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A simulated SUSY event in ATLAS

high p.. jets
of hadrons

missing transverse energy
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Background events

ATLAS Aatlantis Event: myFiles2_8.4.0_3026_79%9%%02

This event from Standard
Model ttbar production also
has high p.. jets and muons,
and some missing transverse
energy.

— can easily mimic a SUSY event.
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A simulated event

Event listing {summary) PYTHIA Monte Carlo
particlesjet KS KF  orig p_x Py p_z pp —> gll,IinO-gluinO

Ip+] 21 2212 0,000 0,000 7000, Q00 7000, 000 0,938
21 2212 0,000 0, Q0= 7000 Q00 7000, 000 0,938

21 21
21 -2
21 21
21 21
21 1000021
21 1000021
21-1000024
21 -3
21 4
I"chi_201 21 1000023
bl 21 5
Ibbar | 21 -5
I"chi_101 21 1000022
Izl 21 3
lcbar | 21 -4

0,862 0,323 1739,862 1739,062
-0,621 0,163 777,415 777,415 |
-2,427 0,488 1487,807 1487863 | 2oz pi+ 0,399 -308,295 308,297
62,310 B3, 357 ~4B3.274 4717390 2an o 0.087-1695.,458 1635, 458
314,363 544,843 438,837 9731920 2o A —0,029 -314,097 314,079
—373,700 —475,000 525,685 380 4F7 0 40 fpin 0,172 -102.709 103,709
120,068 112,247 129,860 2631410 401 (pig) “0.068 -94.976  94.27E
209,400 187,483 83,100 E20.BE4 Y 40 (pi0) -0,052 -144,672 144,674
79,403 242,403 283,026 3BLOLE | 4oz Lound 2'472  Z30E 4471
-326.241 80,971 113.712 3859310 404 e 0142 Z.0B1 4016
-G1,841 -294,077 383,853 431,098 4o i- 0.738  4.016  4.005
-0,597 99,577 21,233 101,944 8 4an pi+ 0,292 0,40 0,585
103,352 81,316 83,457 175,0000 407 o -1.412 -1.799 4_9E8
G451 38,374 B2,302 ERL000 gpn oo -0.994  -0.176  1.500
|cher 20,833 7250 5938 22,8990 4nq (i) 0,459 -0,590 1,221
chi10l 21 1000022 -136,266 72,961 53,246 18L.IL4| 414 (0i0) 4105  -1.181  o.GEE
Frw_mu | 21 14 -7B.2E3 24797 2L BALIL00 499 ikbaro) _0+24? _0+4?2 1+515
lnu_mubar! 21 -14 -107.801 16,501 38,226 11S.620) g5 oo 0,400  -0.243  2.205
" - -
— 1 2,636 1,357 01%5 2,957 | 410 ?piﬂ} ok olim 1
(chi_l-)  11-1000024 129,643 112,440 129,820 262,998 i i 5o 0111  0.894  2.109
(chi_200 11 1000023 -322,330 80,817 113,191 382,444 F g 0407 0.9E2  0.Bd2
“chi_10 1 1000022 97.944  TT.B19 B0.817 163,004 § g7 i 02 0901 0.480
“chi_10 1 1000622 -136,266 -72,961 53,246 180,914 | 45 fparo 1B41  2.078  ZAU
FILI_fL 1 14 78,263 -24.757 20,719 B4S10| 499 (pig) 1046 L1311 1,308
r_nbar 1 -14 -1o7,.801 16,901 38,225 L15.B200 4o pi+ 1.407 1.356 1.971
(Delta++) 11 2224 0,222 0,012-2734,287 2730287 | 459 (pio) 2335 D.767  3.820

422 n0 b,224 b, 702 8,032
423 pi- 2,606 2,808 4,259
424 gamma 0,247 0,421 0,489
420 gamma 0,034 0,003 0,043
426 pi+ 5,229 B.403 2,703
427 (pin] B, 747 75497 10,561
428 pi- 1,233 1,345 2,372
429 (pi0) 1,141 0,922 1,E08
430 gamma 1,189 1,208 1,724
431 gamma 0,070 0,060 0,221

]
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Event selection as a statistical test

For each event we measure a set of numbers: ¥ =(x,,...,x, )

X, =jetpT

Xy

= missing energy

x, = particle 1.d. measure, ...

