

SUPERSYMMETRY

in the

LHC era

Joan Solà

sola@ecm.ub.es

HEP Group
Departament d'Estructura i Constituents de la Matèria (ECM)
Institut de Ciències del Cosmos, Univ. Barcelona

TAE 2010, Univ. De Barcelona, September 1-10, 2010

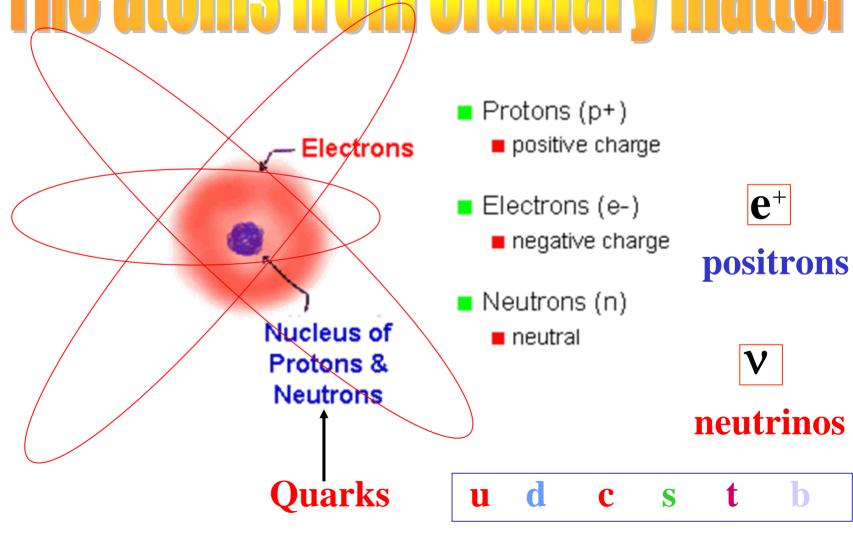
Guidelines of the Talk

From the micro to the **macro** Cosmos

Matter, antimatter and Super-matter

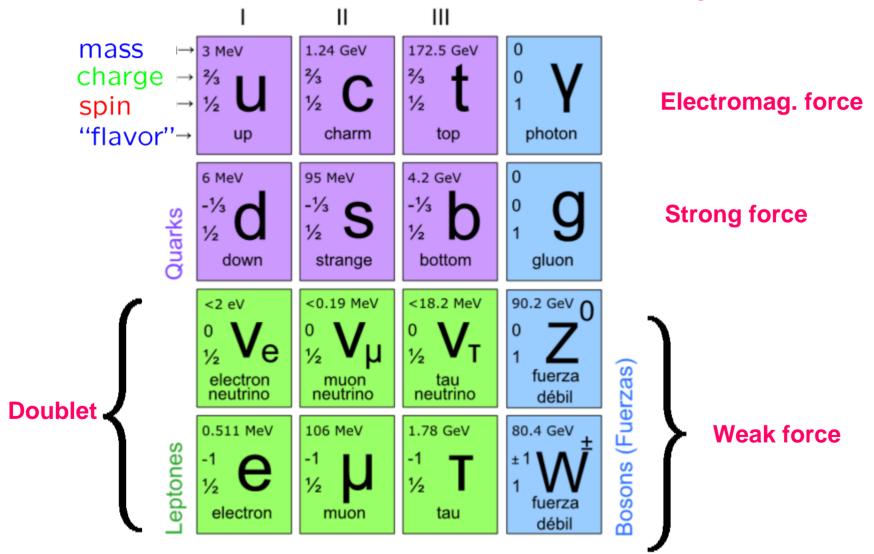
Symmetries and Super-symmetry (SUSY)

The vacuum and the DARK WORLD...

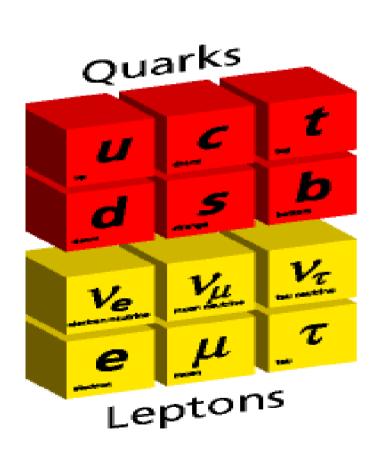

The whys and wherefores of **SUSY**

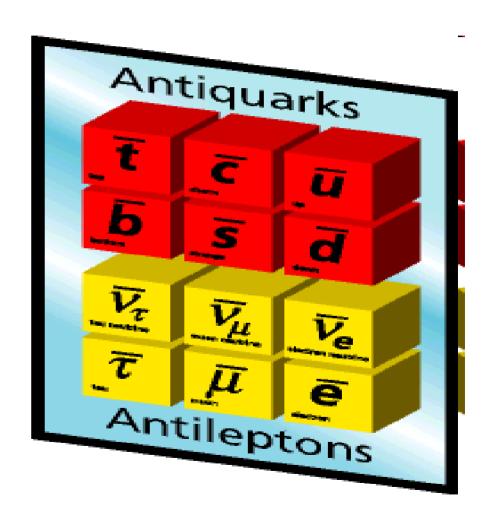
SUSY in the sky

SUSY on the ground

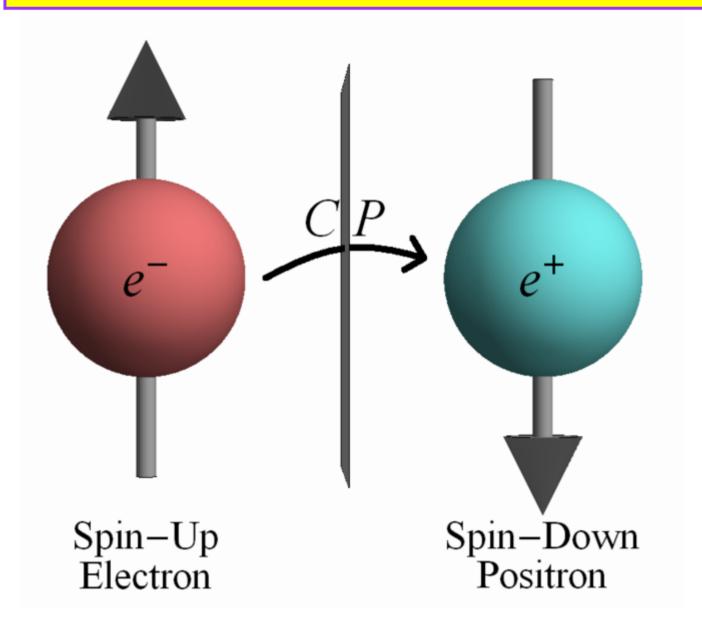


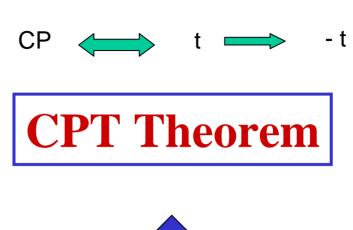
The atoms from ordinary matter

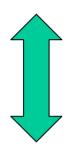


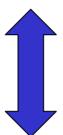

Matter content in the SM

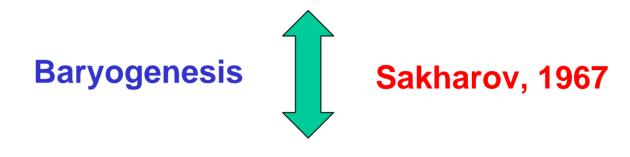
(Glashow-Weinberg-Salam, 1967)



