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Defects

Consider relativistic massive field theories such as the Toda models
e Purely transmitting defects
e Conservation of a generalised momentum

e Type | defects (Ed Corrigan, Peter Bowcock, CZ)

e The a, Toda models
e Classical integrability

e Type Il defects (Ed Corrigan, CZ)

e A bigger set of Toda theories, which incorporates, for
instance, the agz) Toda model (or Tzitzéica or Bullough-Dodd
or Zhiber-Mikhailov-Shabat model)



The classical type Il defect
Consider two relativistic field theories with fields v and v

L=0(—x)Ly+0(x)Ly, + (x) (2gA: — D(\, u, v))
e Equations of motion
Pu=-U, x<0 Pv=-V, x>0
e Defect conditions in x =0

2qX = _DP 2P>< — 2)\1- = _Dq 2Qt = _D)\

_u—v _u+v
7= P=
e The defect potential D is determined by momentum
conservation. It seems that, in the presence of a purely
transmitting defect, constraints that follow from momentum
conservation are ‘equivalent’ to the restriction imposed by
integrability




Conservation of momentum

Start from the definition of momentum

0 00
P:/ dxutux—i—/ dx vivy
—00 0

If it exists a functional Q(u, v, A) such that Py = —Q;, then

P + Q|x—o is conserved and it represents the total momentum of
the system

Constraints on U, V, Q:

D,=Qy D=9, D,Dy—Q,Dy=2(U-V)
that is
D=f(p+Xq) +eglp—Xrq) Q=Ff(p+Aq)—glp—X\aq)

ngq—g,\fq =U-V



e Single scalar field theories: Liouville, free massless case, the
sinh/sine-Gordon model, free massive case, the Tzitzéica
model

Tzitzéica potential: U = e®¥ +2e~ ¥



e Single scalar field theories: Liouville, free massless case, the
sinh/sine-Gordon model, free massive case, the Tzitzéica
model

Tzitzéica potential: U = e®¥ +2e~ ¥
Consider X\ and its conjugate momentum 7y =2¢q

e Then, the Poisson bracket of the defect contribution to energy
and momentum is related to the potential difference across
the defect, that is

f\gg — 8axfg = (U—-V) — {Q, D} = (U-V)



The classical sine-Gordon model with a defect

U=—(e"+¢e") V=—("+e")

The fields u, v are pure imaginary

o A type | defect

1
Ll =0(—x)L, +0(x)L, + 5(x) (2 (uvy — vuy) — D' (u, v)>
o A type Il defect

L = G(—x) Ly + O(x) Ly + 5(x) ((u ~ WA — D' (u, v, /\)>

Equations of motions for the sine-Gordon fields v (x < 0) and v
(x >0)



e Type |: defect conditions in x =0

Uy — vi = —D! Vi — up = D]

D' = —\/§a(ep+e-f’)—‘f(eq+e—q)

They are Backlund transformations

e Type Il: defect conditions in x =0
ue —27,=-D!" v,—2x,=D!'  u —v,=-D!
D” —

_\fzg(ep/2+/\/2(eq/2ff+efq/2+r)_i_efp/zf,\/z(eq/2+7+e,q/g,T))

ﬁ( p/2—)\/2(eq/2+7'+e—q/2—7')+e—p/2+)\/2(eq/2—7+e—q/2+7))
o

They are not Backlund transformations



Energy, momentum and topological charge are conserved
quantities

For the sine-Gordon model, the type Il defect can be thought
of two type | defects fused at the same point in space:

At — A Ave — VA
5(X)<Ut2 Ut+ Vt2vt

3(x) ((u e — D'(u, v, A))

- Dl(ua)\val) - DI()\a V702)>

. o1
o100 =0 =¢€ ;:e
2

—T

The complete Lagrangian density for the type Il defect is not
equivalent to the sum of the Lagrangian densities for two type
| defects

