Seeing the high energy universe

(i) extragalactic cosmic rays €3 neutrinod
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We can vee the universe directly with photons up to a few TeV

... beyond this energy they are attenuated through yy = e'e” on the CIB/CMB
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Using cosmic rays we should be able to ‘see’ up to ~ 6 x101° GeV
(before they get attenuated by py — A" — nz*, pa’, on the CMB)

.. and the universe 1s transparent to neutrinos at nearly all energies



Attenuation of cosmic messengers
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By studying cosmic ray (p, v, v) interactions we can also ‘see’ into
the microscopic universe, well beyond the reach of terrestrial accelerators

Equivalent c.m. energy\s_  (GeV)

" 10° 10° 10° 10° 10°
10 El | IIIIIII | I IIIIIII I I IIIIIII | | llllIII | I lllllll?
@ - * PROTON ©  KASCADE (QGSJET01) v HiRes-MIA -
% Wl ¢ RUNJOB 0 KASCADE (SIBYLL 2.1) s HiRes| .
~ 107E * MSU A HiRes || =
7 o = Akeno o AGASA .
[8) B * - %
9 107L o o 4 o
‘\.'E E A ‘ankle’ — extragalactic source? = _ﬁi
= N 17a
16| 13
— 10'°L 5~
= - . - K, =
10 N ‘knee’ — galactic source limit? N |
= I oot 4 3 o
< — fixed target (p-A) A 19
= B Second ‘knee’ ? 4"&# .
3 10" :Eﬁg\ (r-p) o LHC (p-p) —
@ E p p evatron (p p) LHC C C E
7 gl s Wt o ¥ ; :
1013 | 11 IIII| 1 11 lIII| | IIIIIII| | IIIIIII| IIIIIII| 1 1111 | IIIIIII| | IlIIIIIl | IIIIII| 1 111

10  10™ 10" 10" 10" 107 10™ 10" 10*® 10*
Energy (eV/particle)



The trajectories of cosmic rays are randomised by cosmic magnetic fields

Distance (Mpc)

... so need to go to ultrahigh energies to do cosmic ray astronomy

Trajectories of 10" eV protons in random nanogauss field with 1Mpc cell size
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No anisotropies have been detected for cosmic rays up to the knee’ (<108 eV)
— at higher energies they can no longer be deflected by Galactic magnetic fields



To study ultrahigh energy
cosmic rays must use the
Earth’s atmosphere as detector
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Experimental Techniques
(E>10GeV)

/ Primary (hadron, gamma)

air shower

Detector ‘

f

Air Cerenkov
Telescope

R&D
Radio detection

Acoustic detection __ Atmospheric v (4m)

w,e,T
| Instrumented

water / ice

Primary Vv (47T) \ (Courtesey: Thomas Lohse)




Energy/composition: shower profile
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Detailed MC simulation: 10 showers
zenith angle 35°, QGSJET

*  Auger shower
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Can discriminate between hadrons and photons ... harder to distinguish between p and Fe nuclei
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To determine the chemical
composition of UHE cosmic rays
we rely presently on Monte Carlo
simulations ... many ongoing
attempts to quantify shower
variables that correlate with the

identity of the primary

h (km)

10

9]

-0.5

0.5

1.5

(]

4 4.5
X (km)



Shower Development

p, N, 7T : near shower axis
L, e, v :widely spread

e, ¥ : from 11”, 1 decays ~ 10 MeV
i :from t*, K, ... decays ~ 1 GeV

.

Ne,“{ : N“ ~10 ... 100 varying with core distance,

s energy, mass, O, ...

Atmospheric Depth  ~1000 g/cm?