X follows some n-dimensional joint probability density, which

depends on the type of event produced, i.e., was it pp > tt, pp > gg....

e e V4
oY ,:,‘:;,. - E.g. hypotheses H,, H, ...
s . tiaty i “sional”
o (‘)‘ften simply ”81gnal :
whaserni background
1 C
/ >
- X;
P(x | Hl) l
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Finding an optimal decision boundary

In particle physics usually start
by making simple “cuts”:

X, <¢C
x. <c.
i
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Test statistics

The decision boundary is a surface in the n-dimensional space of

input variables. e.g.. y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T
The decision boundary Veu
. . . . accept H, ...l.= reject
is now effectively a single 15 Pt &ttt By
™

cut on y(x), dividing H
- II ',I

. 1
X-space mto two }c ( y‘ H.) [\
__ | o
regions: UD_:Z“A |'| \ / s f(Y|H1)
.n'l \ /

RD (accept H ﬂ) | U h

Rl (reject Hﬂ)
page 8
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Constructing a test statistic

The Neyman-Pearson lemma states: to obtain the highest background
rejection for a given signal efficiency (highest power for a given

significance level), choose the acceptance region for signal such that

p(X[s) |
p(X|b)

where ¢ is a constant that determines the signal efficiency.

C

Equivalently, the optimal discriminating function i1s given by the
likelihood ratio:

.. p(X]s)
X|=————
yx p(X[b)

N.B. any monotonic function of this is just as good.
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Neyman-Pearson doesn't always help

The problem is that we usually don't have explicit formulae for the pdfs

plxls), p(xlb), so for a given x we can't evaluate the likelihood ratio.

Instead we have Monte Carlo models for signal and background
processes, so we can produce simulated data:

“training data”
generate Y~np(Yls) —* fl "y f,,q, / events of known type

generate iwp{:ﬂb} — ;{‘1

Naive try: enter each (s,b) event into an n-dimensional histogram,
use e.g. M bins for each of the n dimensions, total of M" cells.

n 1s potentially large — prohibitively large number of cells to populate,
can't generate enough training data.
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Two distinct event selection problems

In some cases, the event types in question are both known to exist.

Example: separation of different particle types (electron vs muon)
Use the selected sample for further study.

In other cases, the null hypothesis 4, means "Standard Model" events,
and the alternative H, means "events of a type whose existence 1s
not yet established" (to do so is the goal of the analysis).

Many subtle 1ssues here, mainly related to the heavy burden
of proof required to establish presence of a new phenomenon.

Typically require p-value of background-only hypothesis
below ~ 1077 (a 5 sigma effect) to claim discovery of
"New Physics".
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Using classifier output for discovery

sienal search
1ol No)! — region
background background
excess?
Y Yeut Y
Normalized to unity Normalized to expected

number of events

Discovery = number of events found in search region incompatible
with background-only hypothesis.

p-value of background-only hypothesis can depend crucially
distribution f(y|b) in the "search region".
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Some “‘standard” multivariate methods

Place cuts on individual variables
Simple, intuitive, in general not optimal

Linear discriminant (e.g. Fisher)
Simple, optimal 1f the event types are Gaussian distributed with
equal covariance, otherwise not optimal.

Probability Density Estimation based methods
Try to estimate p(xIs), p(xIb) then use v(¥)=p(x|s)/p(x|b).

In principle best, difficult to estimate p(x) for high dimension.

Neural networks
Can produce arbitrary decision boundary (in principle optimal),
but can be difficult to train, result non-intuitive,
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Example of a "cut-based" study

In the 1990s, the CDF experiment at Fermilab (Chicago) measured
the number of hadron jets produced in proton-antiproton collisions
as a function of their momentum perpendicular to the beam direction:

2 104 | "jet" of

= | particles

£ - |°.|.

—10° |

= [ . CDF f’u

é’-— 1| —— NLO QCD f ( \

B

=z 2

=10

ﬂ
4 . . .

10 | Prediction low relative to data for
very high transverse momentum.

