Rafael Hernández Universidad Complutense de Madrid

Outline

• Introduction

• The spectrum of long operators and semiclassical strings: the asymptotic Bethe ansatz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Finite-size operators, wrapping corrections and the thermodynamic Bethe ansatz
- Anomalous dimensions for twist-two operators
- Conclusions

Introduction

The AdS/CFT correspondence

The large N limit of $\mathcal{N} = 4$ Yang-Mills is dual to type IIB string theory on $AdS_5 \times S^5 \Rightarrow$ Spectra of both theories should agree

 \rightarrow Difficult to test, because

$$\frac{R^2}{2\pi\alpha'} = \frac{\sqrt{\lambda}}{2\pi}$$

with $\lambda \equiv g_{\rm YM}^2 N$ the 't Hooft coupling,

and thus **strongly-coupled gauge theory** corresponds to **large radius of curvature** (classical string regime), and viceversa

 \rightarrow The correspondence is a strong/weak-coupling duality

Difficulties:

A complete formulation of the AdS/CFT correspondence \Rightarrow Precise identification of string states with local gauge invariant operators

$$\Rightarrow E\sqrt{\alpha'} = \Delta$$

 $E \equiv$ **String energy** in the global time coordinate of *AdS*

 $\Delta \equiv$ **Scaling dimension** of gauge operators

 \Rightarrow String quantization in $AdS_5 \times S^5$

 \Rightarrow Solving the complete gauge spectrum

Integrability and asymptotic anomalous dimensions

 \rightarrow The one-loop planar dilatation operator of ${\cal N}=4$ Yang-Mills is the hamiltonian of an integrable spin chain

[Minahan,Zarembo] [Beisert,Staudacher]

∜

Given a local gauge-invariant operator

 $\mathcal{O} = \mathsf{tr}\left(\phi_1\phi_2(D_1D_2\phi_2)D_1\psi_2\dots\right)$

scaling dimensions $\Delta(\lambda)$, obtained from two-point functions

 $\langle \mathcal{O}(x)\mathcal{O}(y)\rangle = C|x-y|^{-2\Delta(\lambda)}$

amount to energies in an integrable system

Single trace operators can be mapped to states in a closed spin chain \Rightarrow BMN impurities: magnon excitations

$$\operatorname{tr}(XXX \Upsilon Y X \ldots) \leftrightarrow |\uparrow\uparrow\uparrow\downarrow\downarrow\uparrow\uparrow\ldots\rangle$$

$$\downarrow\downarrow$$

The Bethe ansatz

 \rightarrow The rapidities u_j parameterizing the momenta of the magnons satisfy a set of one-loop **Bethe equations**

$$e^{ip_j J} \equiv \left(\frac{u_j + i/2}{u_j - i/2}\right)^J = \prod_{k \neq j}^M \frac{u_j - u_k + i}{u_j - u_k - i} \equiv \prod_{k \neq j}^M S(u_j, u_k)$$

Energy
$$\longrightarrow E = -\sum_{j=1}^{M} \frac{d}{du_j} p(u_j) \Rightarrow \gamma = \frac{\lambda}{8\pi^2} E$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \rightarrow There is strong evidence in favor of higher-loop integrability

[Beisert,Kristjansen,Staudacher] [Beisert] [Zwiebel]

→ Assuming integrability an asymptotic long-range Bethe ansatz has been proposed [Beisert,Dippel,Staudacher]

$$\left(\frac{x_j^+}{x_j^-}\right)^J = \prod_{k \neq j}^M \frac{u_j - u_k + i}{u_j - u_k - i} = \prod_{k \neq j}^M \frac{x_j^+ - x_k^-}{x_j^- - x_k^+} \frac{1 - \lambda/16\pi^2 x_j^+ x_k^-}{1 - \lambda/16\pi^2 x_j^- x_k^+}$$

where x_j^{\pm} are generalized rapidities

$$x_j^{\pm} \equiv x(u_j \pm i/2) , \quad x(u) \equiv \frac{u}{2} + \frac{u}{2}\sqrt{1 - 2\frac{\lambda}{8\pi^2}\frac{1}{u^2}}$$