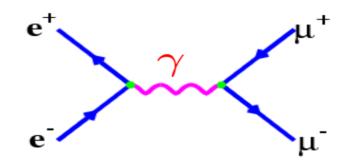

Matter and Antimatter in the Standard Model

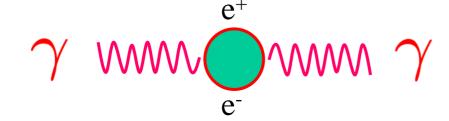



>From matter to anti-matter of different helicity

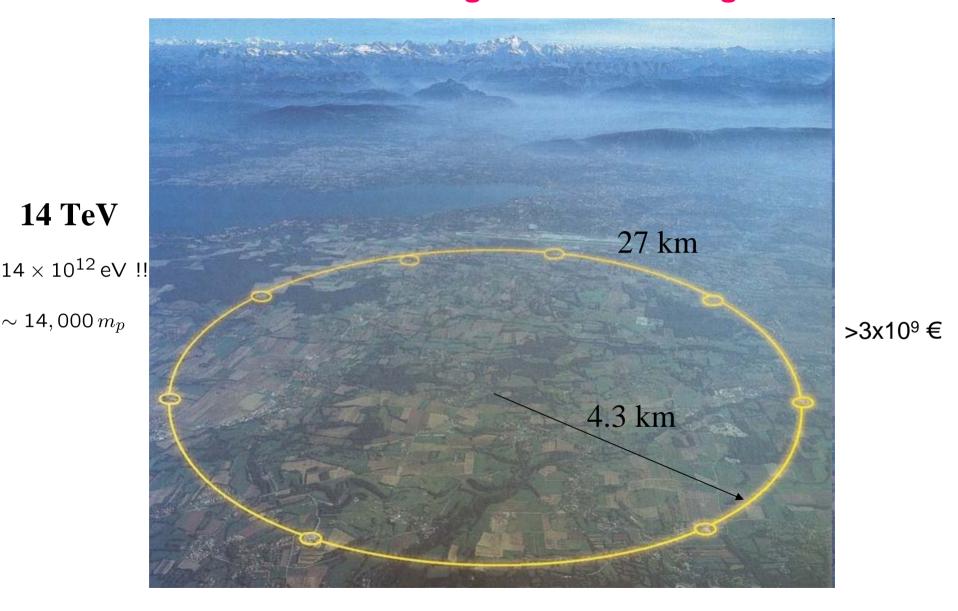


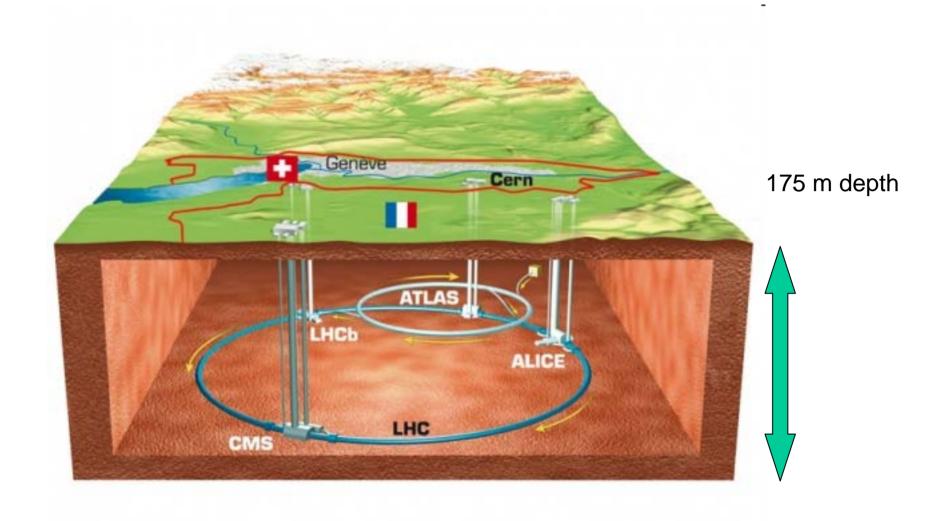
T violation

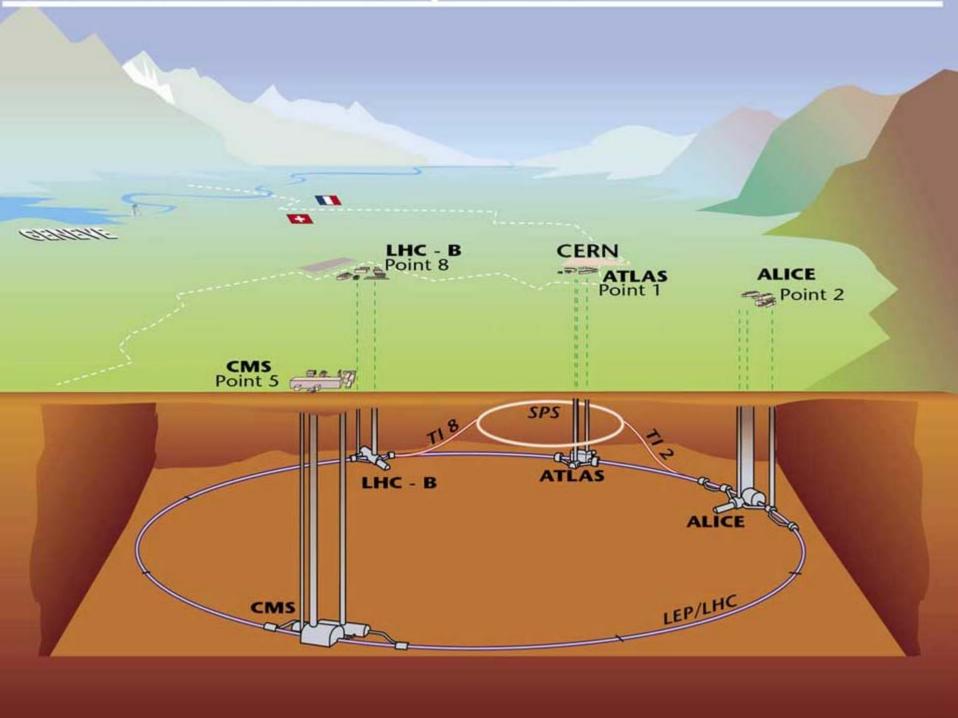

Arrow of time
In the microcosmos!!


