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Defects

Consider relativistic massive field theories such as the Toda models

• Purely transmitting defects

• Conservation of a generalised momentum

• Type I defects (Ed Corrigan, Peter Bowcock, CZ)
• The ar Toda models
• Classical integrability

• Type II defects (Ed Corrigan, CZ)
• A bigger set of Toda theories, which incorporates, for

instance, the a
(2)
2 Toda model (or Tzitzéica or Bullough-Dodd

or Zhiber-Mikhailov-Shabat model)



The classical type II defect
Consider two relativistic field theories with fields u and v

L = θ(−x)Lu + θ(x)Lv + δ(x) (2qλt − D(λ, u, v))

• Equations of motion

∂2u = −Uu x < 0 ∂2v = −Vv x > 0

• Defect conditions in x = 0

2qx = −Dp 2px − 2λt = −Dq 2qt = −Dλ

q =
u − v

2
p =

u + v

2

• The defect potential D is determined by momentum
conservation. It seems that, in the presence of a purely
transmitting defect, constraints that follow from momentum
conservation are ‘equivalent’ to the restriction imposed by
integrability



Conservation of momentum

Start from the definition of momentum

P =

∫ 0

−∞
dx utux +

∫ ∞
0

dx vtvx

If it exists a functional Ω(u, v , λ) such that Pt ≡ −Ωt , then
P + Ω|x=0 is conserved and it represents the total momentum of
the system
Constraints on U, V , Ω:

Dp = Ωλ Dλ = Ωp DpDq − ΩqDλ = 2(U − V )

that is

D = f (p + λ, q) + g(p − λ, q) Ω = f (p + λ, q)− g(p − λ, q)

fλgq − gλfq = U − V



• Single scalar field theories: Liouville, free massless case, the
sinh/sine-Gordon model, free massive case, the Tzitzéica
model

Tzitzéica potential: U = e2u + 2 e−u

Consider λ and its conjugate momentum πλ = 2 q

• Then, the Poisson bracket of the defect contribution to energy
and momentum is related to the potential difference across
the defect, that is

fλgq − gλfq = (U − V ) −→ {Ω,D} = (U − V )
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The classical sine-Gordon model with a defect

U = −(eu + e−u) V = −(ev + e−v )

The fields u, v are pure imaginary

• A type I defect

LI = θ(−x)Lu + θ(x)Lv + δ(x)

(
1

2
(uvt − vut)− D I (u, v)

)
• A type II defect

LII = θ(−x)Lu + θ(x)Lv + δ(x)
(

(u − v)λt − D II (u, v , λ)
)

Equations of motions for the sine-Gordon fields u (x < 0) and v
(x > 0)



• Type I: defect conditions in x = 0

ux − vt = −D I
u vx − ut = D I

v

D I = −
√

2σ(ep+e−p)−
√

2

σ
(eq+e−q) p =

u + v

2
q =

u − v

2

They are Bäcklund transformations

• Type II: defect conditions in x = 0

ux − 2λt = −D II
u vx − 2λt = D II

v ut − vt = −D II
λ

D II =

−
√

2σ(ep/2+λ/2(eq/2−τ +e−q/2+τ )+e−p/2−λ/2(eq/2+τ +e−q/2−τ ))

−
√

2

σ
(ep/2−λ/2(eq/2+τ + e−q/2−τ ) + e−p/2+λ/2(eq/2−τ + e−q/2+τ ))

They are not Bäcklund transformations



• Energy, momentum and topological charge are conserved
quantities

• For the sine-Gordon model, the type II defect can be thought
of two type I defects fused at the same point in space:

δ(x)

(
uλt − λut

2
+
λvt − vλt

2
− D I (u, λ, σ1)− D I (λ, v , σ2)

)
= δ(x)

(
(u − v)λt − D II (u, v , λ)

)
√
σ1σ2 = σ ≡ e−η

√
σ1

σ2
= e−τ

• The complete Lagrangian density for the type II defect is not
equivalent to the sum of the Lagrangian densities for two type
I defects

• The type II defect cannot be split into two separated type I
defects

• Once two type I defects are fused a soliton cannot propagate
between them, and therefore the transfer of topological charge
between them is suppressed



Solitons & Type II defects

A defect with no discontinuity

eu/2 =
1 + E

1− E
ev/2 =

1 + zE

1− zE

E = eax+bt+c a =
√

2 cosh θ b = −
√

2 sinh θ

u(0,−∞) = v(0,−∞) = 2πi −→ λ(−∞) = 0, 2πi

A defect

with a 2πi discontinuity

eu/2 =
1 + E

1− E
ev/2 = −1 + zE

1− zE

u(0,−∞) = 2πi v(0,−∞) = 0 −→ λ(−∞) = 0, 2πi

For a general value of t the defect conditions fix the expressions for
z and λ(t)
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Examples

• No discontinuity - λ(−∞) = 2πi :

z = coth

(
η + τ − θ

2

)
coth

(
η − τ − θ

2

)
λ(t) = ...