 \rightarrow The spectrum of length $L \rightarrow \infty$ operators is ruled by the **asymptotic Bethe ansatz equations** The long-range Bethe ansatz is constructed to fit the spectrum of anomalous dimensions, or the $\mathcal{N} = 4$ magnon dispersion relation

 \rightarrow The (one-loop) Heisenberg chain has dispersion relation

$$E = 4\sin^2\left(\frac{p}{2}\right)$$

 $\rightarrow\,$ The Bethe ansatz can be **deformed** to include the magnon dispersion relation for planar $\mathcal{N}=4$ Yang-Mills,

$$E^2 = 1 + \frac{\lambda}{\pi^2} \sin^2\left(\frac{p}{2}\right)$$

The extension/deformation is the long-range Bethe ansatz

[Beisert,Dippel,Staudacher]

Integrability in $AdS_5 \times S^5$

 \rightarrow Integrable structures are also present on the string side of the correspondence: there exists a family of flat connections

[Mandal,Suryanarayana,Wadia] [Bena,Polchinski,Roiban]

 $\rightarrow \mbox{Classical integrability of coset σ-models [Lüscher,Pohlmeyer] also holds for the $AdS_5 \times S^5$ string ($\frac{PSU(2,2|4)}{SO(1,4) \times SO(5)}$ coset)$}$

$\rightarrow AdS_4 \times CP^3$ and $\mathcal{N} = 6$ Chern-Simons (AdS_4/CFT_3)

[Minahan,Zarembo] [Arutyunov,Frolov] [Stefanski] [Grignani,Harmark,Orselli] [Ahn,Nepomechie]

$$\rightarrow AdS_3 \times S^3 \times T^4$$
, $AdS_3 \times S^3 \times S^3 \times S^1$ and $\mathcal{N} = 4$ symmetric orbifold CFTs (AdS_3/CFT_2)

[Babichenko,Stefanski,Zarembo]

are also integrable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\rightarrow The spectrum of classical strings is governed by a set of Bethe ansatz equations, quite similar to the ones on the gauge theory side

[Arutyunov, Frolov, Staudacher]

Asymptotically long operators \longrightarrow Strings with large quantum numbers

Symmetries and the S-matrix

The all-loop asymptotic S-matrix is fixed completely by the $SU(2|2) \otimes SU(2|2)$ symmetry up to a scalar dressing factor

[Beisert]

∜

 $S(p_j, p_k) = \sigma(p_j, p_k) S_{SU(2|2)}(p_j, p_k) S_{SU(2|2)'}(p_j, p_k)$

 \rightarrow The all-loop S-matrix describes succesfully the asymptotic spectrum of states in the AdS/CFT correspondence

The **dressing phase** $\sigma(p_j, p_k; \lambda)$ is responsible for the interpolation

- \rightarrow The **leading term** in the $1/\sqrt{\lambda}$ expansion is found discretizing the classical finite-gap equations [Arutyunov,Frolov,Staudacher]
- \rightarrow The **one-loop corrections** to the energies of rotating strings provide the subleading term [Beisert, Tseytlin] [RH,López] [Freyhult,Kristjansen]
- → Solving the crossing symmetry conditions of [Janik] a **strong-coupling expansion** was suggested [Beisert,RH,López], and tested up to two-loops [Roiban,Tirziu,Tseytlin] [Klose,McLoughlin,Minahan,Zarembo]

→ The proposal for a **weak-coupling expansion** [Beisert,Eden,Staudacher] agrees with four-loop computations [Bern,Czakon,Dixon,Kosower,Smirnov]

The asymptotic Bethe ansatz relies on the $\mathcal{N} = 4$ dispersion relation

 \rightarrow The symmetry algebra fixes the dispersion relation [Beisert]

$${m E}({m p}) = \sqrt{1+rac{\lambda}{\pi^2}\sin^2\left(rac{{m p}}{2}
ight)}$$

Symmetry \Rightarrow **Dispersion relation**

\Downarrow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Asymptotic spectrum of states

Finite-size operators and wrapping corrections

(See the talks by Balog, Bozhilov, Ahn, Aniceto, Kim and Bajnok)