CP Violation

Origin of matter

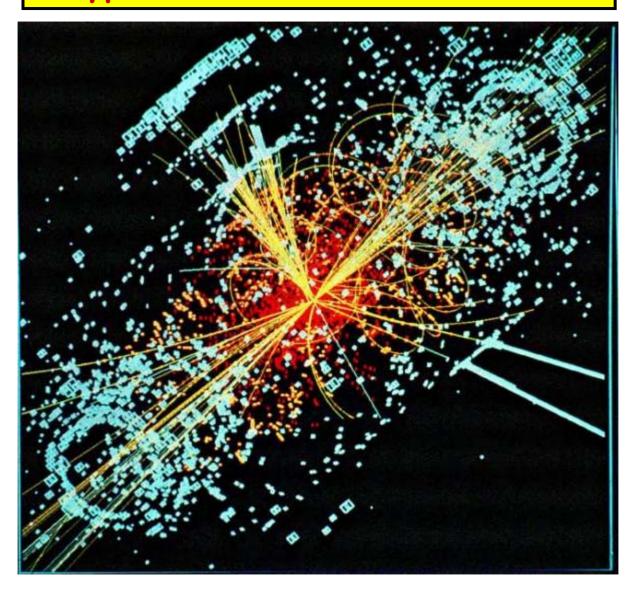

Matter and antimatter annihilate !!!

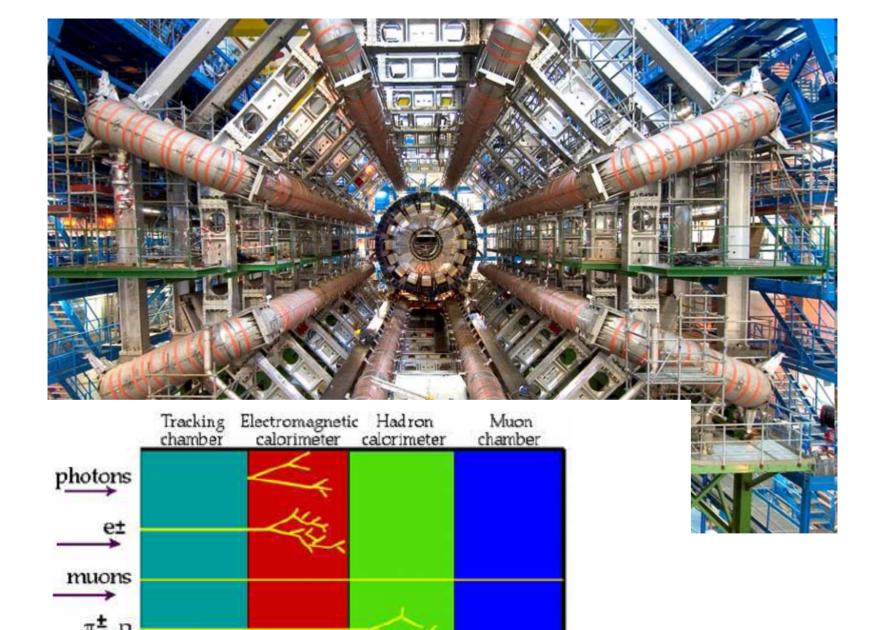




The real "Lord of the Rings": the LHC Ring at CERN

(Shall we find New Physics?...Higgs? SUSY?, origin of the Univers?...)


Tunnel of the LHC


 $p + p \rightarrow X$

protons against protons at $E \simeq 14.000 \, m_p$

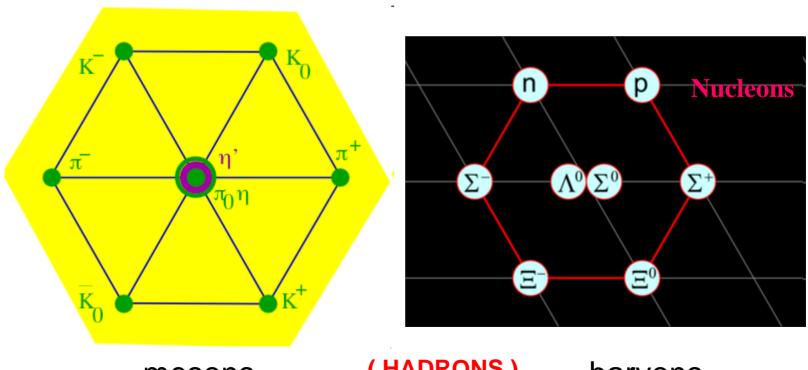
A typical collision event at the LHC

11.000 turns/s, 600 million collisions/s...

n

Calorimeters...

LHC > Hadron collider

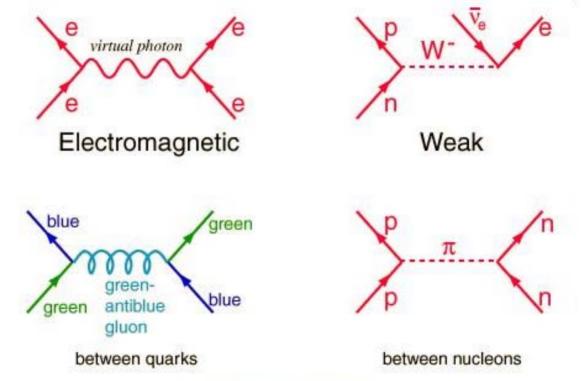

Hadrons from quarks

q+anti-q

q+q+q

$$3\otimes 3^*=8\oplus 1$$

 $3 \otimes 3 \otimes 3 = 10_S \oplus 8_M \oplus 8_M \oplus 1_A$

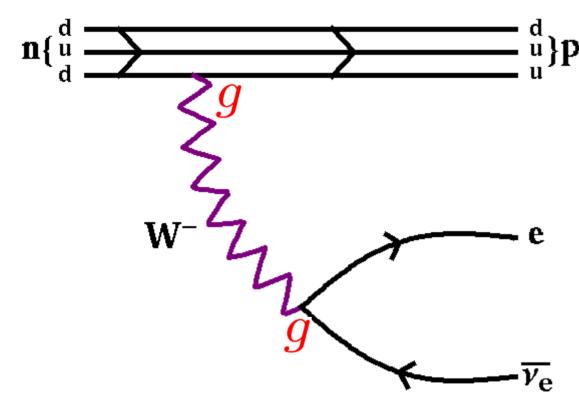


mesons

(HADRONS)