Details depend on:
interaction cross-sections,
hadronic and el.mag. particle production,
decays, transport, ...

at energies well above man-made accelerators
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Electromagnetic Hadronic Muonic
Components

Complex interplay with many correlations

Fluorescence & (isotropic) requires MC simulations

Cherenkov-Light (forward peaked)

Main sources of uncertainty
» Minijet cross-section (parton densities, range of applicability)
» Transverse profile function (total #-secn, multiplicity distribution)
» Energy dependence of leading particle production

» Role of nuclear effects (saturation, stopping power, QGP)
Expect important input from LHC experiments (CASTOR, TOTEM, LHCf ...)

(Courtesey: Johannes Knapp)



Experiment Rapidity range  Detection capability id
However collider
ATLAS, CMS || = 2.5 Tracking and charged particle p determination .
Lepton and photon ID, E/p measurement experiments focus
7] = 5 Jet reconstruction and £ measurement, mainly on high Pr
calorimetric E-flow .
TOTEM (CMS) 3 <5 <7 Charged particle multiplicity events, 1n contrast to
CASTOR(CMS) 53<=n<=70 E measurement the very forward
HC 9 =5 =4¢ & rasureme ) 1o ~200 GeV . .
[LLHCDb 1.9 =5 <49 E ind p l]'k isureme m. up to Ge region of interest to
Charged/neutral particle 1D . .
ALICE ln] = 0.9 Charged/neutral particle 1D, E/p measurement cosmicC ray phy S1CS
24 <= n =40 Muon ID and momentum measurement

—5.5 = 5 = 3.0  Charge particle multiplicity
23 <=1y <=35 Photon multiplicity S T L LS PP Y. 0%

s —

Us= 1800 GeV -------- ]
vs=14TeV — ]

The kinematic region most relevant to
cosmic ray shower models is Iyl > 10 ...

this will not be probed even at the LHC

However, CASTOR/CMS/TOTEM/LHCf will
perform crucial tests of popular shower MCs

(QGSJET, SIBYLL, DPMJET, NeXus ...)

pseudorapidity n
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Auger Energy Determination: Step 1

The energy scale is determined from the data and does
not depend on a knowledge of interaction models or of
the primary composition — except at level of few %.

The detector signal at

1000 m from the shower
core

— called the ground
parameter or S(1000)

- is determined for each
surface detector event
using the lateral density
function.

$(1000) is proportional to
the primary energy.
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For the fluorescence

detectors, the acceptance 1S

harder to estimate and the

event statistics are low but

the energy determination 1s

essentially calorimetric ...

For the surface array, the
acceptance 1s simple to
calculate and there are lots
of events but the energy
calibration depends on

semi-empirical simulations

Auger Energy Determination: step 2
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Auger is a hybrid detector, combining the advantages of both techniques




Energy Scale from FD
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Major remaining uncertainty 9 efficiency of fluorescence light emission
... being re-measured at Argonne (also depends on atmospheric conditions)
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Is there a ~25% energy calibration mismatch between surface arrays and air fluorescence detectors?

Where is the GZK cutoff?
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Auger has now resolved the puzzle ... the flux & suppressed beyond Eczx
Hence the sources of ultra high energy cosmic rays must be extragalactic
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Measurement of the spectral shape near the cut-off will, with sufficient statistics,
establish whether this is indeed the ‘GZK suppression’ (presently the spectrum is also
consistent with heavy primary nuclei undergoing photodissociation on the CIB)



Present data on the energy spectrum cannot distinguish between primary protons
(with source density evolving with redshift as (1+z)°) and nuclei (no evolution)
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... the ‘cosmogenic’ neutrino flux is however quite different in the two cases



At these high energies the sources must be nearby ... within the ‘GZK horizon’
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This 1s true whether the primaries are protons or heavy nuclei ...



So we should be able to see which objects the UHECRS point back to ...

