(
x − X+

x − X−

)
+ i log

(
X+

X−

)
− i log

(
1
x
− X+

1
x
− X−

)
.
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Algebraic curve and Semi-classical effects

Pair of small magnon

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− 2i log

(
X+

X−

)
+ 2i log

(
1
x
− X+

1
x
− X−

)
− p

q4 = −q7 =
αx

x2 − 1
− 2i log

(
x − X+

x − X−

)
− p

q5 = −q6 = 0.
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Algebraic curve and Semi-classical effects

Big magnon

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− i log

(
X+

X−

)
+ i log

(
1
x
− X+

1
x
− X−

)
− i log

(
x − X+

x − X−

)
− p

q4 = −q7 =
αx

x2 − 1
− i log

(
X+

X−

)
+ i log

(
1
x
− X+

1
x
− X−

)
− i log

(
x − X+

x − X−

)
− p

q5 = −q6 = 0.
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Algebraic curve and Semi-classical effects

Fluctuation frequencies for magnon solutions

On-shell frequencies

Ωij
n = −κijδi,1 + 2g lim

x→∞
xδijnq1 (x)

κij = 2 for (i , j) = (1, 10) , (2, 9) and κij = 1 for other pairs.

Off-shell frequencies

Ωij (y) = Ωij
n |

n→
qi (y)−qj (y)

2π

.

There are 16 polarization modes for type IIA superstring in
AdS4 × CP3.

8 light modes which are (i , 5) or (i , 6) pairs and 8 heavy modes for
other pairs
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Algebraic curve and Semi-classical effects

All Ωij ’s can be written in terms of only Ω15 and Ω45.

Light modes

Ωi5 (x) = Ωi6 (x)

Ω25 (x) = Ω15 (0)− Ω15

(
1

x

)
Ω35 (x) = Ω45 (0)− Ω45

(
1

x

)

Heavy modes

Ω17 (x) = Ω15 (x) + Ω57 (x) = Ω15 (x) + Ω45 (x)
Ω18 (x) = Ω15 (x) + Ω58 (x) = Ω15 (x) + Ω35 (x)
Ω19 (x) = Ω15 (x) + Ω59 (x) = Ω15 (x) + Ω25 (x)

Ω110 (x) = Ω15 (x) + Ω15 (x) = 2Ω15 (x)
Ω27 (x) = Ω25 (x) + Ω57 (x) = Ω25 (x) + Ω45 (x)
Ω28 (x) = Ω25 (x) + Ω58 (x) = Ω25 (x) + Ω35 (x)
Ω29 (x) = Ω25 (x) + Ω59 (x) = 2Ω25 (x)
Ω37 (x) = Ω35 (x) + Ω57 (x) = Ω35 (x) + Ω45 (x) .
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Algebraic curve and Semi-classical effects

off-shell frequencies ↔ fluctuation of quasi-momenta ↔ adding
extra poles to quasi-momenta

The quasi-momenta fluctuations can be determined by analytic
properties.
Ωij for light modes

Ωlight
ij (y) =

1

y2 − 1

(
1− y

X+ + X−

X+X− + 1

)

Ωij for heavy modes (Just 2Ωlight
ij )

Ωheavy
ij (y) =

2

y2 − 1

(
1− y

X+ + X−

X+X− + 1

)

These fluctuation frequencies are all the same : small, pair of small
and big magnon.
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Algebraic curve and Semi-classical effects

For example, consider the small magnon and Ω15(y)

In this computation, we only treat extra poles which is related with
(1, 5) polarization.

Classical configuration determine singularity at x = ±1 and
x = X±, 1

X± .

Inversion symmetry, large x asymptotics and synchronization of
poles at x = ±1 give set of equation.

From these equations, we obtain δ∆ = Ω15(y).

The above argument is same in case of (4, 5) polarization.
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Algebraic curve and Semi-classical effects

The leading part of 1-loop energy shift is given by the sum of
fluctuation frequencies.