baryons

Interactions e.m., weak and strong

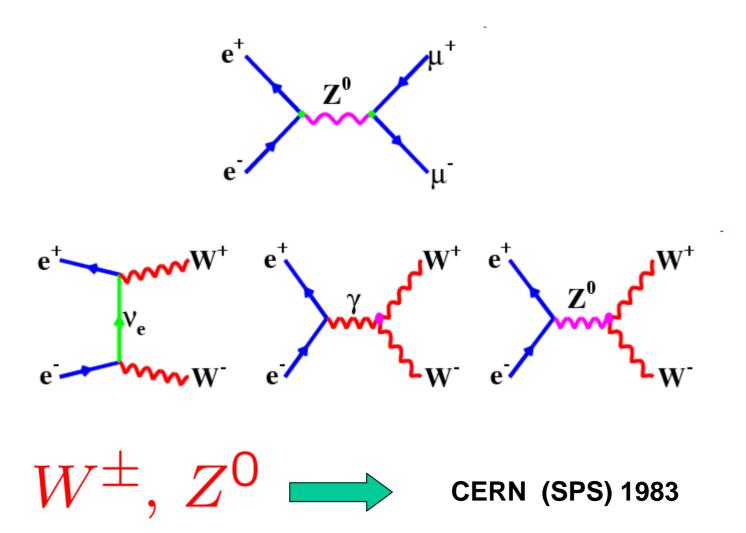

Strong Interaction

(Yukawa, 1930)

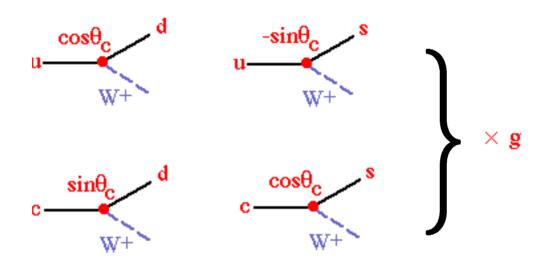
$$V = -g^2 \frac{e^{-m\pi r}}{r} \longrightarrow r = \frac{1}{m_\pi}$$

Radioactivity: weak interactions

(Fermi 1934)

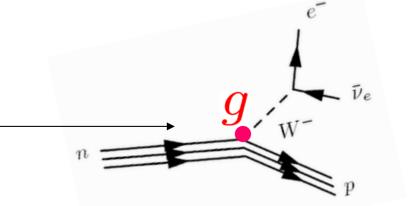

$$G_F \sim rac{g^2}{M_W^2}$$

Neutron decay


...of free neutrons!

885 $\sec \sim 15 \text{ min}$

Neutral Weak+em interactions at LEP I and II


Different types of weak interactions

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos\theta_c & \sin\theta_c \\ -\sin\theta_c & \cos\theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$
 Cabibbo flavor mixing matrix (1963)

 $\cos \theta_c \simeq 0.97$

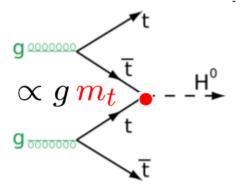
 $\sin \theta_c \simeq 0.22$

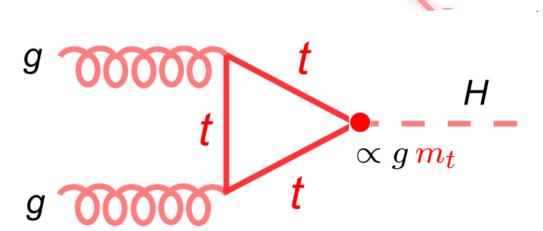
Generalization: Cabibbo-Kobayashi-Maskawa matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix}_L = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}_L$$

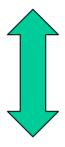
$$\begin{array}{c} \text{Nobel Prize 2008 *}\\ \text{shared with } \textbf{Y. Nambu} \\ \\ \textbf{Volume } \textbf{Volume$$

^{* &}quot;for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature".


...we can produce the top quark at hadron colliders


Quarks bottom and top:

Fermilab 1977+1995


Tevatron + LHC:

...and also the Higgs boson from it:

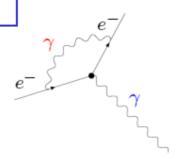
Interactions

Symmetries

Standard Model

principle of local gauge invariance

Higgs mechanism and Yukawa interactions masses M_W , M_Z , m_{fermion}

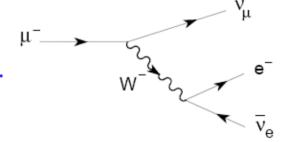

sm { renormalizable quantum field theory accurate theoretical predictions

detect deviations → "new physics"?

distinate Lal

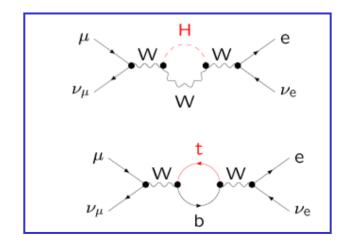
Precision Physics in the SM

QED:


$$a = \frac{1}{2}(g-2)$$

 $a_{\text{exp}} = 1159652188(\pm 4) \times 10^{-12}$

 $a_{\text{theo}} = 1\,159\,652\,157(\pm 28) \times 10^{-12}$



EW: $\begin{cases} G_{\mathrm{F}} \\ M_{Z}, \, \Gamma_{\!Z}, \, g_{V}, \, g_{A}, \, \sin^2 \theta_{\mathrm{eff}}, \, . \\ M_{W}, \, m_t \end{cases}$

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \left(1 + \Delta r\right)$$

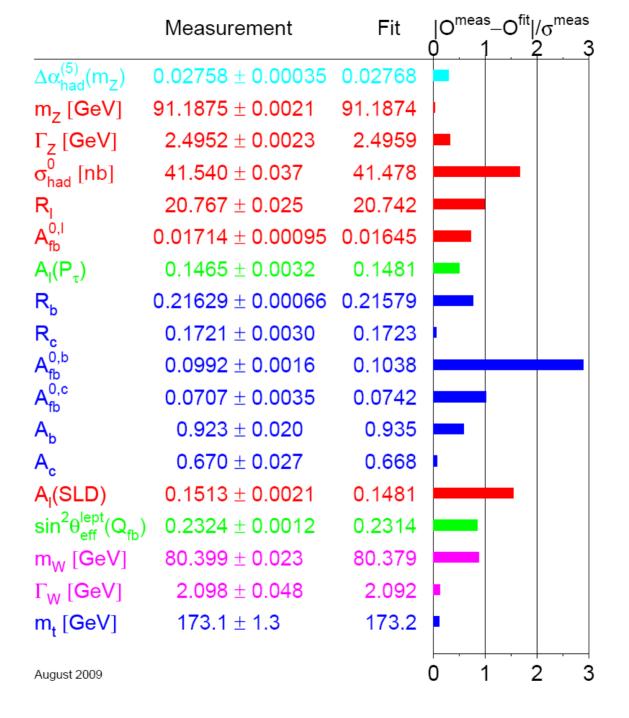
$$\Delta r = \Delta r(m_t, M_H)$$

Precision Physics Beyond the SM

$$\frac{G_F}{\sqrt{2}} = \frac{\pi \alpha}{M_W^2 \left(1 - M_W^2 / M_Z^2\right)} \left(1 + \Delta r\right)$$