- $\rightarrow\,$ The all-loop S-matrix describes the <code>asymptotic</code> spectrum of states in the AdS/CFT correspondence
- \rightarrow For **finite-size** operators/chains **wrapping interactions** arise and the long-range dressed S-matrix is no longer valid

Wrapping effects appear when the length of the spin chain reaches the perturbative order \Downarrow Wrapping \rightarrow Operator length $L \leq$ Number of loops

→ At **four-loops** agreement between perturbative and Bethe ansatz computations breaks down for the **length-four** Konishi operator [Kotikov,Lipatov,Rej,Staudacher,Velizhanin] [Fiamberti,Santambrogio,Sieg,Zanon] [Bajnok,Janik]

 \rightarrow The **Konishi operator** (Tr($[Z, Y]^2$) in the SU(2) sector, or Tr(ZD^2Z) in the SL(2) sector), with length L=4, is the simplest example where **wrapping** effects appear, already at four-loops

[Fiamberti,Santambrogio,Sieg,Zanon] [Bajnok,Janik] [Velizhanin]

$$\Delta(\lambda) = \frac{3}{4\pi^2}\lambda - \frac{3}{16\pi^4}\lambda^2 + \frac{21}{256\pi^6}\lambda^3 - \frac{2584 - 384\zeta(3) + 1440\zeta(5)}{65536\pi^8}\lambda^4 + \cdots$$

(Five-loop contribution by [Bajnok,Hegedüs,Janik.Lukowski])

Dimensions of short operators \rightarrow Energies of quantum string states

- \rightarrow The spectrum of states with large quantum numbers is obtained from solutions to the Asymptotic Bethe Ansatz equations \longrightarrow Solving string theory on a plane $\mathbb{R}^{1,1}$ leads to the Asymptotic Bethe Ansatz for the spectrum
- → The generalization to short states, with any quantum number, amounts to solving string theory on $\mathbb{R} \times S^1$ and provides a set of Thermodynamic Bethe Ansatz equations [Arutyunov,Frolov]
- → A set of discrete **Y-system equations** arising from the Thermodynamic Bethe Ansatz is expected to encode the spectrum of finite-size operators, to any order in the coupling [Gromov,Kazakov,Vieira] [Bombardelli,Fiorvanti,Tateo] (See the talk by D. Bombardelli)

Anomalous dimensions for twist-two operators

Twist-two operators in the SL(2) sector of $\mathcal{N} = 4$ Yang-Mills $\operatorname{Tr}(\mathcal{D}^{s_1}Z\mathcal{D}^{s_2}Z)$ $s_1 + s_2 = N \rightarrow \text{Total spin}$

Number of $Z = \phi_5 + i\phi_6$ fields \rightarrow **Twist**

The anomalous dimension can be obtained from the Bethe ansatz for the long-range (at **one-loop** agrees with the $XXX_{s=-1/2}$ Heisenberg) chain,

$$\left(\frac{u_k + i/2}{u_k - i/2}\right)^L = \prod_{j \neq k} \frac{x_k^- - x_j^+}{x_k^+ - x_j^-} \frac{1 - \lambda/16\pi^2 x_k^+ x_j^-}{1 - \lambda/16\pi^2 x_k^- x_j^+}$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

In the asymptotic case, for infinitely long operators, the anomalous dimension is obtained from the $\mathcal{N}=4$ dispersion relation

$$\gamma_2(N) = \sum_{i=1}^{N} E(p_i) = \sum_{i=1}^{N} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2\left(\frac{p_i}{2}\right)}$$

 $N \longrightarrow$ Number of magnons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The result from the Bethe ansatz **agrees** with the perturbative evaluation of the twist-two anomalous dimension, up to three-loops

[Moch, Vermaseren, Vogt] [Kotikov, Lipatov, Onischenko, Velizhanin]

where $S_{\bar{a}} \equiv S_{\bar{a}}(N)$ are harmonic sums,

$$S_{a}(N) = \sum_{j=1}^{N} \frac{(\operatorname{sgn}(a))^{j}}{j^{a}} ,$$

$$S_{a_{1},...,a_{n}}(N) = \sum_{j=1}^{N} \frac{(\operatorname{sgn}(a_{1}))^{j}}{j^{a_{1}}} S_{a_{2},...,a_{n}}(j)$$