6

0 50 100 150 200 250 300 350 400 450
Jet Transverse Energy  (GeV)
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High p jets = quark substructure?

Although the data agree remarkably well with the Standard Model
(QCD) prediction overall, the excess at high p appears significant:

= f , , , _
5 F CTEQAM - data — theory
DR T T o A X T + """ # theory
. Statistical Errors only
50 I T B | | | | | |

[ S Y [ Y A S T N [ S s N I |
50 100 150 200 250 300 350 400

The fact that the variable is "understandable" leads directly to a plausible
explanation for the discrepancy, namely, that quarks could possess an
internal substructure.

Would not have been the case if the variable plotted was a complicated
combination of many inputs.
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High p. jets from parton model uncertainty

Furthermore the physical understanding of the variable led one
to a more plausible explanation, namely, an uncertain modeling of
the quark (and gluon) momentum distributions inside the proton.

When model adjusted, discrepancy largely disappears:

100

- CTEQ4HJ

50

i | | I
400

i 1 L1
350

i ! L1
300

i ! L1 1
250

i 1 L1 1
200

1 i 1 1 1 | 1 1 1 1 1
-50 150

Can be regarded as a "success" of the cut-based approach. Physical
understanding of output variable led to solution of apparent discrepancy.
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[ .inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear
boundary is almost useless.
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Nonlinear transformation of inputs

We can try to find a transformation, Xl e Xn—:r (pl(i ); e (pm(_)z)
so that the transformed “feature space™ variables can be separated
better by a linear boundary:
1, Here, guess fixed
P4 =fan | le X1) __— basis functions

s (no free parameters)
Py=\ X T X,
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Neural networks 1n particle physics

For many years, the only "advanced" classifier used in particle physics.

j=1
t(¥) = s (ao + ) aihi(f)) :
Xy, 1=1

hidden layer

s(t)

08

Usually use single hidden layer,
logistic sigmoid activation function:

06 r
04 r

02 r

s(u) =(1+e™)™ :
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Neural network example from LEP 11

Signal: ete” — WtW~ (often 4 well separated hadron jets)
Background: efe” — qqgg (4 less well separated hadron jets)

02 0.2 0.2

oo | ors | ors | < 1nput variables based on jet

E s jﬂll o £ structure, event shape, ...

© Chemy 0 ‘hew  ° wmes  noONeE by itself gives much separation.
82 F
i _ 0.2 ]ILH o2 [
s E}Q\ a | jﬁ% Neural network output:
L b N .
o .5 1 a (1K) - 1 i} 4.5 i 1 07 B
log (M) Sphericity Plararity s |
G2 0.z 0.z g L
05 F 015 | o5 | as [
et [ ot | A G
.08 E 008 [ 0.05 g il _,_|—,7
: : o1 | |
ﬂ - . D el — B — o: |||||||||i wthaa e Tt — 4 L
?_og{Ap?gnorilyi ¢ 0-5_||'Irl..|5t1 ¥ &ﬁin(E,]: ¢ o1 02 D3 04 08 06 07 N%ﬂrcnr:ﬁ!?utpu:

(Garrido, Juste and Martinez, ALEPH 96-144)
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Some 1ssues with neural networks

In the example with WW events, goal was to select these events
so as to study properties of the W boson.

Needed to avoid using input variables correlated to the
properties we eventually wanted to study (not trivial).

In principle a single hidden layer with an sufficiently large number of
nodes can approximate arbitrarily well the optimal test variable (likelihood
ratio).

Usually start with relatively small number of nodes and increase
until misclassification rate on validation data sample ceases
to decrease.

Often MC training data is cheap -- problems with getting stuck in

local minima, overtraining, etc., less important than concerns of systematic
differences between the training data and Nature, and concerns about

the ease of interpretation of the output.
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Overtraining

If decision boundary is too flexible it will conform too closely
to the training points — overtraining.