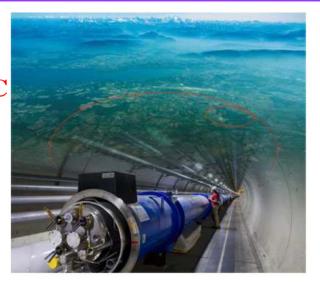
X = Higgs bosons, SUSY particles

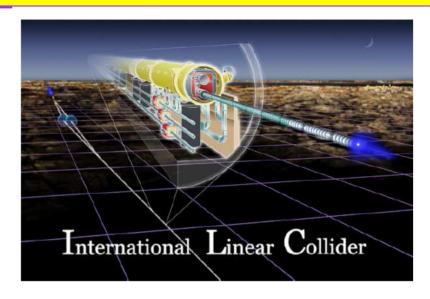
$$\Delta r = \Delta r \left(M_W, m_t, M_X \right)$$
new physics!


First calculations in SUSY:

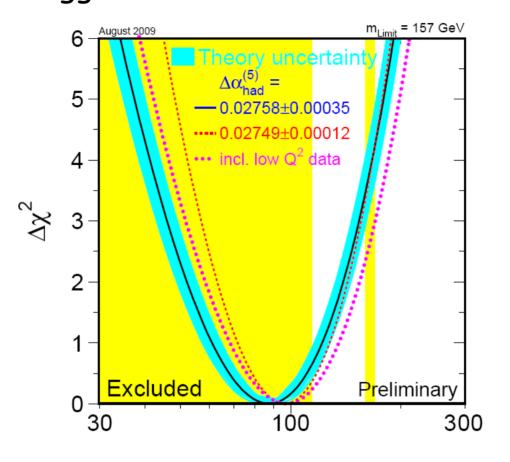
- J. Grifols, J. Solà, Phys.Lett.B137:257,1984.
- J. Grifols, J. Solà, Nucl. Phys. B253:47,1985.
- D. Garcia, J. Solà, Mod. Phys. Lett. A9:211-224, 1994.

P.Chankowski, A. Dabelstein, W. Hollik, W. Mosle, S. Pokorski, J. Rosiek, Nucl. Phys. B417:101-129,1994.


State of the art in SUSY:


- S. Heinemeyer, W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein, JHEP 0608:052,2006.
- S. Heinemeyer, W. Hollik, G. Weiglein, Phys.Rept.425 (2006) 265

> Present and expected accuracy for precision observables

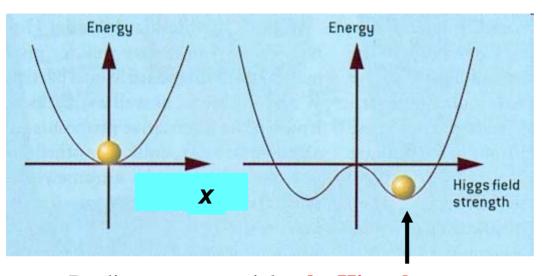


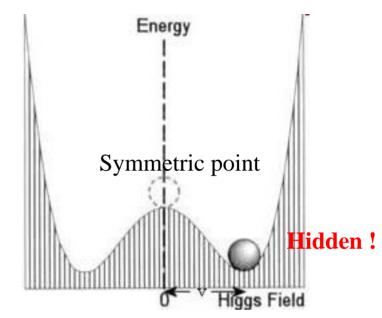
observable	central exp. value	$\sigma \equiv \sigma^{\mathrm{today}}$	$\sigma^{ m LHC}$	$\sigma^{ m ILC}$
M_W [GeV]	80.399	0.023	0.015	0.007
$\sin^2 \theta_{ m eff}$	0.23153	0.00016	0.00020-0.00014	0.000013
$m_t \; [\mathrm{GeV}]$	173.3	1.1	1.0	0.1

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \frac{1}{4} \left(1 - \Re \left(\frac{g_V(M_Z^2)}{g_A(M_Z^2)} \right) \right)$$

S. Heinemeyer, G. Weiglein (2010)

Hints from Higgs searches?... LEP Electroweak Working Group




$$M_{\rm H} < 157 \,{\rm GeV} \quad (95\% {\rm C.L.})$$

with direct search $M_{\rm H} > 114$ GeV:

$$M_{\rm H} < 186 \,{\rm GeV} \quad (95\% {\rm C.L.})$$

Higgs mechanism

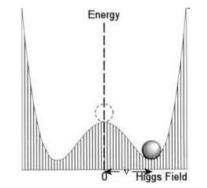
Predicts a new particle: the Higgs boson

$$V = ax^2 + bx^4$$
 $(a > 0, b > 0)$

$$V = -ax^2 + bx^4$$

The vacuum is a Mexican hat!!...

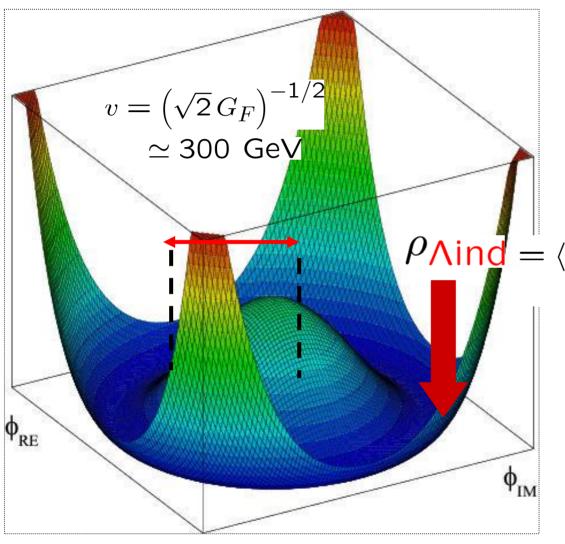
Higgs mass and self-interactions


Higgs potential: $V = -\mu^2 \left(\Phi^{\dagger}\Phi\right)^2 + \frac{\lambda}{4} \left(\Phi^{\dagger}\Phi\right)^4$

Higgs field in unitary gauge: $\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$

