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e Recent developments (SLE, log CFT's, ...) put new emphasis on the
dualism between local (spin) and non-local (cluster) observables

e The debate goes back to the "droplet model” (60's): is the ferromagnetic
transition a percolative transition of spin clusters? No (70's), but ... (80's)

e [ he universal critical properties of both local and non-local observables can
be studied by field theory. In 2D the exact fractal dimensions of clusters are
known in many cases (CFT)

e I'll use integrable field theory for the Ising case to obtain two results:

— exact non-perturbative mechanism explaining cluster criticality in absence
of magnetic criticality

— quantitative characterization of universal cluster properties near criticality



Ising percolation
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No magnetic transition away from T'< 7., H =0

H

P = probability that a site belongs to an infinite cluster of 4 spins (percola-
tive order parameter)

VT >0 3 H.(T) such that P >0 for H > H.(T)

H.(c0)

2 cosh H.(c0)

= p?

H.(0) =0

p? = critical point of random percolation (non-universal)



Three observations:
i) H.(T) monotonic
ii) spontaneous magnetization — infinite cluster (Coniglio et al '77)

iii) p. <p? at H =0 (interaction makes percolation easier)

Conseqguences: H
a) p° > 1/2, i.e. Ho(c0) >0 P>0
He(T)
i), ii) = H.(T) =0 for T < T. 0 b
C
b) p° < 1/2, i.e. H.(0) <0 H
Tc
p=1/2forT >T.,, H=0 0 T
He(T
i) = T, < T. c(T)

Ordinary lattices in d =2 have p? >1/2 — a)

d=3 have p <1/2 — b)



Kasteleyn-Fortuin representation
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G = graph made of bonds between occupied sites

Zg

N, = # of empty sites

b= # of bonds in G; b= # of absent bonds (dashed)
N. = # of connected components in G (KF clusters)

pg=1—e’ prob that a bond is present (KF cl=Ising cl for pg = 1)

q continuous parameter

(X)goo1 = sting Ze—wm pr%(l —pp)? dilute percolation average

{t.} G
pure percolation for H = 400



Example of percolative observable: mean cluster number per site

(Ne)
N

1
= — Ogfql,=1 — 5(1 — M) M Ising magnetization per site
_ 1 2
fq = _N In Zq — fIsing + (q - 1)F + O((q - 1) )

Dilute Potts model vields
— Ising magnetic properties at g =1
— KF cluster properties at g =1+ ¢

— Ising cluster properties at g=1+4¢, J — 4+



RG analysis in d =2 (Coniglio-Klein '80 4+ CFT)

Look for fixed points of  H,—1(T, H,J) = Hsing(T, H)—JZtitj (0s,,5,—1)
(i7)
Need a magnetic fixed point to start with — T =1, H = 0. J?

d=2 fixed points characterized by

— central charge ¢=1-6/[m(m+ 1)]

X, , = [(m41)r—ms]?>—1

— primary fields ¢, with scaling dimensions 2m(m+1)

H[Smg(TC,O)I m = 3, cC = 1/2, XJZXLQZ]_/S, X€:X1,3:1

'H, possesses two critical lines as functions of g:

A(t—1) t, critical (H =4o0): X;= X’”T‘la%’ X, = Xo;

Vg=2sin———=, m=
2(t+1) t41, tricritical: X, = Xsu, Xi, = X15, Xp, = X13
2, pureperc: ¢c=0, X;=5/48, X, =5/4
q— 1: m =
3, dilute perc: ¢=1/2, X;=5/96, X; =1/8, X;, =1



We found a fixed point of dilute percolation for J = J*

A trivial (purely magnetic) fixed point isat J =0

oe

2/Te J
J irrelevant at these two fixed points ——= 4 a third one

2
—Hgl joyr = T;(ém% — 1)+ (Ing—2H) Za,,i,o, vi=0,1,...,q
1) ?
— fixed point at J =2/T. as ¢ — 1, with X; = X, =1/8

(KF clusters with J =2/T) = 1Ising droplets

RG flows among fixed points with ¢ = 1/2 (c-theorem does not apply)

Critical behavior of Ising clusters is ruled by J* (agrees with numerics)

cluster size ~ (linear extension)” D =d— X, fractal dimension

(91/48 = 1.89.. pure percolation

D =< 187/96 = 1.94.. Ising clusters

| 15/8 =1.87.. Ising droplets



Field theory of Ising clusters

Ising field theory:

Arsing = Aésg? — T/d233 e(x) — h/dzaz o(x), T~T—-T., h~H

Dilute Potts field theory: 9
Ao = A =g [ Popra@) -\ [ Poera@)

qul — -A[sing (g =T, A= h) A

A, integrable for g and/or A equal zero

Sy symmetry breaks spontaneously at A =20

q degenerate vacua for A <0

The g — 1 limit of the Potts critical surface is the Ising percolation transition:
1st order (massive) at T' < T, 2nd order (massless) at T > T,

Ag=1 = Arsing, hOwever, is purely massive: no transition above T.

