# SHARED INFORMATION IN STATIONARY STATES

Francisco C. Alcaraz

Universidade de São Paulo - IFSC - São Carlos - BRAZIL

FCA, Sierra G and Rittenberg V - Phys. Rev. E **80**, 030102(R) (2009) FCA and Rittenberg V - JSTAT P03024 (2010)

- Introduction and motivation
- Setimators for shared information
- Application 1: Model for polymer
  adsorption
- Aplication 2: The raise and peel model
- Parity effects on the estimators
- Conclusions

Entanglement properties of groundstate wavefunctions of Hermitian Hamiltonians



 $S_{vN}(\mathcal{A}) = S_{vN}(\mathcal{B}) = -\operatorname{Tr}(\rho_{\mathcal{A}} \ln \rho_{\mathcal{A}}) \qquad \rho_{\mathcal{A}} = \operatorname{Tr}_{\mathcal{B}}(\rho)$ 

For large system and subsystems L >> l >> 1

 $S_{vN}(l,L) \sim constant \quad ---- \text{non critical (gapped)}$  $S_{vN} \sim \gamma \ln l + C \quad ---- \text{critical (gapless)}$ 

Calabrese and Cardy 2004

critical and conformal invariant - central charge c  $\gamma = \frac{c}{6}$  for open systems  $\gamma = \frac{c}{3}$  for periodic systems  $S_{vN}(l,L) = \gamma \ln \tilde{L}_C + C$ ,  $\tilde{L}_C = L \sin(\pi l/L)/\pi$  f.s Shared information in stationary states of classical systems



#### Aim

Produce estimators of the shared information among subsystems

## Similar properties as in the quantum case

a) Vanish if the subsystems are separated
b) If ξ finite → are finite
c) If we have logarithmic behavior for E(l, L) ~ γ<sub>E</sub> ln L
<sub>E</sub> + C<sub>E</sub> γ<sub>E</sub> is universal and C<sub>E</sub> non universal
d) If we have power-law behavior E(l, L) ~ γ<sub>E</sub>L<sup>δ<sub>E</sub></sup> + D<sub>E</sub> γ<sub>E</sub>, δ<sub>E</sub> universal and D<sub>E</sub> non universal

Configuration space ("Hilbert space" for classical model)

Inspiration: Quantum chains spin 1/2 SU(2) symmetric (Hermitian): Ex. Heisenberg chain (open bound. cond)

$$H = -J \sum_{i=1}^{L-1} \vec{S}_i \vec{S}_{i+1}$$

Ground state L=4 sites  

$$|\Psi >= c_1 | \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_{4} + c_2 | \underbrace{1}_{1} \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_{4} + c_2 | \underbrace{1}_{1} \underbrace{1}_{2} \underbrace{1}_{$$

One-to-one correspondence - Dyck paths

$$|\Psi\rangle = c_1$$

Dyck Path: restrict solid-on-solid (RSOS) conf. in L+1 sites configurations:  $(h_1, h_2, \dots, h_l)$  $h_{i+1} - h_i = \pm 1, \quad h_0 = h_L = 0 \quad (i = 0, 1, \dots, L - 1)$ 

 $Z_1(L) = L!/(L/2)!(L/2+1)!$ 



### Stochastic model: Dyck paths = config. of an interface



if  $h_l = 0$   $\longrightarrow$  no shared information  $h_l$  large  $\longrightarrow$  large shared information  $P(a(h_l), b(h_l))$  Prob. of Dyck path composed by  $a(h_l)$   $b(h_l)$ 

Marginals 
$$P(a(h_l)) = \sum_b P(a(h_l), b(h_l))$$

Prob. height  $h_l$  at site l

$$P_l(h, L) = \sum_a P(a(h_l)) = \sum_b P(b(h_l))$$

#### Estimators

### Mutual information:

 $I(l,L) = \sum_{h_l,a(h_l),b(h_l)} P(a(h_l),b(h_l)) \ln \frac{P(a(h_l),b(h_l))}{P(a(h_l))P(b(h_l))}$ 

Standard estimator for shared information

Interdependency:

 $H_h(l,L) = -\sum_h P_l(h,L) \ln P_l(h,L)$ 

Shannon entropy for heights  $h_l$ 

New estimator: imitates the entanglement entropy

## Renyi Interdependencies

 $R_n(l,L) = 1/(1-n) \ln \sum P_l(h,L)^n, \quad n = 2, 3, \dots$ Valence bond entanglement entropy:  $h(l,L) = \sum hP_l(h,L)$ h. Average height at separation site. Used in the context of SU(2) spin -1/2quantum chains (Chhajlany, Tomczak, Wojcic 2007, Jacobsen, Saleur 2008

Density of contact points:  $D(l, L) = -\ln P_l(0, L)$ If  $\rho(l,L) = P_l(0,L)$  small  $\longrightarrow$  large clusters Separation Shanon entropy: S(l, L) = H(L) - H(l) - H(L - l) $H(M) = -\sum P_k \ln P_k$ 