E = 8
√

2 cosh θ + [−8
√

2 cosh η cosh τ ]

If η and τ are real and positive this is the lowest energy
configuration

• 2πi discontinuity - λ(−∞) = 0:

z = coth

(
η + τ − θ

2

)
tanh

(
η − τ − θ

2

)
λ(t) = ...

E = 8
√

2 cosh θ + [8
√

2 sinh η sinh τ ]

The type II defect as a soliton-like object
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Consider the defect with a 2πi discontinuity and set

η + τ = ϑ± πi η − τ = ϑ

• Defect contribution to the energy E|x=0

8
√

2 cosh(ϑ) - energy of a soliton

• Delay z

tanh2(ϑ− θ)/2 - classical delay for two scattering solitons

• The transmission factor linearized about this configuration,
namely
u = 2πi + e−i(ωt−κx) v = T e−i(ωt−κx)

ω =
√

2 cosh θ κ =
√

2 sinh θ
becomes

T =
sinh(θ − ϑ) + i

sinh(θ − ϑ)− i

which is the classical limit of the transmission factor of a
soliton - ϑ - scattering with the lightest breather - θ -



The quantum sine-Gordon model with defects
Triangle equations for purely transmitting defect: it expresses the
compatibility between the S-matrix and the T-matrix
[Delfino,Mussardo,Simonetti]

Smn
a b (Θ) T tβ

nα(θ1) T sγ
mβ(θ2) = T nβ

b α(θ2) T mγ
a β (θ1) S st

mn(Θ)

• S(Θ): soliton/soliton scattering matrix [A. Zamolodchikov,
Al. Zamolodchikov]

S+ +
+ + = S−−−− = a ρs

S−+
+− = S+−

−+ = b ρs

S+−
+− = S−+

−+ = c ρs

q = −e−iπγ = e−4iπ2/β2
γ =

4π

β2
− 1

• T (θp): soliton/defect transmission matrix



• The T-matrix must be unitary

• Conservation of the topological charge: a + α = b + β
α and β are either both odd or both even integers
Hence the transmission matrix has the following form:

T b β
aα (θ) =

(
A(θ) δβα B(θ) δβ−2

α

D(θ) δβ+2
α D(θ) δβα

)

• It acts on a V ⊗ V where V is a two dimensional space and V
is an infinite dimensional space

Explicit solutions related to defects...



• Transmission matrix for a type I defect [Konik, LeClair; BCZ]

TI
b β
aα (θ, η)

• Transmission matrix for two type I defects placed somewhere
along the x-axis

TI−I
b β δ
aαγ(θ, η1, η2)

Four defect labels reveals the presence of two defects:
exchange of topological charge between the defects as the
soliton passes between them

• But a type II defect required a completely new solution



A new solution for the STT = TTS equation

T b β
aα (θ) = ρ(θ) ×(

(a+Qα + a−Q−α x2) δβα x (b+Qα + b−Q−α) δβ−2
α

x (c+Qα + c−Q−α) δβ+2
α (d+Qα x2 + d−Q−α) δβα

)

x = eγθ Q = 1/
√

q = e2iπ2/β2
a± d± − b± c± = 0

The free constants and the scalar factor ρ can be constraint by
additional requirements:

• Crossing
T b β

aα (θ) = T̃ ā β

b̄ α
(iπ − θ)

with
T b β

aα (θ)T̃ c γ
b β (−θ) = δcaδ

γ
α

• Unitarity ∑
b,β

T b β
aα (θ)T̄ b β

c γ (θ) = δacδ
γ
α



• Crossing does not provide any further constraints on the free
constants, but forces the function ρ to satisfy the following
relation:

ρ(θ)ρ(θ + iπ) Q2∆(θ) = 1

with

∆(θ) = a+d−Q−2

(
1− b+c−

a+d−
x2

)(
1− b−c+

a+d−
Q4x2

)
Experience with a similar calculation for the type I defect
suggests to set

b−c+

a+d−
= −Q−4 e−2γη1

b+c−
a+d−

= −e−2γη2

Then, it is possible to find a solution for the scalar factor ρ



• On the contrary, unitarity provides constraints on the
constants (a+ = 1)

a+ = d− = 1 a− = b−c− d+ = b+c+

c− = −b̄+ c+ = −b̄−Q−4

and the scalar factor

ρ(θ + iπ) = ρ̄(θ)

These constraints allow to write

b− b̄− = e−2γη1 b+ b̄+ = e−2γη2

then η1 and η2 are real parameters



Transmission matrix for a fused pair of type I defects

TII
b β
aα(θ, b+, b−) = ρII (θ, η1, η2) ×(

(Qα − b− b̄+ Q−α x2) δβα x (b+Qα + b−Q−α) δβ−2
α

−x (b̄−Qα−4 + b̄+ Q−α) δβ+2
α (−b+b̄−Qα−4 x2 + Q−α) δβα

)

ρII (θ, η1, η2) =
fII (z1, z2)

2π
e−γ(θ−η1)/2 e−γ(θ−η2)/2 e iπγ/2

zp =
iγ(θ − ηp)

π
p = 1, 2 γ =

4π

β2
− 1

fII (z1, z2) = Γ(1/2− z1)Γ(1/2− z2) ×
∞∏

k=1

Γ(1/2 + z1 + (2k − 1)γ)Γ(1/2− z1 + 2kγ)

Γ(1/2 + z1 + 2kγ)Γ(1/2− z1 + (2k − 1)γ)
×

Γ(1/2 + z2 + (2k − 1)γ)Γ(1/2− z2 + 2kγ)

Γ(1/2 + z2 + 2kγ)Γ(1/2− z2 + (2k − 1)γ)



• This solution is supposed to describe the scattering of a
soliton and a type II defect in its stable configuration with
even topological charge labels

• The degrees of freedom are represented by the two real
constants η1 and η2 and the relative phase between b− and
b+ with

b− b̄− = e−2γη1 b+ b̄+ = e−2γη2

• There are two defect ‘resonance’ states, representing the
absorption and emission of a soliton, at:

θ = η1 +
iπ

2γ
θ = η2 +

iπ

2γ

• In the classical limit β → 0 (1/γ → 0) their energies coincide
with the classical energies of a soliton with rapidity η1 or η2

• In the classical limit these poles coincide with the rapidity at
which the classical soliton delay diverges, provided η1 = η + τ
and η2 = η − τ - though a normalization could be required



• This solution is similar to TI−I
b β δ
aαγ (θ, η1, η2). The essential

difference is represented by the presence of two extra defect
labels for TI−I

The sine-Gordon model has breather ‘poles’ at:

Θ = iπ

(
1− n

γ

)
n = 1, 2, · · · < γ

By using the bootstrap relation

cn
a ā

nT (θ)δβα =
∑
b

T b̄ γ
āα (θā)T b β

a γ (θa)cn
b b̄

cn
+− = (−)ncn

−+

the transmission factor for the lightest breather is

1T (θ) = −
sinh

(
θ−η1

2 − πi
4

)
sinh

(
θ−η1

2 + πi
4

) sinh
(
θ−η2

2 − πi
4

)
sinh

(
θ−η2

2 + πi
4

)
• Is coincide with the transmission factor for the classical

problem linearized around the lowest energy configuration
with η1 = η + τ and η2 = η − τ



T & S matrices

• Classically the type I defect ‘behaves’ like ‘half’ soliton and
the type II defect like a soliton with respect to energy,
momentum, topological charge and delay

• This ‘identification’ may be extended to the quantum context
since the S matrix is embedded within a T matrix for suitable
choices of defect parameters

Consider the new solution shown previously

T b β
aα (θ) = ρ(θ) ×(

(a+Qα + a−Q−α x2) δβα x (b+Qα + b−Q−α) δβ−2
α

x (c+Qα + c−Q−α) δβ+2
α (d+Qα x2 + d−Q−α) δβα

)

x = eγθ Q = 1/
√

q = e2iπ2/β2
a± d± − b± c± = 0

Remember that because of the crossing constraints it is possible to
find a candidate for the overall scalar function ρ



• Since we want to recover the S matrix we consider the
solution T b β

aα with α, β odd integers

• For the same reason, we require there is no amplitude for
transitions between topological charges ±1 and ±3, in other
words

T−+
3
1 = T +

−
−3
−1 = 0 −→ b− = −b+ Q2 c− = −c+ Q−2

Hence
T b β

aα = −T
b β
aα infinite

⊕ T b β
aα finite

⊕ +T
b β
aα infinite

In addition we set

a+ = d− = 1 a− = d+ = −e−2γϑQ−2

b+ = c− = −e−γϑQ−2 c+ = b− = e−γϑ

hence, a single real free parameter survived ϑ.