H(x): real scalar field, describes neutral spin-0 bosons

minimum of V: $v = \frac{2\mu}{\sqrt{\lambda}}, \quad M_H = \mu\sqrt{2}$


$$v = \left(\sqrt{2}\,G_F\right)^{-1/2} \qquad \Rightarrow \quad \lambda = \frac{4\mu^2}{v^2} = \frac{2M_H^2}{v^2}$$

$$V = \frac{M_H^2}{2}H^2 + \frac{M_H^2}{2v}H^3 + \frac{M_H^4}{8v^2}H^4$$

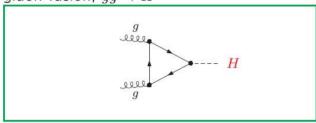
Higgs Potential Vacuum Energy

$$V(\varphi) = \frac{1}{2} m^2 \varphi^2 + \frac{1}{4!} \lambda \varphi^4$$
$$m^2 < 0 \Rightarrow$$
$$v \equiv \langle \varphi \rangle = \sqrt{\frac{-6 m^2}{\lambda}}$$

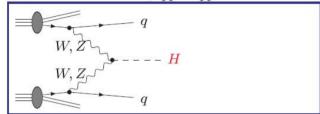
$$\begin{array}{c} \rho_{\text{\Lambda ind}} \stackrel{\square}{=} \langle V(\varphi) \rangle = -\frac{1}{8} M_{\mathcal{H}}^2 v^2 \\ \sim -10^8 \ GeV^4 \ \rlap{!!} \end{array}$$

$$\begin{array}{rcl} M_W & = & \frac{1}{2}g\upsilon \\ \\ M_Z & = & \frac{1}{2}\upsilon\sqrt{g^2 + {g'}^2} \end{array}$$

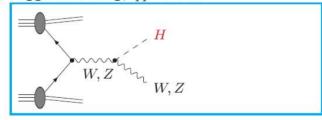
$$m_{e} = \lambda_{e} \frac{v}{\sqrt{2}}$$

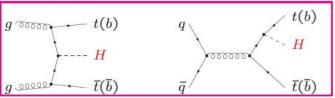

$$m_{u} = \lambda_{u} \frac{v}{\sqrt{2}}$$

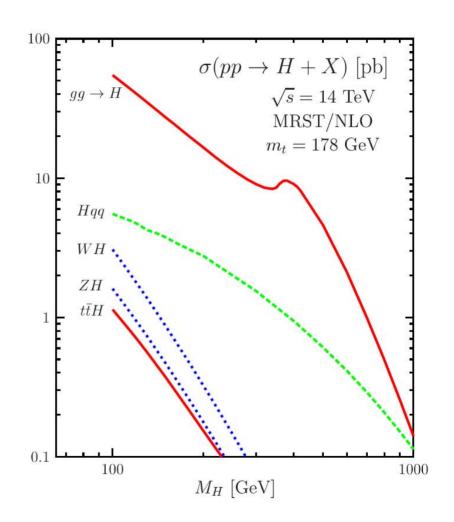
$$m_{d} = \lambda_{d} \frac{v}{\sqrt{2}}$$


$$\mu \to \nu_{\mu} \bar{\nu}_e \, e \quad \Rightarrow G_F \quad M_{\mathcal{H}} > 114 \,\, \mathrm{GeV}$$

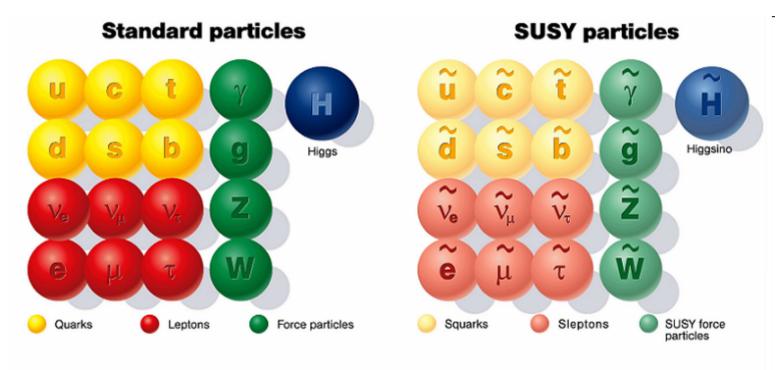
Higgs production at the LHC

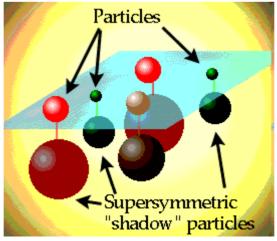

ullet gluon fusion, gg o H


ullet vector boson fusion, qq o qqH



• Higgs strahlung, $q\bar{q}' \rightarrow VH$


• $t \bar{t} H$ $(b \bar{b} H)$ production



Benntlesarantes

A favorite option: Supersymmetry (SUSY)

What is SUSY?

Wess and Zumino (1974)

$$Q^{(S=\frac{1}{2})}|Fermion\rangle = |Boson\rangle$$
 $Q^{(S=\frac{1}{2})}|Boson\rangle = |Fermion\rangle$

$$\{Q_{\alpha}^{A}, \bar{Q}_{\dot{\beta}B}\} = 2\sigma_{\alpha\dot{\beta}}^{\mu}P_{\mu}\delta_{B}^{A}$$
 (GUT+gravity!)

$$\psi_i \left(\begin{matrix} S = \frac{1}{2} \end{matrix} \right) & \longleftrightarrow & \phi_i \left(\begin{matrix} S = 0 \end{matrix} \right)$$
 fermion sfermion
$$\text{quark } (u,c,t) & \longleftrightarrow & \text{squark } (\widetilde{\mathbf{u}},\widetilde{\mathbf{c}},\widetilde{\mathbf{t}})$$

$$v_i(S=1) \longleftrightarrow \lambda_i(S=\frac{1}{2})$$
 gauge boson gaugino $\widetilde{g}, \gamma \longleftrightarrow \widetilde{g}, \widetilde{\gamma}$

> Super-particles and Super-Lagrangians

Living in Super-space: $x \to (x, \theta, \overline{\theta})$

$$\Phi_L(x,\theta) = \phi(x) + \sqrt{2}\theta^{\alpha}\psi_{\alpha}(x) + \theta^{\alpha}\theta^{\beta}\epsilon_{\alpha\beta}F(x),$$

$$= (\phi, \psi, F)$$

chiral supermultiplet

$$V = -\theta \sigma^{\mu} \overline{\theta} v_{\mu} + i\theta \theta \overline{\theta} \overline{\lambda} + \frac{1}{2} \theta \theta \overline{\theta} \overline{\theta} D + h.c.$$
$$= (\lambda, v_{\mu} D) \qquad \text{vector supermultiplet}$$