δ∆one−loop =
1

2

∑
ij

∑
n

(−1)Fij Ωn
ij

=

∫
dx

2πi
∂xΩ (x)

∑
ij

γij (−1)Fij e−i(qi−qj).

When we evaluate the above integral by using saddle-point
approximation, heavy modes can be suppressed because of the factor
2 in exponent.

So we need to compute
∑

ij (−1)Fij e−i(qi−qj ) where the sum over
(i , j) pairs include only the light modes.
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Algebraic curve and Semi-classical effects

CP2 magnon ∑
ij

(−1)Fij e−i(qi−qj) = e
−iαx

x2−1

[
2

1
x
− X+

1
x
− X−

x − X+

x − X−

X+

X−
+ 2

1
x
− X−

1
x
− X+

x − X−

x − X+

X−

X+
−

1
x
− X+

1
x
− X−

√
X−

X+

−
x − X−

x − X+

√
X+

X−
−
(

1
x
− X+

1
x
− X−

)2
x − X+

x − X−

(
X−

X+

) 3
2

−
1
x
− X−

1
x
− X+

(
x − X+

x − X−

)2 (X+

X−

) 3
2

]
.

RP3 magnon

∑
ij

(−1)Fij e−i(qi−qj) = 2e
−iαx

x2−1

2−
(

1
x
− X+

1
x
− X−

)2
X−

X+
−
(
x − X−

x − X+

)2
X+

X−

 .
Big magnon∑

ij

(−1)Fij e−i(qi−qj) = 4e
−iαx

x2−1

[
1−

1
x
− X+

1
x
− X−

x − X−

x − X+

]
.
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2

−
1
x
− X−

1
x
− X+

(
x − X+

x − X−

)2 (X+

X−

) 3
2

]
.

RP3 magnon

∑
ij

(−1)Fij e−i(qi−qj) = 2e
−iαx

x2−1

2−
(

1
x
− X+

1
x
− X−

)2
X−

X+
−
(
x − X−

x − X+

)2
X+

X−

 .
Big magnon∑

ij

(−1)Fij e−i(qi−qj) = 4e
−iαx

x2−1

[
1−

1
x
− X+

1
x
− X−

x − X−

x − X+

]
.
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S-matrix and Lüscher’s F-term

Crucial point of the S-matrix in AdS4/CFT3 is that there are two
types of fundamental excitations, types A and B, leading 4 kinds of
S-matrices SAA ,SBB ,SAB and SBA.

We can write these S-matrices as

SAA(p1, p2) = SBB(p1, p2) = S0(p1, p2)Ŝ(p1, p2)

SAB (p1, p2) = SBA (p1, p2) = S̃0 (p1, p2) Ŝ (p1, p2)

Here, Ŝ is the su (2|2)-invariant SYM S-matrix and

S0 (p1, p2) =

1− 1

x+
1 x−2

1− 1

x−1 x+
2

σ (p1, p2)

S̃0 (p1, p2) =
x−1 − x+

2

x+
1 − x−2

σ (p1, p2) .

Minkyoo Kim July, Benasque



S-matrix and Lüscher’s F-term
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SAB (p1, p2) = SBA (p1, p2) = S̃0 (p1, p2) Ŝ (p1, p2)
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S-matrix and Lüscher’s F-term

The relevant S-matrix elements for elementary particles are

a1(p1, p2) =
x−2 − x+

1

x+
2 − x−1

η1η2

η̃1η̃2

a2(p1, p2) =

(
x−1 − x+

1

)(
x−2 − x+

2

)(
x−2 − x+

1

)
(
x−1 − x+

2

)(
x−2 x−1 − x+

2 x+
1

) η1η2

η̃1η̃2

a6(p1, p2) =
x+

1 − x+
2

x−1 − x+
2

η2

η̃2
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S-matrix and Lüscher’s F-term

The Lüscher’s F-term is written as follows.