We can take the limit analytically



The massless surface of A, is an integrable field theory (Fendley, Saleur,
Zamolodchikov '93, in RSOS basis)

Fundamental particles: right/left movers A, k=1,...,q— 1 with p! = £+p°

Poles of two-particle amplitudes contained in  S_;,5(0)/(S1,2(0) cosh p(im—0))

< T3+ (@0 +3-7)p-8)r(3+@n+3-7)r+%)

1T

$,(6) = . p=1/(m—1)
ol (3+(nt+2-7)p+2)r (L4 @n+i-9)p-2)
Im6 € (0O,7) physical sheet
s = ,u2€9
Im6 € (0,—m) second sheet shP
0 1
No poles on physical sheet |
Pole at 6 = —im(m — 3)/2, on 2nd sheet for m € (3,5) //’/m=3(q=1)
g — 1T7: resonance B with Imsg x (¢ — 1)p? T e

e g=14€: € massless particles A;, one resonance B with lifetime o« 1/e
o g=1: O massless particles, one stable particle B with mass u

— percolative transition in absence of magnetic singularities above T,



B S;-singlet (survives at ¢ = 1) == only S,-invariant fields ¢ have non-zero
correlations at ¢ = 1:

c|1i|I1| (¢(r)9(0)) = (lzi"l' (¢g—1) / df1d6- |(O|¢(O)|Ak(01)Aq_k(92)>|2 e "F20(0302) 1
= |im |H¢|2 —rE2o((8+6)/2,(8-6)/2)
- I - 1 2’0 ’ e o o
ql ) (q ) | dBde (0 80)(6 + 60) e -+

X /dﬁ e BB 4

Eoo(61,602) = u(e® + e )/2, g —i(g—1),  E1n(8) = pcosh(3/2)

This is how the canonical space of fields [I] @ [o] @ [€] of Ising field theory is
recovered at g =1



Field theory of Ising droplets

Droplets are KF clusters with J =2/T, ie. pp=1-e2T H

T =o00: pp=20, no percolation Kertesz line
ey 0 \
H = 4o00: transition at T = —-2/In(1 —p_)
p? = threshold of random bond percolation OF-—--
Te T
Scaling limit:
A, = Agl}i_:,})—Tq/dzaz @2,1(:c)+2hq/d23: Ou(2).0 » v(z) =0,1,...,q
RG invariant: n, = 7, /RS> X/ (27X (Ay=1 = Alsing, m =n = 7/h8/1%)

hq breaks S,41 into S;; for ¢ > 1 5, breaks spontaneously at n; = nj

The Kertész line is the limit ¢ — 1 of the flow from S,41 fixed point at hy =0
to S, fixed point at h; = +o0

Again, no transition at ¢ = 1, resonance mechanism most likely, but no
integrability in this case

e Universal limit of the Kertész line: lattice data (Fortunato, Satz '01) +
lattice-continuum relations (Caselle, Grinza, Rago '04) give nig = 775_>1 ~ 0.12



Cluster observables

P=1limy_1 <"(;§—3§)> percolative order parameter

S = hmwl —= > .(01(x)o1(0))c mean cluster size

I|mqﬁl 2L(o1(2)51(0))e ~ e /& 2| — oo & (true) connectivity length
(Ne)/N = — 04 fql =1 — %(1 — M) mean cluster number per site

on(z) = (53<x),k _ 5) t(z), k=1,...,q Potts spin

H

Critical behavior : P = B¢’
S = g’
§ = fg*
(N M A_q
— = [ =—=1In%2g— AgIn 64.0A
(N )., > g—Aolng 494,041

_[IT-T¢ ifH=0 |
9= if T=T.



Universal amplitude ratios

e provide the canonical way of characterizing universal critical behavior around
critical points

e twoO universality classes can have the same exponents but different ampli-
tude ratios (e.g. droplet size vs magnetic susceptibility)

e allow to test methods of non-conformal field theory (e.g. calculation of
correlation functions from the S-matrix)

e in the percolative case we test results of non-conventional field theory (non-
unitary, non-rational, ...)

e challenge for any approach alternative to field theory (e.g. massive SLE)



Universal amplitude ratios for Ising percolation (GD, J. Viti, 2010) :

clusters droplets

Ca/T5 non-universal 40.3
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Random percolation case (GD, J. Viti, J. Cardy, J.Phys.A43 (2010) 152001):

Field Theory Lattice

AT/A~ 1 1@
t+/ft_ 2 B
FANa 1.001 -
o o 3.73 4.0 +0.5°
U 2.22 2.23 4+ 0.10¢
RS 0.926 ~ 0.934F
rT/r- 160.2 162.5 4 2¢
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Conclusion

e [ here is more physics in the Ising model than we are used to think
e [ his extends to more general spin models

e Field theory is able to describe this physics, through analytic continuation
from unitary cases