SUSY world
$$\Rightarrow$$
 $m_{\tilde{f}} = m_f$ $m_v = m_\lambda$

SUSY transformation (e.g. on the chiral multiplet): (ϕ, ψ, F)

$$\delta_S \phi = \sqrt{2} \alpha \psi$$

$$\delta_S \psi = \sqrt{2} \alpha F + i \sqrt{2} \sigma^{\mu} \overline{\alpha} \partial_{\mu} \phi$$

$$\delta_S F = -i \sqrt{2} \partial_{\mu} \psi \sigma^{\mu} \overline{\alpha}$$

 $(boson \rightarrow fermion)$

 $(fermion \rightarrow boson)$

 $(F \rightarrow \text{total derivative})$

$$\mathcal{L} = \sum_{i} \int d^{2}\theta d^{2}\overline{\theta} \Phi_{i} \Phi_{i}^{\dagger} + \left[\int d^{2}\theta f(\Phi_{i}) + h.c. \right]$$

$$superpotential f(\Phi_i) = \sum_i k_i \Phi_i + \frac{1}{2} \sum_{i,j} m_{ij} \Phi_i \Phi_j + \frac{1}{3} \sum_{i,j,k} g_{ijk} \Phi_i \Phi_j \Phi_k$$

Yukawa couplings $_{1}$ potential V

$$\mathcal{L} = \mathcal{L}_{kin} - \left[\sum_{j,k} \frac{\partial^2 f(\phi_i)}{\partial \phi_j \partial \phi_k} \psi_j \psi_k + h.c. \right] - \sum_j \left| \frac{\partial f(\phi_i)}{\partial \phi_j} \right|^2$$

Notice that V is positive-definite in **SUSY**

$$V = \sum_{i} \left| \frac{\partial f}{\partial \phi_{i}} \right|^{2} + \sum_{l} \frac{g_{l}^{2}}{2} \sum_{a} \left| \sum_{i,j} \phi_{i}^{*} T_{l,a}^{ij} \phi_{j} \right|^{2}$$

Generalizing the procedure we can construct the

MSSM

The property above \Rightarrow **SUSY** cannot be easily SSB, although we know that must be broken!!

Weak versus mass eigenstates

Sfermions:

$$\Phi_L = (\phi_L, \psi_L, F_L) \qquad \Phi_R = (\phi_R, \psi_R, F_R)$$

$$\mathcal{M}_{\tilde{t}}^{2} = \begin{pmatrix} m_{t}^{2} + m_{\tilde{t}_{L}}^{2} + \left(\frac{1}{2} - \frac{2}{3}\sin^{2}\theta_{W}\right)\cos(2\beta)M_{Z}^{2} & -m_{t}\left(A_{t} + \mu\cot\beta\right) \\ -m_{t}\left(A_{t} + \mu\cot\beta\right) & m_{t}^{2} + m_{\tilde{t}_{R}}^{2} + \frac{2}{3}\sin^{2}\theta_{W}\cos(2\beta)M_{Z}^{2} \end{pmatrix}$$

Neutralinos: In the $(\tilde{B}^0, \tilde{W}_3^0, \tilde{H}_1^0, \tilde{H}_2^0)$ basis

$$\mathcal{M}_0 = \begin{pmatrix} M_1 & 0 & -M_Z \cos\beta \sin\theta_W & M_Z \sin\beta \sin\theta_W \\ 0 & M_2 & M_Z \cos\beta \cos\theta_W & -M_Z \sin\beta \cos\theta_W \\ -M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 & -\mu \\ M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -\mu & 0 \end{pmatrix}$$

$$\chi_{\alpha} = N_{1\alpha}\tilde{B}^{0} + N_{2\alpha}\tilde{W}_{3}^{0} + N_{3\alpha}\tilde{H}_{1}^{0} + N_{4\alpha}\tilde{H}_{2}^{0}$$
 $\alpha = 1, 2, 3, 4 \Rightarrow \chi_{1} \text{ LSP}$

SUSY and the Hierarchy Problem

$$\mathbf{B}$$
 \mathbf{H}
 \mathbf{H}
 \mathbf{H}

$$egin{array}{c} F \ H ext{-----}H \end{array}$$

$$\delta M_{\rm H}^2 \sim \frac{g^2}{16\pi^2} \left[\int_{m_B^2}^{\Lambda^2} dk^2 - \int_{m_F^2}^{\Lambda^2} dk^2 \right]$$

$$\sim \frac{g^2}{16\pi^2} \int_{m_B^2}^{m_F^2} dk^2 \sim \frac{g^2}{16\pi^2} |m_F^2 - m_B^2|$$

$$\delta M_{
m H}^2 \lesssim M_{
m H}^2 \lesssim 1 \, TeV^2$$
 $M_{
m SUSY} \lesssim (1-10) \, TeV$ LHC !!?

MSSM:

Minimal Supersymmetric SM

		fields	gauge group				
	superfield	fermion	boson	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
Matter se	ctor	sfermions				$(Q = T_3 + \frac{Y}{2})$	
Quarks	$ ilde{Q}_i$	$\left[\begin{array}{c} u_i \\ d_i \end{array} \right]_L$	$\left(egin{array}{c} ilde{u}_i \ ilde{d}_i \end{array} ight)_L$	3	2	$\frac{1}{3}$	
S quarks	$\hat{U}_{m{i}}$	u_{iR}^{c}	\tilde{u}_{iR}^*	$\bar{3}$	1	$-\frac{4}{3}$	
	\hat{D}_i	d_{iR}^c	$ ilde{d}_{iR}^*$	3	1	$-\frac{4}{3} \\ -\frac{4}{3}$	
Leptons Sleptons	\hat{L}_i	$\left(egin{array}{c} u_i \\ e_i \end{array} ight)_L$	$\left(egin{array}{c} ilde{ u}_i \ ilde{e}_i \end{array} ight)$	1	2	-1	
	\hat{E}_i	e_{iR}^{c}	\tilde{e}_{iR}^*	1	1	2	
Gauge sector gauginos gauge							
$SU(3)_C$	\hat{G}^a	$ ilde{\lambda}_g^a$	g_{μ}^{a}	8	1	0	
$SU(2)_L$	\hat{W}^i	$\tilde{\lambda}_W^i$	W^i_μ	1	3	0	
$U(1)_Y$	Â	$ ilde{\lambda}_B$	B_{μ}	1	1	0	