δEF = −
∑
b

(−1)Fb
∫

dq

2π

[
1−

ε′Q (p)

ε′1 (q∗)

]
e−iq∗L

(
Sba
ba (q∗, p)− 1

)
.

The leading one-loop contribution from the point of view of
S-matrix of dyonic magnon comes from the Lüscher’s F-term which
is correction effect that result from scattering between virtual and
physical particles.

In our problem, physical particles are Q-boundstates of magnon or
dyonic giant magnons. Virtual particles are composed of
fundamental excitations and their boundstates.

But, leading contribution of this scattering is only from scattering
between fundamental virtual magnons and physical dyonic magnons.
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S-matrix and Lüscher’s F-term
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S-matrix and Lüscher’s F-term

We only show the Small magnon case, but procedures for other
magnons are the same.
The dispersion relation for the small magnon is as follows.

∆− J/2 = εQ (p) =

√
Q2

4
+ 16g2 sin2 p

2

y± = x ±
ix2

4g (x2 − 1)

q∗ =
x

g (x2 − 1)

q =
i

2

x2 + 1

x2 − 1

ε′Q (p) = g

(
X+ + X−

X+X− + 1

)
ε′1 (q∗) = g

(
2x

x2 + 1

)
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S-matrix and Lüscher’s F-term

After above computations, we obtained

δEF
one−loop =

∫
dx

2πi
∂xΩ (x) e

− ixJ

g(x2−1)
∑

(−1)Fb
(
S
b1Q
b1Q

(q∗, p)
)

Here, Ω (x) is exactly the same with off-shell energy in algebraic
curve.
The remaining piece is to compute S-matrix elements for dyonic
magnons.

S
AAb1Q
b1Q

=
Q∏

k=1

1− 1

y+x−
k

1− 1
y−x+

k

σBES (y , xk ) ãb(y ,Xk ))


S
ABb1Q
b1Q

=
Q∏

k=1

(
y− − x+

k

y+ − x−k
σBES (y , xk ) ãb(y ,Xk ))

)
.
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S-matrix and Lüscher’s F-term

The S-matrix of small magnon is∑
(−1)Fb

(
S
b1Q
b1Q

(q∗, p)
)

=
∑
b

(−1)Fb
(
S
AAb1Q
b1Q

+ S
ABb1Q
b1Q

)
.

From those, we obtain the following integration form.

δ∆F−term =

∫
dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1)

[(
x − 1

X+

x − 1
X−

)
e

ip
2 +

(
x − X−

x − X+

)
e

ip
2

+

(
x − 1

X−

x − 1
X+

)(
x − X−

x − X+

)2

e
ip
2 +

(
x − 1

X+

x − 1
X−

)2 (
x − X+

x − X−

)
e

ip
2

−2

(
x − 1

X+

x − 1
X−

)(
x − X+

x − X−

)
− 2

(
x − 1

X−

x − 1
X+

)(
x − X−

x − X+

)]
.

These are exactly matched with Al.Curve result.
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S-matrix and Lüscher’s F-term

The S-matrix of pair of small magnon is∑
(−1)Fb

(
S
b1Q
b1Q

(q∗, p)
)

=
∑
b

(−1)Fb
(
S
AAb1Q
b1Q

S
ABb1Q
b1Q

+ S
BAb1Q
b1Q

S
BBb1Q
b1Q

)
= 2

∑
b

(−1)Fb S
AAb1Q
b1Q

S
ABb1Q
b1Q

.

From the above S-matrix element, we have

δ∆F−term =

∫
dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1)

×

4− 2

 x − 1
X+
p

x − 1

X−p

2

e ip − 2

(
x − X−p

x − X+
p

)2

e ip

 .
We also have the same energy shift with al.curve.
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S-matrix and Lüscher’s F-term

Until now, on-shell particle interpretation of the big magnon is
unknown.