Deflection on the Sky for 40 EeV proton

‘Constrained’ simulation of local large-scale structure including magnetic fields
suggests that deflections are small, except 1n the cores of rich galaxy clusters

Dolag, Grasso, Springel & Tkachev, JCAP 0501:009,2005



Are there any plausible cosmic accelerators for such enormous energies?
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(Courtesey: Johannes Knapp)

BL[G X LkpC > 2 EEeV | Z

BuG XLy > 2(CV)Egoy /£

kpc

to fit gyro radius within L and
to allow particle to wander

during energy gain

But also:

gain should be more rapid than
losses due to magnetic field
(synchrotron radiation)

and photo-reactions.

NB: It is much easier to accelerate
heavy nuclei, rather than protons

Whatever their sources (within the GZK ‘horizon’ of ~100 Mpc), the observed
UHECRSs should point back to them, ¢/ magnetic deflections are not too large



- Line of
- sightto
Earth

 Ambient 4 4 Proton-induced

photon or ) 4 cascade
synchrotron L

“Shock

pho'ton.-‘_

Inverse-Compton
scattering

Active galactic nuclel

1 Current paradigm:

1 Synchrotron Self Compton
1 External Compton

1 Proton Induced Cascades
1 Proton Synchrotron

0 Energetics, mechanism for jet
formation and collimation, nature of
the plasma, and particle
acceleration mechanisms are still
poorly understood.

TeV y-rays have been seen from
AGN, however no direct evidence so
far that protons are accelerated in

such objects

... renewed Interest triggered by
possible correlations with UHECRs -
e.g. 2 Auger events within 3 of Cen A



Probability

The UHECR arrival directions do correlate with nearby AGN!!

Angular Scan Redshift Scan
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But subsequently the strength of
the correlations has diminished

... although 17 out of 44 post-scan

events still correlate — so the sky
distribution is still anwotropic
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New data on the fluctuations
of X_. shows this to be
decreasing with energy,

strengthening the evidence

for a transition to a heavy
composition above 10 EeV

... however an increase of the p-air
#-secn over the usual
extrapolation may fake this
apparent change

Interesting astrophysics and
possible new particle physics are
closely coupled ... to distinguish

between these possibilities will
require more data
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Outlook: Auger North

e full sky coverage —— northern hemisphere
e highest energies —— huge detector (3 — 8 x AS)

J. Blumer, LFO7




Where there are high energy cosmic rays,
there must also be neutrinos ...

GZK interactions of extragalactic UHECRs on the CMB

[} ”» ° °
guaranteed” cosmogenic neutrino flux

2 may be altered vignificantly if the primaries are not protons but heavy nuclei

UHECR candidate accelerators (AGN, GRB:s, ...)
“Waxman-Bahcall flux” ... normalised to observed UHECR flux

= sensitive to ‘cross-over energy above which they dominate, also to composition

“Top down’ sources (superheavy dark matter, topological defects)
motivated by trans-GZK events observed by AGASA

2 all such models are now ruled out by new Auger limit on primary photons



The “guaranteed” cosmogenic neutrino flux

Engel, Seckel, Stanev (2001)
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... would be smaller if primaries are heavy nuclei rather than protons

(courtesey: Dave Waters)



Estimated (cosmogenic V) rates in running/near future experiments
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AMANDA (300 hits) 0.044 yr—?! 3.3 yrs. 0.17 events NA NA
IceCube, 2007 (300 hits equiv.) 0.16 yr—?! 0.4 events NA
IceCube, 2011 (300 hits equiv.) 0.49 yr—! NA 1.2 events

0.2-0.3 events 0.3-0.4 events
ANITA-lite 0.009 per ﬂig;ht [15]] 1 ﬂlght U 009 events NA NA
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Pierre Auger Observatory —

Halzen & Hooper, PRL 97:099901,2006




The sources of cosmic rays must also be neutrino sources

Waxman-Bahcall Bound :

92 . . . .

» 1/E7 injection spectrum (Fermi shock).