(truncations of Riemann's zeta function $\longrightarrow S_a(\infty) = \zeta(a)$)

Several limits of the twist-two anomalous dimension can be considered

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\rightarrow\,$ The **pomeron** singularity, upon continuation to $\mathit{N}=-1+\omega$
- \rightarrow The **cusp** anomalous dimension, $N \gg 1$
- \rightarrow The **spin-one** regime, N = 1

BFKL pomeron

A **four-loop** term can be obtained trusting the dressed asymptotic Bethe ansatz

[Kotikov,Lipatov,Rej,Staudacher,Velizhanin]

$$\gamma_{2,4}(N) = 16(4S_{-7} + 6S_7 + \dots - \zeta(3)S_1(S_3 - S_{-3} + 2S_{-2,1}))$$

→ It is **asymptotic**: **Wrapping** contributions are **excluded**, and it fails to reproduce the four-loop prediction from the BFKL pomeron $(N = -1 + \omega, \omega \rightarrow 0 \text{ configuration})$

₩

Breakdown of the (asymptotic) Bethe ansatz for finite-size operators

Cusp anomalous dimension

In the **high spin**-*N* limit, $N \gg 1$,

 $\Delta(\lambda) \sim \Delta_{\text{cusp}}(\lambda) \log N$

with $\Delta_{cusp}(\lambda)$ the cusp anomalous dimension

For twist-two operators

 $\Delta_{\text{cusp},2}(\lambda) = \frac{1}{2} \frac{\lambda}{\pi^2} - \frac{1}{96} \frac{\lambda^2}{\pi^2} + \frac{11}{23040} \frac{\lambda^3}{\pi^2} - \left(\frac{73}{2580480} + \frac{\zeta(3)^2}{1024\pi^6}\right) \frac{\lambda^4}{\pi^2} + \cdots$

In agreement with the prediction from integrability: the cusp dimension can be computed from the BES [Beisert,Eden,Staudacher] equation

\rightarrow The **strong-coupling** limit of the BES integral equation provides a strong-coupling expansion for the cusp anomalous dimension

[Kostov,Serban,Dvolin] [Basso,Korchemsky,Kotanski]

$$\Delta_{\text{cusp},2}(\lambda) = \frac{\sqrt{\lambda}}{\pi} - \frac{3\log 2}{\pi} - \frac{K}{\pi} \frac{1}{\sqrt{\lambda}} + \cdots$$

Agrees with the string result: **Twist-two operators** correspond to a **folded string** with spin *N* along AdS_5 , and thus the $N \to \infty$ limit is reachable from semiclassical methods

[Gubser,Klebanov,Polyakov] [Roiban,Tirziu,Tseytlin] [Casteill,Kristjansen]

Spin-one regime

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$\rightarrow \mbox{ Integrability had shown before in a four-dimensional gauge theory: the reggeized limit of scattering amplitudes in QCD [Lipatov]$

(also [Belitsky] [Belitsky,Braun,Gorsky,Korchemsky])

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \rightarrow It is thus natural to search for a common origin, or at least some relic, of the integrable structure in $\mathcal{N}=4$ Yang-Mills still present in the Regge limit of scattering amplitudes in QCD

Consider now a **spin-one twist-two** operator $\longrightarrow N = 1$ [Gómez,Gunnesson,RH]

> \rightarrow A non-vanishing result is obtained when evaluating the harmonic sums at N = 1,

$$\gamma_2(1) = 4g^2 - 8g^4 + 32g^6 - 160g^8 + \mathcal{O}(g^{10})$$
 \Downarrow

Agrees with the $\mathcal{N} = 4$ dispersion relation

$$\gamma_2(N=1) = \sqrt{1 + \lambda/\pi^2 \sin^2\left(\frac{p}{2}\right)} - 1$$

for a single magnon with "non-physical" momentum $p = \pi$ \Downarrow Probably holds to all orders, and thus

 $\gamma_2(N=1)=E(p=\pi)$

Furthermore, the expansion of $\gamma_2(N = 1) = E(p = \pi)$ is related to the analytic extension of the DGLAP anomalous dimension $\gamma_2(N)$ to $N = -r + \omega$, with $\omega \to 0$

 \rightarrow This analytic extension agrees with the resummation of non-collinear double logarithms in QCD

BFKL and double logarithms in QCD

The BFKL integral equation, arising in the Regge limit of QCD, allows to compute the leading log contributions to two-particle \rightarrow two-particle amplitudes, and predicts the leading poles at $N = -r + \omega$, r = 1, 2, ...