Monitor by applying classifier to independent test sample.

training sample independent test sample
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Particle 1.d. in MiniBooNE

Detector 1s a 12-m diameter tank

of mineral o1l exposed to a beam  Eectron candidate
. . fuzzy ring, short track
of neutrinos and viewed by 1520 -

photomultiplier tubes: w

MiniBooNE Detector

Muon candidate
sharp ring, filled in

"»:;-—- e - f____d_.-f-'"_'lll_

w
; Pion candidate
* _two "e-like" rings
\"}r-'ﬁ"'“ et o i’i{
Search for v to v oscillations <

required particle i.d. using n_— <A

information from the PMTs. . e
H.J. Yang, MiniBooNE PID, DNP06
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Decision trees

Out of all the input variables, find the one for which with a
single cut gives best improvement in signal purity:

E W,

signal !

E , w+§ W.
signal ! background !

P=

where w.. 1s the weight of the ith event.

Resulting nodes classified as either
signal/background.

[terate until stop criterion reached

based on e.g. purity or minimum
number of events in a node.

S

71

219

The set of cuts defines the decision

Example by MiniBooNE experiment,

boundary. B. Roe et al., NIM 543 (2005) 577
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Decision trees (2)

The terminal nodes (leaves) are classified as signal or background
depending on majority vote (or e.g. signal fraction greater than a
specified threshold).

This classifies every point in input-variable space as either signal
or background, a decision tree classifier, with the discriminant function

f(x)=1if xesignalregion, -1 otherwise

Decision trees tend to be very sensitive to statistical fluctuations in
the training sample.

Methods such as boosting can be used to stabilize the tree.
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Boosting

Boosting is a general method of creating a set of classifiers
which can be combined to achieve a new classifier that is more stable
and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.

Suppose we have a training sample 7 consisting of N events with

X ... X, event data vectors (each x multivariate)

1
Vs ¥, lrue class labels, +1 for signal, —1 for background
W, W o event weights

Now define a rule to create from this an ensemble of training samples
I.T, ... derive aclassifier from each and average them.
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AdaBoost

A successtul boosting algorithm 1s AdaBoost (Freund & Schapire, 1997).

First initialize the training sample 7' using the original

I],...., Iv event data vectors
1

Voreeurs V true class labels (+1 or -1)

RO NN -
W W event weights N

with the weights equal and normalized such that Z WE-” =1.
i=1

Train the classifier f (x) (e.g. a decision tree) using the weights w'

so as to minimize the classification error rate.
N
_ (1) v :
51_2 w; Iy f1(x;)<0),
i=1

where [(X) = 1 if X 1s true and is zero otherwise.

G. Cowan TAE 2010 / Statistics for HEP / Lecture 2
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BDT example from MiniBooNE

~200 input variables for each event (v interaction producing €, u or ).

Each individual tree 1s relatively weak, with a misclassification
error rate ~ 0.4 — 0.45

l ! ! ! | ! I ! | ! I ! | ! I ! | ! I !

1 1 e un-weighted misclassified event rate
08 _: a weighted misclassified event rate, err_ 1
- ] o, = B*In((1-err_)lerr ). !3.=El.f.
= 064 R . ;
g i

=
.

o

I 1
0 200 400 600 300 1000
Number of Tree Iterations

B. Roe et al., NIM 543 (2005) 577
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Monitoring overtraining

Training MC Samples .VS.  Testing MC Samples

. . 3 — 1500 —
From MiniBooNE ™1 Nuee =1 1 =t
20000 - n —_ ii
example: 10000 i I] 500 Ei Il
7 " 1 H
Performance stable B N SR RARAT T SR AR A
after a few hundred 20 {  Niee =100 oo § Ny = 100
] a 6000 P
frees. 1000 - A 1000 3 P
“:" " 2000 4 /.':/rrﬁlll,‘k
3002 —EEII - I—IIOI S EII e Illﬁl - IEG ’ —aOI a I—IICJI o EI T llﬂl - IZD
oo ] Ntlee =500 oo 4 Nigge =900
1000 _ ﬂ 5000 I_I_-'" I-'l.,
1 2500 & "
0 J=t— T !
2000 = w000 =0 0 -
1500 — tlee - IUOD E Ntree = 1000
- 6000 3 -
1000 1000 3 _'...-' "
500 2000 —i . ra ﬂ
’ -1EI| ' -Q-C;I I I-2|0I o IIJ e ZIEI I
Boosting Outputs Boosting Outputs
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Comparison of boosting algorithms

A number of boosting algorithms on the market; differ in the

update rule for the weights.