# Neutrinos from photo-meson interactions in
the source.

COSMIC BEAM DUMP : SCHEMATIC

accelerator

* Energy in V's related to energy in CR's : e.g. black hole
dNcRr
[E2®,lwe ~ (3/8)&z€xtn _ECR dEon

F Y f UHE
‘rom rate o

Fraction of CR primary CR's (10°-10% eV) target

energy converted to neutrinos v | e.g. radiation
Hubble time

~ 23x10 %, £7GeVem 25 ter™?

» Making a reasonable estimate for ¢_ etc allows
this to be converted into a flux prediction

(would be higher if extragalactic cosmic rays
become dominant at energies below the ‘ankle’ )

+ | directional

, @
P beam

magnetic .
fields

(Courtesey: David Waters)



Centaurus A — Pec

Distance: 11,000,000 ly (3.4 Mpc) Image Size = 15 x 14 =7.0

: Chandra : GALEX

: 2MASS . Spitzer : IRAS : VLA

Estimate dN, E\ - 2
of v flux ((ZE <5x107 (Te\f) TeV™'ecm™2s™! ~ 0.02-0.8 events/km? yr

from p-p: Halzen & Murchadha [arXiv:0802.0887]



* 80 strings/60 OMs each (17 m apart)
* 125 m between strings
* hexagonal pattern over 1 km?

" geometry optimized for detection of

TeV — PeV (EeV) neutrinos

Snow Layer
IceTop

" 2 frozen-water tanks (2 OM’s
each) on top of every string

IceCube

Amundsen-Scott South Pole station




Vi

.= 10TeV

~90 DOMs hit

E~dE/dx ,e>1TeV
E res.: Alog(E)~0.3
ang res :0.8-2 deg

V

e

E=3/5TeV

“spherical” shell

poor angular resolution
E res : Alog(E)~0.1-0.2

V

T

E= 10 PeV
2 bangs separated by

~ 50%(E/PeV)

very low background
pointing capability
good E measurement




Plausible UHE cosmic neutrino fluxes
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WB flux is enhanced in models where extragalactic sources are assumed to dominate
from ~10'8 eV ... close to being ruled out (Ahlers, Anchordoqui & Sarkar, PR D79:083009,2009)

To see cosmic vs may require >100 km? detection volume (ANITA, IceRay...)



An unexpected bonus — UHE neutrino detection with air shower arrays

Rate ~ cosmic neutrino flux, v-IN #-secn

D§> » Flar and thin shower front
= » Narrow signals
(2] . .
S * Time alignment
g Hard
/ 1 Pure muon beam

= connect to composition
Deep indlined showers (~few per year?) Geomagnetic field effects

>>/‘\
§ * Curved and thick shower front
- * Broad signals

- S
Tonsren

Neutrino candidates




Auger also sees Earth-skimming v. — 1t which generates upgoing hadronic shower

Rate ~ cosmic neutrino flux, but not to v-N #-secn
tau decay
VAR armospheric
- "“"§§ """" N 'é decay
S
YN
"Q.‘,
N
b
n
N

incident neutrino
C.C. interaction

]
R
X

... so if we can detect both quasi-horizontal and Earth-skimming events,
then can get handle on V-V #-secn independently of absolute flux!



No neutrino events yet ... but getting close to “guaranteed” Cosmogenic flux
(PRL 100:211101,2008; PR D79:102001,2009)
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(NB: To do this we need to know v-/V cross-section at ultrahigh energies)



Colliders & Cosmic rays

The LHC will soon achieve ~14 TeV cms ...
But 1 EeV (108 V) cosmic ray initiating giant air shower
= 50 TeV cms (rate ~ 10/day in 3000 km? array)

New physics would be hard to see in hadron-imitiated showers

(#-secn TeV? vs GeV?)

