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New perspectives on Quantum Information Theory



Quantum Information Theory

Quantum Information Theory studies how to manipulate and transmit 
information encoded on quantum particles.

Quantum Mechanics: set of laws 
describing the Physics of the 
microscopic world.

(Einstein, Planck, Bohr, 
Schrödinger, Heisenberg,…, first 
half of the XX century).

Information Theory:
mathematical formalism 
describing how information can 
be stored, processed and 
transmitted.

(Shannon, 1950).

Why now?



Quantum Information Theory

Current technological progress on devices miniaturization leads to a scenario 
where information is encoded on quantum particles, such as atoms or photons.

• Moore’s Law: information-device size 
decreases exponentially with time.

• Information is encoded in fewer and 
fewer atoms.

• It is very plausible that quantum 
effects will manifest in the near future. 



Novel information applications become possible when using 
information encoded on quantum states, e.g. more 
powerful computers and secure communication.

What happens when we encode information in the quantum world?

Quantum Information Theory



The classical bit can take two

values, the so-called logical 

0 and 1. Examples of 

realizations of a bit are:

0

1

All these realizations encode

the same amount of information:

one bit.

The classical bit

0

1

The quantum bit or qubit can be represented by a point on

the so-called Bloch sphere. The poles are associated to

the states   and   . Any superposition of these two states

generates a unique point on this sphere. Therefore, any

quantum bit can be specified by means of two angles, 

that is, two real numbers.
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The Quantum Bit
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Quantum Cryptography

Alice Bob

Eve

Quantum bits

The eavesdropper, Eve, when 
measuring the particles introduces 
noise, errors, in the channel and is 
detected by the honest parties

Bennett Brassard Ekert

Heisenberg uncertainty principle → Secure cryptography!



Classical Cryptography

• Standard Classical Cryptography schemes are based 
on computational security.

• Assumption: eavesdropper computational power is 
limited.

• Even with this assumption, the security is unproven. 
E.g.: factoring is believed to be a hard problem.

• Quantum computers sheds doubts on the long-term 
applicability of these schemes, e.g. Shor’s algorithm 
for efficient factorization.



Quantum Cryptography

• Quantum Cryptography protocols are based on 
physical security.

• Assumption: Quantum Mechanics offers a correct 
physical description of the devices.

• No assumption is required on the eavesdropper’s 
power, provided it does not contradict any quantum 
law.

• Using this (these) assumption(s), the security of the 
schemes can be proven.



Quantum Information Theory

1. Quantum Mechanics goes often against our classical intuition. 

2. Standard probability theory does not apply.

3. Quantum paradoxes are useful: the more quantum, the better!!

Quantum Cryptography is one of the best examples of this change 
of paradigm.

• Heisenberg principle: the state of a system cannot be measure without 
perturbing it.

• Let’s use this property to guarantee the security of information 
transmission → any eavesdropper attempting to read the information will 
be limited by the Heisenberg principle!



Quantum Information Theory

Computer 
Science

Mathematics Physics

Engineering

Very inter-disciplinary line of research

QIT



Quantum Correlations and 
Device-Independent Quantum 

Information Processing



Scenario

Alice Bob

y=1,…,m

a=1,…,r b=1,…,r
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x=1,…,m
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Vector of m2 r2 positive components satisfying m2 normalization conditions

Distant parties performing m different measurements of r outcomes.
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Physical Correlations

1) Classical correlations: correlations established by classical means.

     

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These are the standard “EPR” correlations. Independently of fundamental 
issues, these are the correlations achievable by classical resources.  Bell 
inequalities define the limits on these correlations.

Physical principles translate into limits on correlations.

For a finite number of measurements and results, these correlations define a 
polytope, a convex set with a finite number of extreme points.



Physical Correlations
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2) Quantum correlations: correlations established by quantum means.

The set of quantum correlations is again convex, but not a polytope, even if the 
number of measurements and results is finite.



Physical Correlations
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3) No-signalling correlations: correlations compatible with the no-signalling 
principle, i.e. the impossibility of instantaneous communication.

The set of no-signalling correlations defines again a polytope.

NSQC  Popescu-RohrlichBell



Characterization of 
Quantum Correlations



Motivation

Is p(a,b|x,y) a quantum probability?
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Example:

       32,32,32,32
8

1
0,1,1,0,0,0,  bapbapbap

   245.0,255.0,255.0,245.01,1, bap

Are these correlations quantum?



Motivation

• What are the allowed correlations within our current 
description of Nature?

• How can we detect the non-quantumness of some 
observed correlations? Quantum analogues of Bell 
inequalities.

• What are the limits on correlations associated to the 
quantum formalism? 

• To which extent Quantum Mechanics is useful for 
information tasks?

Previous work by Tsirelson



Hierarchy of necessary conditions

Given a probability distribution p(a,b|x,y), we have
defined a hierarchy consisting of a series of tests based on
semi-definite programming techniques allowing the
detection of supra-quantum correlations.
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Device-Independent 
Quantum Key Distribution



Device-Independent QKD

Standard QKD protocols based their security on:

1. Quantum Mechanics: any eavesdropper, however 
powerful, must obey the laws of quantum physics.

2. No information leakage: no unwanted classical information 
must leak out of Alice's and Bob's laboratories.

3. Trusted Randomness: Alice and Bob have access to local 
random number generators.

4. Knowledge of the devices: Alice and Bob require some 
control (model) of the devices. 

Is there a protocol for secure QKD based on                    
without requiring any assumption on the devices?