The non zero elements of the finite T matrix are:

T +
+

+1

+1
= T−−

−1

−1
= a ρ̂ ρ̂ = (−Q−1 eγ(θ−ϑ)) ρ

T +
+
−1

−1
= T−−

+1

+1
= b ρ̂ T−+

+1

−1
= T +

−
−1

+1
= c ρ̂

• Apart from the overall factor ρ̂, these elements are precisely
the non zero elements of the S-matrix

• The scalar factor ρ̂ can be calculated. By using the previously
definitions for the free constants and by making the choice
η2 = η̄1

ρ̂(θ) = ρS(θ − ϑ) ≡ ρS(Θ)

• Hence the finite part of T coincide with the soliton/soliton S
matrix and it is unitary, even though the full T matrix is not



• The transmission factor for the lightest breather coincide with
the scattering amplitude between a soliton and the lightest
breather whose rapidity difference is Θ = (θ − ϑ)
[A.Zamolodchikov, Al. Zamoloschikov]

sT (Θ) =
sinh(Θ) + i cos π

2γ

sinh(Θ)− i cos π
2γ

• In the classical limit this expression coincides with the
transmission factor for the classical problem linearized around
the ‘soliton configuration’



The same T matrix labeled by even integers can also describe the
lightest breather. Demand

T−+
2
0 = T +

−
−2

0 = 0 −→ b− = −b+ c− = −c+

and set
a+ = d− = 1 a− = d+ = −e−2γϑQ−2

In addition, for fixing all free constants but one, choose

η1 = ϑ− iπ

2
+

iπ

γ
η2 = ϑ+

iπ

2
− iπ

γ

which is a choice compatible with the above mentioned
constraints, then



• The finite part of the T matrix becomes the scattering
amplitude for the lightest breather and a soliton

T +
+

0
0 = T−−

0
0 =

sinh(Θ)− i cos π
2γ

sinh(Θ) + i cos π
2γ

• The lightest breather transmission factor becomes the
scattering amplitude for two lightest breathers

1T (θ) =
sinh(Θ)− i sin π

γ

sinh(Θ) + i sin π
γ

Finally, the choice

η1 = ϑ+
iπ

2
η2 = ϑ− iπ

2

leads to

1T (θ) = T +
+

0
0 = T−−

0
0 = 1



Defects & Representation theory

At the quantum level an algebraic setting capable to describe the
transmission matrices for the type I and the type II defects for the
sine-Gordon model can be constructed [Weston]

• S = ρs P R: R(θ1/θ2) : V
1/2
θ1
⊗ V

1/2
θ2
→ V

1/2
θ1
⊗ V

1/2
θ2

V
1/2
θi

is a representation of Uq(ŝl2)

• T ' ρL: L(θ1/θ2) : V∆
θ1
⊗ V

1/2
θ2
→ V∆

θ1
⊗ V

1/2
θ2

V∆
θ is a representation of the Borel subalgebra Uq(b+)

• The Borel subalgebra is described in terms of a generalisation
of the q-oscillator algebra with a set of parameter ∆

• The intertwiner L is solution of the following linear equation

L∆(x) = ∆′(x)L −→ STT = TTS ∆′(x) = P∆(x)P x ∈ Uq(b+)

• Both TI and TII can be linked with L



Summary

• Both type I and type II defects are purely transmitting defects,
which allow momentum conservation

• The type II defect allows to overcome some restrictions
imposed by the type I defect

• It is likely that new ideas, hence new types of defects are
required to describe all Toda models (with a defect)

• In the sine-Gordon case a type II defect is equivalent to a
fused pair of type I defects

• The quantum transmission matrices for these type of defects
are infinite dimensional

• For the sine-Gordon case a explicit description in terms of
representation theory is available

• For the sine-Gordon case the S matrix is found embedded
inside the a type II T matrix