Measures the increase of disorder in C due to A and B

All the estimators vanishes when A and B separated

## Stochastic models

### Model for polymer adsorption



$$q/p = K = u^{-1}$$

u = 1 is the Rouse Model (Rouse, 1953)

$$L=6$$

$$|1\rangle \qquad |2\rangle \qquad |3\rangle$$

$$|P(t) > = \sum_{a=1}^{5} P_{a}(t)|a>, \quad P_{a} = \lim_{t \to \infty} P_{a}(t), \quad |0> = \sum_{a=1}^{5} P_{a}|a>$$

$$H = \begin{pmatrix} |1\rangle & |2\rangle & |3\rangle & |4\rangle & |5\rangle \\ \hline \langle 1| & 1 & -1 & 0 & 0 & 0 \\ \langle 2| & -1 & 3 & -u & -u & 0 \\ \langle 3| & 0 & -1 & 1+u & 0 & -u \\ \langle 4| & 0 & -1 & 0 & 1+u & -u \\ \langle 5| & 0 & 0 & -1 & -1 & 2u \end{pmatrix} \cdot \qquad u = \frac{1}{K}$$

 $|0\rangle = |1\rangle + |2\rangle + K(|3\rangle + |4\rangle) + K^{2}|5\rangle$  $|0\rangle = \sum_{\psi} K^{m(\psi)}|\psi\rangle \qquad \# \text{ contact points}$ 

#### The phase diagram (Owczarek 2009)



## K=1 (Random Walker)

$$P_{l}(h,L) \sim \frac{4}{\sqrt{\pi}} \frac{z^{2} e^{-z^{2}}}{\sqrt{\tilde{L}_{RW}}}, \quad z = h/\sqrt{\tilde{L}_{RW}}, \quad \tilde{L}_{RW}/2 = l(1 - \frac{l}{L})$$

$$I(l,L) = H_{h}(l,L) \sim \frac{1}{2} \ln \tilde{L}_{RW} + C, \quad C \approx 0.303007$$

$$R_{n}(l,L) \sim 1/2 \ln \tilde{L}_{RW} + C_{n}$$

$$h(l,L) \sim \frac{4}{\sqrt{2\pi}} \tilde{L}_{RW}^{1/2}$$

$$D(l,L) = S(l,L) \sim \frac{3}{2} \ln \tilde{L}_{RW} + \ln \frac{\pi}{2\sqrt{2}}$$

In the finite-scaling regime: dependence on  $L_{RW} = l(1 - l/L)$ The information diverges  $E(l,L) \sim \gamma_E \ln \tilde{L}_{RW} + C_E$  $\longrightarrow E(l,L) \sim \gamma_E \tilde{L}_{BW}^{\delta_E} + D_E$ For 1 << l << L  $\longrightarrow E(l,L) \sim \gamma_E \ln l + C_E$  $\gg E(l,L) \sim \gamma_E l^{\delta_E}$  $\gamma_I = \gamma_H = 1/2 \text{ and } \gamma_D = \gamma_S = 3/2 \quad \gamma_h = 4/\sqrt{2\pi}, \quad \delta_h = 1/2$ Question: Are $\gamma_E$  universals ? Yes,  $0 < K < 2 \longrightarrow \gamma_E$  same value (analytical and MC) Finite- size scaling function  $\tilde{L}_{RW} = l(1 - l/L)$ The shared information is distinct and smaller: K = 2 (critical) Separation entropy:  $S(l, L) \sim 1/2 \ln(l(1 - l/L)) + C_S$ 

K >2 (non critical) The shared information is finite

# Raise and peel model (de Gier, Nienhuis, Pearce, Rittenberg, 2003; FCA, Rittenberg, 2007 [review])







Typical configurations (L=128)





At u = 1 we have a conformally invariant stochastic model - central charge c = 0

H spin 1/2 XXZ quantum chain with  $U_q(sl(2))$  symmetry with  $\Delta = q + 1/q = 1/2, \quad q = \exp(i\pi/3)$ 

The link patterns correspond to  $U_q(sl(2))$  singlets





## 0 < u < 1

(non critical) density of clusters finite —— shared information finite

u = 1

 $E(l,L) \sim \gamma_E \ln \tilde{L}_C + C_E, \quad \tilde{L}_C = L \sin(\pi l/L)/\pi$  $E(l,L) \sim \gamma_E \ln l + C_E, \quad 1 < < l < < L$ 

Similar as  $S_{vN}(l,L)$  in the quantum case

## **Results** $E(l,L) \sim \gamma_E \ln \tilde{L}_C + C_E, \quad \tilde{L}_C = L \sin(\pi l/L)/\pi$

Mutual information and separation Shannon entropy (not precise L=26)  $\gamma_I = 0.07$   $C_I = 0.65$   $\gamma_S = 0.4$   $C_S = 0.7$ 

★ The other measures (precise)