The type Il defect cannot be split into two separated type |
defects

Once two type | defects are fused a soliton cannot propagate
between them, and therefore the transfer of topological charge
between them is suppressed



Solitons & Type Il defects

A defect with no discontinuity

eu/2:1—|—E ev/2:1—|—ZE
1-E 1-zE
E = ¥ thbtte a=+2cosh® b= —2sinh®
u(0,—o0) = v(0,—0) =21i — A(—00) =0,2mi




Solitons & Type Il defects

A defect with no discontinuity

eu/2:1—|—E ev/2:1—|—ZE
1—-E 1—-zE
a=12coshd b= —v2sinh@

u(0,—o00) = v(0, —00) =27 —

E = eax+bt+c

A(—o0) = 0,27/ A defect
with a 27/ discontinuity
w2 _1tE Ly 142E
1-E 1-zE
u(0, —00) = 27i v(0,—00) =0

—  A=o00) =0,2ni

For a general value of t the defect conditions fix the expressions for
z and X(t)



Examples

e No discontinuity - A(—o0) = 27/ :

_ n+1—10 n—1—10
z = coth (2 ) coth <2 )

A(t) = ..
£ = 8v2cosh® + [-8V2coshncoshT]

If n and 7 are real and positive this is the lowest energy
configuration



Examples

e No discontinuity - A(—o0) = 27/ :

_ n+1—10 n—1—10
z = coth (2 ) coth <2 )

A(t) = ..
£ = 8v2cosh® + [-8V2coshncoshT]

If n and 7 are real and positive this is the lowest energy
configuration

e 2mi discontinuity - A(—o0) = 0:

— 4 —7—46
; — coth (n+2> tanh (772)

A(t) =

£ 8v/2 cosh @ 4 [8v/2 sinh 7y sinh 7]

The type Il defect as a soliton-like object



Consider the defect with a 27/ discontinuity and set

n+r=9=+mwi n—1=19

e Defect contribution to the energy &|x—o
8v/2cosh(19) - energy of a soliton
e Delay z
tanh?(¥ — 0)/2 - classical delay for two scattering solitons

e The transmission factor linearized about this configuration,

namely
u=27ri+ e—i(wt—rx) v = T e ilwt—rx)
w=+2coshf K =+/2sinh6
becomes
_ sinh(§ — ) + i
~ sinh(§ —9) — i

which is the classical limit of the transmission factor of a
soliton - 9 - scattering with the lightest breather - 6 -



The quantum sine-Gordon model with defects

Triangle equations for purely transmitting defect: it expresses the
compatibility between the S-matrix and the T-matrix
[Delfino, Mussardo, Simonetti|

ST(O) TH(01) T3l5(02) = T (62) TT3(61) Sit(©)

e 5(©): soliton/soliton scattering matrix [A. Zamolodchikov,
Al. Zamolodchikov]|

ST = SZZ”=aps

Sit = STi=bps

Sf- = S-T=cps

) . 4
q= _eim™ — ef417r2/62 y = 5772[- 1

e T(6,): soliton/defect transmission matrix



e The T-matrix must be unitary

e Conservation of the topological charge: a+a=b+
« and 3 are either both odd or both even integers
Hence the transmission matrix has the following form:

) B—2
o o 50%°)

e |t actson a V ® )V where V is a two dimensional space and V
is an infinite dimensional space

Explicit solutions related to defects...



e Transmission matrix for a type | defect [Konik, LeClair; BCZ]
TI 55(97 77)

e Transmission matrix for two type | defects placed somewhere
along the x-axis

Ti—i 55°(0,m,m)

Four defect labels reveals the presence of two defects:
exchange of topological charge between the defects as the
soliton passes between them

e But a type Il defect required a completely new solution



A new solution for the STT = TTS equation

T22(0) = p(0) x
(a4 Q% +a-Q “x2) 68 x(bsQ™+b_Q)s572
X (4 Q¥+ Q)0 (e QX2 +d_Q )5,
X:efye Qzl/\/a:e2i7r2/ﬂ2 aidi—bicizo