3 5 —
] ® =-Boost(45) 0
2.5 4 & AdaBoost(45) HI N
1 ¢ e-logitBoost(45) §F - §2-
2 24 = E—hi]lge]i":c:-os.t(3(}]‘1-'Jr |2
= 1% ¢ . lE |2
2 1547 AdaBoost(8) i @
=] ] g
= ] =
e 1] &
0.5 T
1”#'#"“ Ntree = 500
[} T T | T T T I T T T I T T T I T
20 40 60 80
Signal Efficiency (%)
3 iE
1 ® e-Boost(45) i g
2.5 4 a AdaBoost(45) i E
1@ &'—[::-1_:_11E’.-:|-:|~.r[—l-ﬁ_|] :
3 2 4 * e-hingeBoost(30) |2
= . e
v 15 1Y AdaBoost(8) x
= y 5
- e-hingeBoost(8)4 # =
& 1 g (8)4 =
0.5 = =
Ntree = 2000
0 : —

G. Cowan

.20. T .4,0. T IGI(}I T

Signal Efficiency (%)

80

33 j
] ® e-Boost(45) £
2.5 4 4 AdaBoost(45) I E
1 ¢ e-logitBoost(45) ik
2 J * e-hingeBoost(30) /
1.5 _: ¥ AdaBoost(8)
1 _E ® e-hingeBoost (8} &
0.5 3
Ntree = 1000
0 T I T T T I T T T I T T T I T
20 40 60 80
Signal Efficiency (%)
3 7 i
1 ® =-Boost(45) HE
2.5 7 4 AdaBoost(45) H
1 @ 5_-'-].:-;L1E’.-:u:-~,r[—l-ﬁ_|]
2 4 * e-hingeBoost(30)
1.5 3 v AdaBoost(8) 3
1 _E W £-hingeBoost(8) vy
5 2%
0.5 S
i Ntree = 3000
0 ——

20 40 60
Signal Efficiency (%)
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Boosted decision tree summary

Advantage of boosted decision tree 1s 1t can handle a large number
of inputs. Those that provide little/no separation are rarely used as tree
splitters are effectively 1gnored.

Easy to deal with inputs of mixed types (real, integer, categorical...).

[f a tree has only a few leaves 1t 1s easy to visualize (but rarely use only a
single tree).

There are a number of boosting algorithms, which differ primarily in the
rule for updating the weights (e-Boost, LogitBoost....)

Other ways of combining weaker classifiers: Bagging (Boostrap-
Aggregating), generates the ensemble of classifiers by random sampling
with replacement from the full training sample.
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Single top quark production (CDF/D0)

Top quark discovered in pairs, but

SM predicts single top production. .
Use many inputs based on

q t jet properties, particle 1.d., ...
W+
CDF Run Il Preliminary, L=3.2 fb
3 e Data @ Wbb [ WP

-, _ " - B schannel [ tthar [0 NonW | =

q b o~ 250 [ tchannel [0 We+Wee W 7+jets,Dibosong 2
8| 2
. c a
Pair-produced tops are now g 2000 . 12
g signal i
a background process. is0 F — 13
- (blue + 18
i l
proton 100 - green) . g-
t : 1 %_

=

50 ;‘ -

F i
antiproton L4 - Y et #
100 150 200 250 300 350 400 450 500 550

‘ Ht (GeV)
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Different classifiers for single top

=) 500 (b Z+jets I tt— ¢ 1R L) 500 (a) Data ¢ wbb IR
2 I Multijets Bl ti—(+jets I 2 ' th+tqgb I Wee Il
> S5 q
~ 400 w 400 Wjj +We
= 150 c 150
e | g
W 300 . W 300 100
| 50 - 50
200? 07 08 09 1 200- %6 07 08 09 1
D@ 2.3fb" [ p
100 - " 100 D@ 2.3 b
% 02 04 06 08 1 % 02 04 06 08 1

Bayesian Neural Networks Output Boosted Decision Trees Output
Also Naive Bayes and various approximations to likelihood ratio,....