# $P_l(h, l)$ Evaluated by MC up to L =40000

Interdependency 
$$H_h(l,L) = -\sum_n P_l(h,L) \ln P_l(h,L)$$



 $H_h(l,L) - H(L/2,L) \sim 0.050 \ln[\sin(\pi l/L)]$ 



Valence bond entanglement entropy

$$h(l,L) = \sum_{h} hP_l(h,L)$$

$$\gamma_h = 0.277$$
  $C_h = 0.75$ 

Related to a periodic model (Jacobsen ans Saleur, 2008)

$$\gamma_h = \sqrt{3}/2\pi \approx 0.275$$

Second moment of  $P_l(h, l)$ 

 $\kappa_2(l,L) \sim \beta_2 \ln \tilde{L}_C + b_2 \quad \beta_2 = 0.19, \quad b_2 = 0.25$  $\beta_2 = (2\pi\sqrt{3} - 9)/\pi^2 \approx 0.190767$ half of the value of a related periodic model $\kappa_2(l,L) \text{ also a possible estimator}$ 

 $\bigstar \quad \text{Density of contact points} \quad D(l,L) = -\ln P_l(o,L)$ 

$$ho(l,L)\sim rac{lpha}{ ilde{L}_C^{1/3}}, \quad lpha=-rac{\sqrt{3}\Gamma(-rac{1}{6})}{6\pi^{5/6}}$$
 (FCA, Pyatov and Rittenberg, 2007

$$D(l,L) = -\ln\rho(l,L) \sim \frac{1}{3}\ln\tilde{L}_C + 0.28349$$



Dynamical critical exponent z < 1 $E(l,L) \sim \gamma_E \ln \tilde{L}_u + C_E$ 

 $\gamma_E$  changes continuously with u



finite-size scaling  $\tilde{L}_u(l, L)$ depends on u



0

0.05 0.1 0.15 0.2 0.25 *H<sub>h</sub>(L/2,L) - H<sub>h</sub>(I,L)* 

Interdependency

0.3

### **Summary of results RPM**

|                      | u=1        | u=1   | u=4        | u=4   |
|----------------------|------------|-------|------------|-------|
|                      | $\gamma_E$ | $C_E$ | $\gamma_E$ | $C_E$ |
| Mutual information   | 0.07       | 0.65  | -          | -     |
| Interdependency      | 0.050      | 0.67  | 0.09       | 0.91  |
| Rényi $(n=2)$        | 0.05       | 0.39  | 0.06       | 0.09  |
| Valence bond ent.    | 0.277      | 0.75  | 0.63       | 1.37  |
| Dens. Contact points | 0.333      | 0.284 | 0.73       | 0.71  |

As  $\mathbf{u}$  increases the shared information increases

## Parity effects on subleading contributions in RPM

Motivation: The quantum XXZ chain  $-1 \leq \Delta \leq 1$ Affleck, Laflorencie, Sorensen, 2009; Calabrese, Campostrini, Essler, Nienhuis, 2010, Song Rachel, Le Hur, 2010  $R_n(l,L) = \frac{1}{1-n} \ln \operatorname{Tr}(\rho_A^n)$ 

$$\delta R_n(l,L) = R_n(l,L) - R_n(l+1,L) = f_n(l/L) / \tilde{L}_c^{K/n}$$

$$\mathbf{K} = \pi/(2\arccos(\Delta))$$

corrections induced by relevant conical singularites (Cardy, Calabrese 2010)

$$\delta R_n(l,L) = f_n(l/L) / \tilde{L}_c^{K/n}$$



oscillating function (n=2) 
$$| F_n = F_n(\ln(\tilde{L}_c))$$

![](_page_30_Figure_1.jpeg)

Valence-bond entanglement  $h(l, L) = \sum_{h} hP_l(h, L)$ 

$$\delta h(l,L) = c_h / \tilde{L}_c^{\boldsymbol{x_h}} \quad c_h \approx 0.50 \quad \boldsymbol{x_h} \approx 0.99$$

No oscillations

## Conclusions

- Estimators introduced for the shared information of subsystems in stationary states of one-dimensional Markov processes
  - Some of the estimators can be evaluated by Monte Carlo simulation (distinct from the quantum case)
     Estimators with properties similar to the counterparts in the quantum case
    - a) Vanish if the subsytems are separated
    - b) If  $\xi$  finite  $\longrightarrow$  are finite
    - c) If we have logarithmic behavior for  $E(l,L) \sim \gamma_E \ln \tilde{L}_E + C_E$

 $\gamma_E$  is universal and  $C_E$  non universal

d) If we have power-law behavior  $E(l,L) \sim \gamma_E L^{\delta_E} + D_E$ 

 $\gamma_E$ ,  $\delta_E$  universal and  $D_E$ non universal

Analitical results for the exponents in the conformal case?

- $\tilde{L} = \tilde{L}_c(l, L)$  (the same as in the quantum cases)  $\gamma_h$  can be inferred from Jacobson, Saleur 2008  $\gamma_D$  related to the density of contact points  $\gamma_I \gamma_H \gamma_S$  no analytic results
- ✦ Parity effects show oscillatory effects, explanation?
- Raise and peell in u > 1 region (non conformal invariant)  $\tilde{L}_u$  and  $\gamma_E(u)$ (analytical results?)
  - It is possible to apply in general stochastic models
    - The finite-size scaling of the estimator (simple to calculate) may detect conformal invariance