 \rightarrow The harmonic sums can be analytically continued to the whole complex plane $[{\tt Basso}, {\tt Korchemsky}, {\tt Kotanski}]$

$$S_1(N) = \sum_{i=1}^N \frac{1}{i} \longrightarrow \psi(N+1) - \psi(1)$$

 \rightarrow The eigenfunctions of the BFKL kernel are obtained through a Mellin transformation \ldots

Parton distribution functions are governed by the Bethe-Salpeter equation. In the **Regge limit** of QCD and in **deep inelastic scattering**

$$f(x, Q^2) = f_0(x, Q^2) + 2g^2 \int_x^1 \frac{dz}{z} \int_{Q'^2}^{Q^2} \frac{dk^2}{Q^2} f\left(\frac{x}{z}, k^2\right)$$

with $Q^2 \rightarrow$ Momentum of the photon $Q'^2 \rightarrow$ Transversal scale of the hadron $s \rightarrow$ Center of mass energy $x \equiv Q^2/s$

The Bethe-Salpeter equation performs a perturbative resummation of the **double logarithms in ladder diagrams**

$$\left(g^2 \log\left(\frac{1}{x}\right) \log\left(\frac{Q^2}{Q'^2}\right)\right)'$$

After Mellin transformation $(s \rightarrow \omega)$ the solution to the Bethe-Salpeter equation is

$$f(\omega,\gamma) = rac{\omega f_0(\omega,\gamma)}{\omega + 4g^2rac{1}{\gamma}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In the **leading logarithm approximation in BFKL** the pole in the solution for the parton distribution function is corrected by

where $\chi_{\rm LLA}$ is the **BFKL kernel**,

$$\chi_{\text{LLA}}(\omega,\gamma) = 2\psi(1) - \psi\left(-\frac{\gamma}{2}\right) - \psi\left(1 + \frac{\gamma}{2} + \omega\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

However, it is not only collinear double logarithms that should be considered, but also **non-collinear double logarithms**

 $\log s \log s \quad \to \quad \log s \log Q^2$

This resummation can be performed with a **change in the kinematic** region of integration in the Bethe-Salpeter equation

 $\rightarrow\,$ The pole in the solution of the Bethe-Salpeter equation should be

$$\omega = 2g^2 \left(-\frac{2}{\gamma} + \frac{1}{\omega + \gamma/2} \right)$$
 \Downarrow

$$\gamma = \omega \sqrt{1 - rac{8g^2}{\omega^2}} - \omega \quad \longrightarrow \quad \text{Modifies the BFKL kernel}$$

Now, a closer look at the anomalous dimension after resummation of non-collinear double logarithms,

$$\gamma = \omega \sqrt{1 - \frac{8g^2}{\omega^2}} - \omega$$

shows that it is precisely

$$\gamma_2(N=1)=E_{\mathcal{N}=4}(p=\pi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Single-magnon dispersion relation for $\mathcal{N} = 4$ Yang-Mills!!

 \Downarrow

Resummation of non-collinear double logarithms in the Regge limit of QCD!!

(ロ)、(型)、(E)、(E)、 E) の(の)

Conclusions

- Integrable structures have provided extremely precise tests of the AdS/CFT correspondence
 - $\circ~$ The Asymptotic Bethe ansatz probes semiclassical strings

- o Finite-size operators start being systematically analyzed
- The dispersion relation in planar $\mathcal{N}=4$ Yang-Mills can be related to non-collinear double logarithms in QCD
 - The dispersion relation follows from the anomalous dimension for spin-one twist-two operators

Open questions

• Relate integrable structures in the AdS/CFT correspondence and in QCD: symmetries and structure of the central extension in $\mathcal{N} = 4$ allow to determine the dispersion relation \rightarrow Hidden symmetries in the Regge limit of QCD

- Symmetry pattern organizing the correspondence
 - (Quantum) Deformation of a gauge theory into a string theory