Final combined result 1s statistically significant (>5c level) but not
casy to understand classifier outputs.
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Support Vector Machines

Map input variables into high dimensional feature space: x — ¢

Maximize distance between separating hyperplanes (margin)
subject to constraints allowing for some misclassification.

Final classifier only depends on scalar
products of @(x):

y(x)zsign(z (xfyf(*p(x)-(*p(fob\

So only need kernel

K(x,x")=p(x)p(x’)
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Support Vector Machines

Support Vector Machines (SVMs) are an example of a kernel-based
classitier, which exploits a nonlinear mapping of the input variables
onto a higher dimensional feature space.

The SVM finds a linear decision boundary in the higher dimensional space.

But thanks to the “kernel trick” one does not every have to write down
explicitly the feature space transtormation.

Some references for kernel methods and SVMs:

The books mentioned in www.pp.rhul.ac.uk/~cowan/mainz_lectures.html

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
research.microsoft.com/~cburges/papers/SVMTutorial.pdf

N. Cristianini and J.Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

The TMVA manual (!)
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Linear SVMSs

Consider a training data set consisting of

II._...., Iv event data vectors

V.opeenes Y true class labels (+1 or —1)

PN
Suppose the classes can be separated by a hyperplane defined by
a normal vector w and scalar offset b (the “*bias™). We have

X.W+h>+1 forall y =+1
I I

. _ forall y = -1
X; wW+b<-1 orally,

or equivalently

margin

y]-(_x,.-erb)—l >() forall:

Bishop Ch. 7

G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 37



Margin and support vectors

The distance between the hyperplanes defined by y(x) =xw + b =+1 and
v(x) =—1 1s called the margin, which is:

[f the training data are perfectly separated then this means there are
no points inside the margin.

Suppose there are points on the margin (this is equivalent to defining
the scale of w). These points are called support vectors.
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[.inear SVM classifier

We can define the classifier using

f(x)=sign(x-w+Db)

which is +1 for points on one side of the hyperplane and —1 on the other.

The best classifier should have a large margin, so to maximize

we can minimize ||WH2 subject to the constraints

Vi X;w+b)-1>( forall:
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Lagrangian formulation

This constrained minimization problem can be reformulated using
a Lagrangian

N
L= Wi~ 3 oy, (x w+b)-1)
i=1

\

We need to minimize L with respect to w and /» and maximize

positive Lagrange multipliers o

with respect to o.
I

There is an o for every training point. Those that lie on the margin
(the support vectors) have o > 0, all others have o = 0. The solution

can be written (sum only contains

w:ZD‘fyixi
l

support vectors)

G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 40



Dual formulation

The classifier function is thus

f(x)=sign(x-w+b)=sign

Y oy XX +b
1

[t can be shown that one finds the same solution a by minimizing
the dual Lagrangian

1
LD:Z]_: 0‘:‘5; XX Y Vi Xt X

So this means that both the classifier function and the Lagrangian
only involve dot products of vectors in the input variable space.
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Nonseparable data

If the training data points cannot be separated by a hyperplane,
one can redefine the constraints by adding slack variables ‘Cj,j_:

Vi(X;W+D)+E—-1>0with€ >0 foralli

Thus the training point x_ is allowed to
be up to a distance E_,E, on the wrong side
of the margin, and & = 0 at or on the

right side.

For an error to occur we have ¢ > 1, s0

p%3

i
is an upper bound on the number of training errors.

G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 42



Cost function for nonseparable case

To limit the magnitudes of the @j we can define the error function that

we minimize to determine w to be

o 1 y k
E(w)=7wl+C( 22
i
where C is a cost parameter we must choose that limits the amount
of misclassification. It turns out that for k=1 or 2 this 1s a quadratic

programming problem and furthermore for k=1 it corresponds to

minimizing the same dual Lagrangian

PED)
DT L& GG Y Y X X
i L,
where the constraints on the o become () g aigc .
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Nonlinear SVM

So far we have only reformulated a way to determine a linear
classifier, which we know 1s useful only in limited circumstances.