... but may have a dramatic impact on neutrino interactions

— can probe new physics both in and beyond the Standard
Model by observing ultra-high energy cosmic neutrinos



v-N deep inelastic scattering

o, N GELME ( M? )

Oxdy T Q%>+ M 1.2 _
Q? A propagator ¥ |
14 (1 — y)2 CC,NC 2. Y _cone 2 wr
[ F2 4 (:ZT,Q )__FL | (LIT,Q )
g <_> 'h( drons ‘
+vy <1 — %) x F. 5 C’NC( x, QQ)] p/n ) ="
Q? A parton distrib. fns ¥
M2
Most of the contribution to #-secn comes from: Q° ~ M, and x ~ Y V;;
NV

At leading order (LO): F;, =0, F,=xz(uy +d, +2s+2b+u +d+ 2¢),
zF3 = z(uy +dy +25+2b— 4 — d — 2¢) = z(uy + dy + 25 + 2b — 2¢)
At NLO in «g, it gets more complicated ... but is still calculable
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Most surprising result is the
steep rise of the gluon structure
function at low Bjorken a >

signiﬁcant impact on V scattering

The H1 and ZEUS
experiments at HERA

have made great progress

by probing a much deeper

08

kinematic region
H1 and ZEUS Combined PDF Fit

Q*=10 GeV?

—— HERA-I PDF (prel.)

B exp. uncert.

model uncert.

April 2008

HERA Structure Functions Working Group



The #-section is up to ~40% below the

previous standard’ calculation by

Gandhi et a/ (1996) ... more

importantly the (perturbative SM)
uncertainty has now been calculated

Being used by Auger, IceCube etc
... to be incorporated in ANIS MC
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As the gluon density rises at low «, non-perturbative
effects become important ... a new phase of QCD -
Colour Gluon Condensate - has been postulated to form

Saturation
region

In 1/x

J

DGLAP

-

Agen Q

This would vuppress the v-N #-secn below its (unscreened) SM value



Beyond HERA: probing low-x QCD with cosmic UHE neutrinos

Neutrino—Nucleon cross—section (pb)
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The steep rise of the gluon density
at low-x must saturate (unitarity!)
> suppression of the v-N #-secn

2

Anchordoqui, Cooper-Sarkar, Hooper & Sarkar, PR D74:043008,2006
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The ratio of quasi-horizontal (all
flavour) and Earth-skimming (v,)
events /measures the cross-section



TeV scale quantum gravity?

It gravity becomes strong at the TeV scale
(as 1n some brane-world models) then at cms

energies well above this scale, black holes will
f()rm Wlth M ~ \/g and A ~ nRQSChwarZSChild

(courtesey: Albert De Rocek)

LA I T rTrrrn T IIIIIIII T llllllll T rTrrm

T ... and then

1010 _
S E evaporate rapidly by
108 b E Hawking radiation
:’8\-‘ g Horizontal atm depth /j (+ gravi ta tional
- 105 - waves?)
Lo ; This will enhance the
e neutrino scattering
102 F / | | | | é #-secn significantly
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E, (GeV) Anchordoqui, Feng, Goldberg & Shapere, PR D68:104025,2003
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Testing TeV scale quantum gravity (assuming W-B flux)

Quasi-horizontal v showers
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Auger 1s well suited for probing microscopic black hole production

# QH/# ES= 0.04 for SM, but ~10 for Planck scale @ 1 TeV

Anchordoqui, Han, Hooper & Sarkar, AP 25:14,2006;

Anchordoqui et al, PR D82:043001,2010



Summary

Prospects are good for identifying the sources of medium energy cosmic

rays by y-ray telescopes (Fermi, C1A) ... more work needed on theory

Auger 1s addressing crucial questions about the energy spectrum,
composition and anisotropies of ultra-high energy cosmic rays
... the theoretical situation 1s even more challenging

The detection of UHE cosmic neutrinos by lceCube 1s eagerly awaited —
will provide complementary information and identify the sources

Cosmic ray and neutrino observatories provide an unique laboratory for

tests of new physics beyond the Standard Model

“The extstence of these bigh energy rays s a puzzle, the
solution of which will be the discovery of new

fundamental physics or astrophysics”
Jim Cronin (1998)