Higgs bosons and Higgsinos

	fields			gauge group			
	superfield	fermion	scalar	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
Н	Higgs Sector Higgsino Higgs doublets						
	\hat{H}_1	$\left(egin{array}{c} ilde{H}^1_1 \ ilde{H}^2_1 \end{array} ight)$	$\left(\begin{array}{c}H_1^1\\H_1^2\end{array}\right)$	1	2	-1	
	\hat{H}_2	$\left(egin{array}{c} ilde{H}_2^1 \ ilde{H}_2^2 \end{array} ight)$	$\left(\begin{array}{c}H_2^1\\\tilde{H}_2^2\end{array}\right)$	1	2	1 🖛	As in the SM

$$H_2 = \begin{pmatrix} H_2^+ \\ v_2 + H_2^0 \end{pmatrix}, \qquad H_1 = \begin{pmatrix} v_1 + H_1^0 \\ H_1^- \end{pmatrix}$$

$$(Q=T_3+\frac{Y}{2})$$

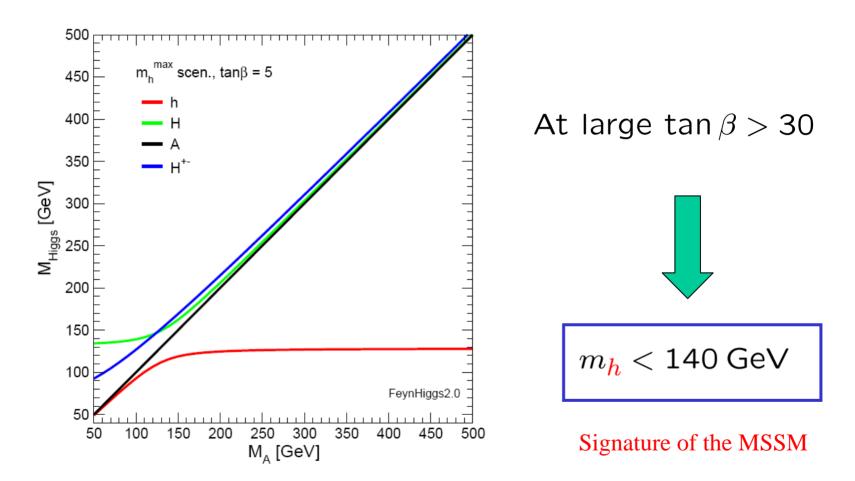
couples to u_{R}

couples to d_R

 $\tan\beta = \frac{v_2}{v_1}$

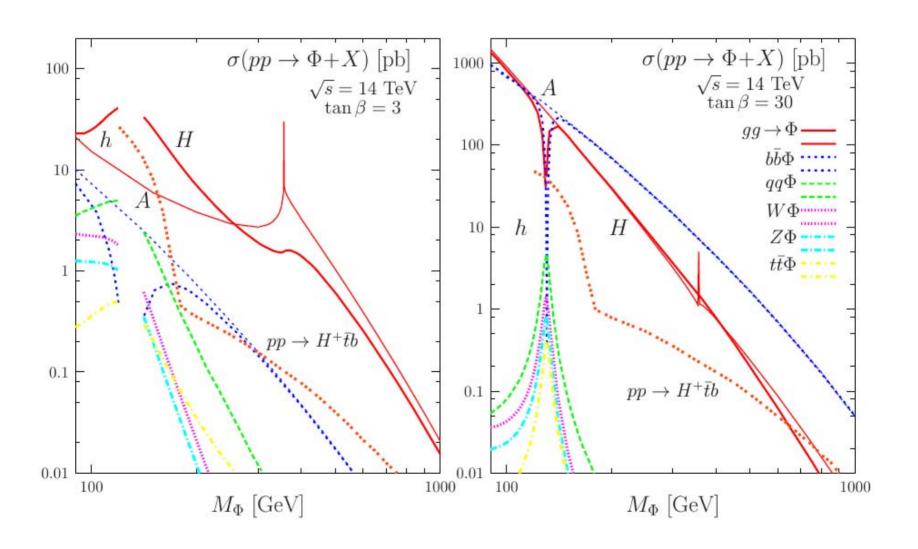
Three neutral physical states: h^0, H^0, A^0

Two charged physical states: H^{\pm}


Balance of (real) d.o.f.'s

(Doubling?)

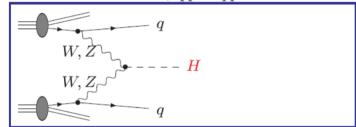
$$N_{\text{MSSM}} = 128 + 128 = 2N_{\text{SM}} + 8$$
(fermionic)(bosonic)


$$N_{SM} = 28 + 96 = 124$$
 (fermionic) (bosonic)

Spectrum of Higgs bosons in the MSSM (example)

large M_A : h^0 like SM Higgs boson \sim decoupling regime

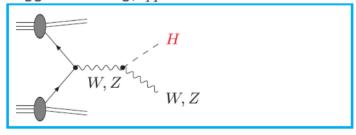
> Higgs boson production at the LHC in the MSSM

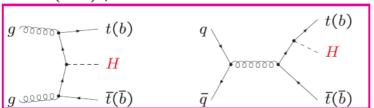

ullet gluon fusion, gg
ightarrow H

LHC

g elle g $H \to h^0, H^0, A^0$

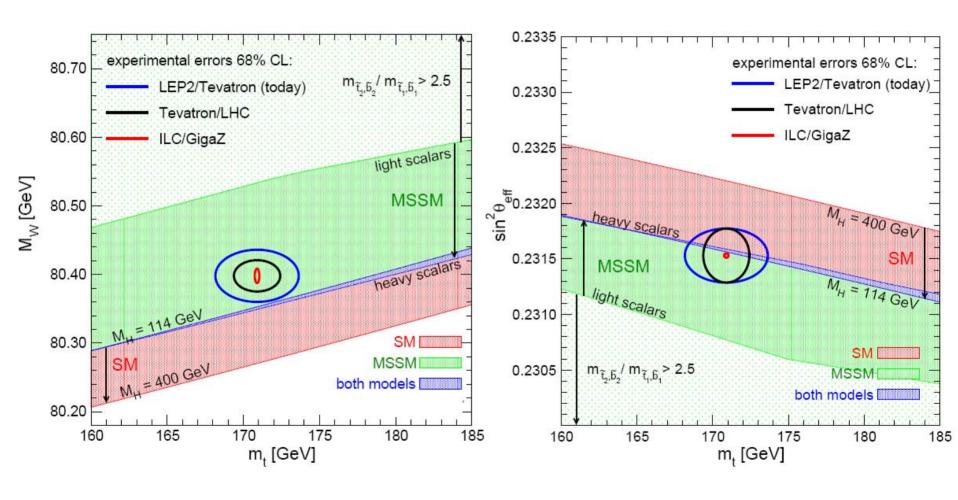
+ more (SUSY) diagrams


ullet vector boson fusion, qq o qqH


Enhanced Yukawa couplings:

	MSSM
$h^0 t \overline{t}$	$\cos \alpha / \sin \beta$
$h^0b\overline{b}$	$-\sin\alpha/\cos\beta$
$\mathrm{H}^{0}t\overline{t}$	$\sin \alpha / \sin \beta$
$\mathrm{H}^0b\overline{b}$	$\cos \alpha / \cos \beta$
$A^0 t \overline{t}$	$\cot \beta$
$A^0b\overline{b}$	$\tan \beta$

• Higgs strahlung, $q\bar{q}' \rightarrow VH$



• $t\bar{t}H$ $(b\bar{b}H)$ production

Fitting the data: SM versus MSSM

[Heinemeyer, Hollik, Stöckinger, Weber, Weiglein]

This physics is a

from the SKY

• • • next time!!