),,( yxbap



Motivation

• The fewer the assumptions for a crytpographic
protocol → the stronger the security.

• Device-Independent QKD represents the strongest 
form of quantum cryptography. It is based on the 
minimal number of assumptions.

• It may be useful when considering practical 
implementations. If some correlations are observed 
→ secure key distribution. No security loopholes 
related to technological issues.



Bell inequality violation

Bell inequality violation is a necessary condition for security

If the correlations are local:      


,,),,( ybqxappyxbap 

A perfect copy of the local instructions can go to Eve. 

Any protocol should be built from non-local correlations.

BHK, PRL 95; Ekert 91



Security proof of the protocol

We can prove the security of the protocol against any attack under the 
assumption that measurements have a tensor product structure.

Masanes 
PRL09
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This assumption can be 
physically satisfied when 
the symbols are generated 
by different devices. 



Device-Independent 
Randomness Generation



Can the presence of randomness be 
guaranteed by any physical mechanism?



Randomness tests

• Good randomness is usually verified by a 
series of statistical tests.

• There exist chaotic systems, of deterministic 
nature, that pass all existing randomness 
tests. Uchida et al., Nat. Phot. 2, 728 (2008)

• Do these tests really certify the presence of 
randomness?



Known solutions

• Classical Random Number Generators (CRNG): all of them are of 
deterministic Nature.

• Quantum Random Number Generators (QRNG): all the existing solution 
require some knowledge of the devices. The provider has to be trusted.

• In any case, all the solutions guarantee the randomness using standard 
statistical randomness tests.

The standard quantum solution 
crucially depends on the details 
of the device used for the 
random number generation. 
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Private Randomess

• Many applications require private randomness.

• Untrusted scenario: can one be sure that nobody has 
a deterministic model for the observed randomness?
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Random Numbers from Bell’s Theorem

• Randomness can be certified in the quantum world 
by means of non-local correlations, i.e. the violation 
of a Bell inequality.

• The obtained randomness is private.

• It represents a novel application of Quantum 
Information Theory, solving a task whose classical 
realization is, at least, unclear.

• Our findings can be used to design Device-
Independent Quantum Randomness Expanders.



Random Numbers from Bell’s Theorem

We want to explore the relation between non-locality, measured by the 

violation β of a Bell inequality, and local randomness, quantified by the 
parameter                                    . Clearly, if β =0 → r=1. xapr xa,max

y=1,2

a=+1,-1 b=+1,-1
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x=1,2



Results

All the region 
above the curve is 
impossible within 
Quantum 
Mechanics.



Experimental realization

• In a completely untrusted scenario, the Bell test must be loophole-free.

• The setup allows for a detection-loophole-free Bell test but it does not close the 
locality loophole.

• However, our goal is to certify the generation of randomness. We “assume” that the 
experiment should be compatible with Quantum Mechanics.

• The experimental realization guarantees a tensor product structure of the 
measurements. This is all what we need to certify randomness.



Data analysis

• The observed CHSH 
parameter was equal to 2.4.

• The choice of inputs was fully 
random, each measurement 
with probability one half. No 
expansion!

• We plug this number into the 
previous formulae and compute 
the randomness generation 
curves.

The observed violation certifies the generation of 42 new random bits.



Concluding Remarks



Quantum correlations

• Hierarchy of necessary condition for detecting 
the quantum origin of correlations.

• Each condition can be mapped into an SDP 
problem.

• How does this picture change if we fix the 
dimension of the quantum system?

• Are all finite correlations achievable measuring 
finite-dimensional quantum systems?



Device-Independent QKD

• It seems possible to construct QKD protocols 
whose security does not require any 
assumption on the devices.

• Bell inequality violation is a necessary 
condition for security in this scenario.

• How to include memory effects? 

• These techniques are useful for standard QKD. 



Random Numbers from Bell Theorem

• Randomness can be certified in the quantum 
world by means of non-local correlations, i.e. 
the violation of a Bell inequality.

• The obtained randomness is private.

• Randomness can be quantified in a setup.

• Multipartite case?

• Link between randomness and non-locality?



(C or Q)RNG

Specifications: it passes all 
statistical randomness tests.

DIQRNE

Specifications:

It won’t pass all the existing 
randomness tests!

Which device is more random?

Take-home question



References
• Quantum Correlations

1. M. Navascues, S. Pironio and AA, Phys. Rev. Lett. 98, 010401 (2007)

2. N. Brunner, S. Pironio, AA, N. Gisin, A. A. Methot and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008)

3. M. Navascues, S. Pironio and AA, New J. Phys. 10, 073013 (2008)

4. S. Pironio, M. Navascues and AA, SIAM J. Optim. 20, 2157 (2010)

• Device-Independent QKD

1. AA, N. Brunner, N. Gisin, S. Massar, S. Pironio and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007)

2. S. Pironio, AA, N. Brunner, N. Gisin, S. Massar and V. Scarani, New J. Phys. 11, 045021 (2009) 

3. L. Masanes, S. Pironio and AA, in preparation.

• Device-Independent Randomness Generation

1. S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. 
Hayes, L. Luo, T. A. Manning and C. Monroe, Nature 464, 1021 (2010)