The free constants and the scalar factor p can be constraint by
additional requirements:

e Crossing )
T22(0) = T2 (im — 0)
with
T2 (O To3(=0) = 6557
e Unitarity

Z Tabo€(9) Tff(é) = dacl,,
b’ﬁ



e Crossing does not provide any further constraints on the free
constants, but forces the function p to satisfy the following

relation:
p(0)p(0 + im) Q*A(F) = 1
with
byc_ b_c
—_ -2 e 2 - + N4, 2
A(f) =ard-Q <1 2 X ) <1 . Q*x >

Experience with a similar calculation for the type | defect
suggests to set

bcy _ Q *e 21m bie- _ oym
= - e =—e
a+d_ a+d_

Then, it is possible to find a solution for the scalar factor p



e On the contrary, unitarity provides constraints on the
constants (a4 = 1)

ar=d_=1 a_=b_c_ dy = bicy
c.=—by c, =-b_Q*
and the scalar factor
p(0 + i) = p(0)
These constraints allow to write
b_b_=e2m by by = e 27m

then 11 and 7)» are real parameters



Transmission matrix for a fused pair of type | defects

T” gg(ev b—i—ub—) :PII(Q,TZLTD) X
(Q* — b_ b, Q=@ x2) 55 x(by Q>+ b_Q ) 5572
“x (B, Qa—4 + B+ Q—a) 5g+2 (—bJrf_)f Qa—4 x2 + Q—a) 5@3

f .
(0,1, m2) = ”(;17;22) e (0-m)/2 g=2(6-m2)/2 gim/2

iv(0 —n 47
Zp:(ﬂ_p) p=1,2 ’7:?

-1
f//(Zl,Zz) =T(1/2—2z)M(1/2 — z) %
H F(1/2+z1+ (2k = 1)) (1/2 — z, + 2k7)
M(1/24+ z1 + 2ky)I(1/2 — z1 + (2k — 1))
M(1/24 z 4+ (2k — 1)y)[(1/2 — zo + 2k~)
[(1/2+ 2z + 2ky)[(1/2 — zo + (2k — 1))




e This solution is supposed to describe the scattering of a
soliton and a type Il defect in its stable configuration with
even topological charge labels

e The degrees of freedom are represented by the two real
constants 71 and 7, and the relative phase between b_ and
by with

b_ b —e2rm by b, = e 2

e There are two defect ‘resonance’ states, representing the
absorption and emission of a soliton, at:
i

2y

i

0=m+ >

0=m+

e In the classical limit 3 — 0 (1/y — 0) their energies coincide
with the classical energies of a soliton with rapidity n; or 7,

e In the classical limit these poles coincide with the rapidity at
which the classical soliton delay diverges, provided n1 =n+ 71
and 1, = n — 7 - though a normalization could be required



e This solution is similar to T,_; ‘;52 (6,m1,m2). The essential
difference is represented by the presence of two extra defect

labels for T,_,
The sine-Gordon model has breather ‘poles’ at:
B n
@:mr(l—) n=12---<v
Y

By using the bootstrap relation

cls"T(0) Z Tb/@(ﬁa)cgg cy _=(=)"",

the transmission factor for the lightest breather is

. sinh (9;"1 — T) sinh <9 2 _ %)

T(0) =—
(0) . 0—m i . 0—mnn i
sinh >+ sinh s>+ 7

e |s coincide with the transmission factor for the classical
problem linearized around the lowest energy configuration
withny =n+7andmp=n—1



T & S matrices

e Classically the type | defect ‘behaves’ like ‘half’ soliton and
the type Il defect like a soliton with respect to energy,
momentum, topological charge and delay

e This ‘identification’ may be extended to the quantum context
since the S matrix is embedded within a T matrix for suitable
choices of defect parameters