We propose that big magnon may be superposition of small magnon
and anti-small magnon. Anti-small magnon has the same
momentum as the usual small magnon, but it has Q of opposite sign.
Then, the S-matrix of big magnon is∑

(−1)Fb
(
Sba
ba (q∗, p)

)
=
∑
b

(−1)Fb
(
S
AAb1Q
b1Q

S
AA′b1−Q

b1−Q
+ S

BAb1Q
b1Q

S
BA′b1−Q

b1−Q

)
.

δ∆ =

∫
dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1) × 4

[
1−

(
x − 1

X+

x − 1
X−

)(
x − X−

x − X+

)
e ip

]
.

As our proposal, we reproduced Al.curve result from S-matrix.

Mathematical coincidence OR Physical meaning (??)
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Multi dyonic magnons

Consider N-dyonic A-particles and M-dyonic B-particles.

Quasi-momenta ansatz about these multi-magnons is :

q1 =
αx

x2 − 1

q2 =
αx

x2 − 1

q3 =
αx

x2 − 1
+

N∑
k=1

(
G k
u (0)− G k

u

(
1

x

))
+

N+M∑
k=N+1

(
G k
v (0)− G k

v

(
1

x

))
+

N+M∑
i=1

τi

q4 =
αx

x2 − 1
+

N∑
k=1

G k
u (x) +

N+M∑
k=N+1

G k
v (x) +

N+M∑
i=1

τi

q5 =
N∑

k=1

(
G k
u (x)− G k

u (0) + G k
u

(
1

x

))
+

N+M∑
k=N+1

(
−G k

v (x) + G k
v (0)− G k

v

(
1

x

))
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Multi dyonic magnons

Fluctuation frequencies :

Ωlight
ij (x) =

1

x2 − 1

(
1−

∑
l

αl

(
x
X+
l + X−l

X+
l X−l + 1

))

Ωheavy
ij (x) =

2

x2 − 1

(
1−

∑
l

αl

(
x
X+
l + X−l

X+
l X−l + 1

))
.

The S-matrix factor :∑
(−1)Fb Smulti = σBES

(
y ,XQ1

1

)
· · ·σBES

(
y ,X

QN+M
N+M

)
×

η
(
XQ1

1

)
η̃
(
XQ1

1

) · · · η
(
X

QN+M
N+M

)
η̃
(
X

QN+M
N+M

)
×

 N∏
i=1

SBDS

(
y ,X

Qi
i

)
+

N+M∏
i=N+1

SBDS

(
y ,X

Qi
i

)
×

(
η (y)

η̃ (y)

)∑
Qi ∑

b

(−1)Fb
N+M∏
i=1

sb(pi )
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Multi dyonic magnons

The result is :

δ∆multi
F =

∫
dx

2πi
∂xΩmulti (x) e

−i∆total
x

2g(x2−1) ×
N+M∏
i=1

 x − 1
X+
i

x − 1

X−i

√√√√X+
i

X−i


×

 N∏
i=1

(
x − X−i
x − X+

i

)2
 x − 1

X−i

x − 1
X+
i

2

+
N+M∏
j=N+1

(
x − X−j

x − X+
j

)2
 x − 1

X−j

x − 1
X+
j


2

×

1 +
N+M∏
k=1

(
x − X+

k

x − X−k

) x − 1
X+
k

x − 1

X−
k

− 2
N+M∏
l=1

(
x − X+

l

x − X−l

)√√√√X−l
X+
l



In the above expression, There are undetermined function αl .

But, at strong coupling, these parts in integral form are suppressed.
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Conclusion and Discussion

We computed quantum finite size effects for magnons in
AdS4/CFT3 using two different approaches.

In the algebraic curve methods, fluctuation frequencies of magnons
are calculated by the efficient off-shell method and from those we
obtained the leading one-loop energy shifts.

We compared Al.Curve results with Lüscher F-term in the S-matrix
methods.

The results in both sides exactly matched each other.

In these computations, we proposed particle interpretation of the big
magnon.

Also, we generalize the leading one-loop energy shifts to
multi-dyonic magnons.
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Conclusion and Discussion

Thank you!!
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