But the important extension to nonlinear classifiers comes from first
transforming the input variables to feature space:

—+

@ X)=(@1(X) ..., Pp (X))

These will behave just as our new “input variables”. Everything
about the mathematical formulation of the SVM will look the same

as before except with ¢@(x) appearing in the place of x.
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Only dot products

Recall the SVM problem was formulated entirely in terms of dot
products of the input variables, e.g., the classifier is

Zo{iyix'xi—l_b)

so in the feature space this becomes

Z%J}@(X)-Co(xiwrb)

f(x)=sign

f(x)=sign
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The Kernel trick

How do the dot products help? It turns on that a broad class of
kernel functions can be written in the form:

— N

Kix,x')=¢(x)-p(x')

Functions having this property must satistfy Mercer's condition
| K(x,x"g(x)g(x")dxdx'=0

for any function g wheref g (x)dx is finite.

So we don't even need to find explicitly the feature space transformation

¢(x), we only need a kernel.
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Finding kernels

There are a number of techniques for finding kernels, e.g., constructing
new ones from known ones according to certain rules (cf. Bishop Ch 6).

Frequently used kernels to construct classifiers are e.g.

K(x,x")=(x-x"+0)" polynomial
x|
Kix,x"')=exp Gaussian
20

K(x,x')=tanh(k(x-x')+60)  sigmoidal
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Using an SVM

To use an SVM the user must as a minimum choose

a kernel function (e.g. Gaussian)
any free parameters in the kernel (e.g. the o of the Gaussian)
a cost parameter C (plays role of regularization parameter)

The training is relatively straightforward because, in contrast to neural
networks, the function to be minimized has a single global minimum.

Furthermore evaluating the classifier only requires that one retain
and sum over the support vectors, a relatively small number of points.

The advantages/disadvantages and rationale behind the choices above
is not always clear to the particle physicist -- help needed here.
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SVM 1n particle physics

SVMs are very popular in the Machine Learning community but have
yet to find wide application in HEP. Here 1s an early example from
a CDF top quark anlaysis (A. Vaiciulis, contribution to PHYSTATO02).

1 ; ; T . ; et 3

. : : i Pt
signal Y A

eff. ogiPoipe i
l ;:1" : H H
f ol

0.6~ M e

0.4 g ur®i1g UM |
s
o ’ —cuts
0.2 By ]
0 0.2 0.4 06 038 1

background eff.
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Summary on multivariate methods

Particle physics has used several multivariate methods for many years:
linear (Fisher) discriminant
neural networks
naive Bayes

and has 1n the last several years started to use a few more
k-nearest neighbour
boosted decision trees
support vector machines

The emphasis is often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 5o significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 4o evidence from a cut-based method.

G. Cowan TAE 2010 / Statistics for HEP / Lecture 2 page 50



Quotes I like

“Keep it simple.
As simple as possible.
Not any simpler.”
— A. Einstein

“If you believe in something
you don't understand, you suffer,...”
— Stevie Wonder
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Extra slides
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Resources on multivariate methods
Books:

C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning, Springer, 2001

R. Duda, P. Hart, D. Stork, Pattern Classification, 2 ed., Wiley, 2001
A. Webb, Statistical Pattern Recognition, 2™ ed., Wiley, 2002

Materials from some recent meetings:

PHYSTAT conference series (2002, 2003, 2005, 2007....) see
www.phystat.org

Caltech workshop on multivariate analysis, 11 February, 2008
indico.cern.ch/conferenceDisplay.py?confld=27385

SLAC Lectures on Machine Learning by Ilya Narsky (2006)

www-group.slac.stanford.edu/sluo/Lectures/Stat2006 Lectures.html
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Software for multivariate analysis

TMVA, Hocker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039

From tmva.sourceforge.net, also distributed with ROOT
Variety of classifiers
Good manual

StatPatternRecognition, I. Narsky, physics/0507143

Further info from www.hep.caltech.edu/~narsky/spr.html
Also wide variety of methods, many complementary to TMVA
Currently appears project no longer to be supported
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Decision boundary flexibility

The decision boundary will be defined by some free parameters that
we adjust using training data (of known type) to achieve the best
separation between the event types.

Goal 1s to determine the boundary using a finite amount of training data
SO as to best separate between the event types for an unseen data sample.

overtraining boundary too rigid good trade-off
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