Consider the new solution shown previously
T25(0) = p(6) x
(4Q% +a_Q *x2) 68 x (b Q™+ b_Q )52
x(c+Q+ Q)0 (dyQ x> +d_Q ) dn
x =g (,?:1/\ﬁ:e2"”2/*32 ardy —brcy =0

Remember that because of the crossing constraints it is possible to
find a candidate for the overall scalar function p



e Since we want to recover the S matrix we consider the
solution Tf&g with «, (0 odd integers

e For the same reason, we require there is no amplitude for
transitions between topological charges +1 and £3, in other
words

T/3=T"3-0 — b =—bQ c =—c Q32

Hence
ThB = -T2 g TbB ot

a « infinite aQ Ainite a & infinite
In addition we set
ay=d_=1 a_=d . =—-e27Q2
by =c.=—-e Q2 cp=b_=e

hence, a single real free parameter survived 4.



The non zero elements of the finite T matrix are:

+1 -1 . R _ _
Ti+1:Tf—1 = ap p=(-Qte M)y
+-1 - +1 N —+1 41
Wa=T-,4 =bp T ,=T",=cp

e Apart from the overall factor p, these elements are precisely
the non zero elements of the S-matrix

e The scalar factor p can be calculated. By using the previously
definitions for the free constants and by making the choice
2 =11

p(0) = ps(6 — ) = ps(©)

e Hence the finite part of T coincide with the soliton/soliton S

matrix and it is unitary, even though the full T matrix is not



e The transmission factor for the lightest breather coincide with
the scattering amplitude between a soliton and the lightest
breather whose rapidity difference is © = (6 — ¥)
[A.Zamolodchikov, Al. Zamoloschikov]

sinh(©) + i cos 7~

~ sinh(©) — i cos £

e In the classical limit this expression coincides with the
transmission factor for the classical problem linearized around
the ‘soliton configuration’



The same T matrix labeled by even integers can also describe the
lightest breather. Demand
-2
T 0 — T

_320 —  b_=—by c_ =—cy

and set
a,=d =1 a_=d, =—e27Q2

In addition, for fixing all free constants but one, choose

it im iT T
-+ — m=0+=—-—
2 gl

m=1u- >

which is a choice compatible with the above mentioned
constraints, then



e The finite part of the T matrix becomes the scattering
amplitude for the lightest breather and a soliton

sinh(©) — i cos 5~

sinh(©) + i cos 5=

+0 _ -0 _
Tio=T-0=
e The lightest breather transmission factor becomes the

scattering amplitude for two lightest breathers

sinh(©) —isin T
LT(9) = 'h(@) ——
sinh(©) + isin Z

Finally, the choice
T T
m + > 2 5

leads to

'T(e)= THg =T §=1



Defects & Representation theory

At the quantum level an algebraic setting capable to describe the
transmission matrices for the type | and the type Il defects for the
sine-Gordon model can be constructed [Weston]

o S=p.PR: R(61/62) : vy 0 V)2 — v P o v,/
Veli/2 is a representation of Ug(sl2)
o TpL: L(6:1/62) : VR @ VP = Vh oV,

V& is a representation of the Borel subalgebra U, (b+)

e The Borel subalgebra is described in terms of a generalisation
of the g-oscillator algebra with a set of parameter A

e The intertwiner L is solution of the following linear equation
LA(x)=A(x)L— STT =TTS A'(x) = PA(x)P x € Ug(by)

e Both T; and Ty can be linked with £



Summary

e Both type | and type Il defects are purely transmitting defects,
which allow momentum conservation

e The type Il defect allows to overcome some restrictions
imposed by the type | defect

e |t is likely that new ideas, hence new types of defects are
required to describe all Toda models (with a defect)

e In the sine-Gordon case a type Il defect is equivalent to a
fused pair of type | defects

e The quantum transmission matrices for these type of defects
are infinite dimensional

e For the sine-Gordon case a explicit description in terms of
representation theory is available

e For the sine-Gordon case the S matrix is found embedded
inside the a type Il T matrix



