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Problem: We want to study the asymptotic behavior of the solutions of 

 

 

𝜕𝑡 𝜌𝑛 𝑡, 𝑥 𝜕𝑡𝑢𝑛 − div𝑥 𝐴𝑛 𝑡, 𝑥 ∇𝑥𝑢𝑛 = 𝑓𝑛   in  0, 𝑇 × Ω

𝑢𝑛 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢𝑛 0, 𝑥 = 𝑢𝑛
0 𝑥 ,   𝜌𝑛 𝑡, 𝑥 𝜕𝑡𝑢𝑛 0, 𝑥 = 𝜗𝑛 𝑥     in Ω,

  

 

where Ω is a bounded open set of ℝ𝑁 , and the coefficients 𝜌𝑛 , 𝐴𝑛  are 

uniformly elliptic and bounded. 

 

This problem has been studied by other authors. In order to recall their 

results (and to state our ones) we need to recall the classical result for 

elliptic problems. 



Theorem (S. Spagnolo 1968, symmetric case, 

                                      F. Murat, L. Tartar 1977, general case) 

Ω ⊂ ℝ𝑁 , open, bounded, 𝐴𝑛 ∈ 𝐿∞ Ω;ℝ𝑁×𝑁 , with 

𝐴𝑛 𝑥 𝜉 ∙ 𝜉 ≥ 𝛼 𝜉 2,   𝐴𝑛 𝑥 
−1𝜉 ∙ 𝜉 ≥ 𝛾 𝜉 2,  a.e. 𝑥 ∈ Ω, ∀𝜉 ∈ ℝ𝑁 ,  

𝛼, 𝛾 > 0. Then (for a subsequence), ∃𝐴 ∈ 𝐿∞ Ω;ℝ𝑁×𝑁 , with 

𝐴 𝑥 𝜉 ∙ 𝜉 ≥ 𝛼 𝜉 2,   𝐴 𝑥 −1𝜉 ∙ 𝜉 ≥ 𝛾 𝜉 2,  a.e. 𝑥 ∈ Ω, ∀𝜉 ∈ ℝ𝑁 ,  

such that if  𝑓𝑛 → 𝑓 in 𝐻−1 Ω ,  𝑢𝑛  solution of  

 
−div 𝐴𝑛 𝑥 ∇𝑢𝑛 = 𝑓𝑛   in Ω

𝑢𝑛 = 0  on  𝜕Ω,
  

then                
𝑢𝑛 ⇀ 𝑢   in 𝐻0

1 Ω 

𝐴𝑛∇𝑢𝑛 ⇀ 𝐴∇𝑢   in 𝐿2 Ω 𝑁
 

with 𝑢 solution of      
−div 𝐴 𝑥 ∇𝑢 = 𝑓  in Ω

𝑢 = 0  on  𝜕Ω.
  

We say that 𝐴𝑛  𝐻-converges to 𝐴, and write  𝐴𝑛 ⇀
𝐻
𝐴. 



Remark: We have 

𝑢𝑛 ⇀ 𝑢   in 𝐻1 Ω 

div 𝐴𝑛∇𝑢𝑛   compact in 𝐻−1 Ω 
⟹ 𝐴𝑛∇𝑢𝑛 ⇀ 𝐴∇𝑢   in 𝐿2 Ω 𝑁  

𝐴𝑛 ⇀
𝐻
𝐴 in Ω ⟹ 𝐴𝑛 ⇀

𝐻
𝐴 in ω, ∀ω ⊂ Ω open.  

Corrector: (F. Murat, L. Tartar 1977) 

If  𝐴𝑛 ⇀
𝐻
𝐴 in Ω, then ∃𝑃𝑛 ∈ 𝐿2 Ω 𝑁×𝑁  bounded such that 

𝑢𝑛 ⇀ 𝑢  in 𝐻1 Ω ,   𝑢 smooth

div 𝐴𝑛∇𝑢𝑛   compact in 𝐻−1 Ω 
⟹ ∇𝑢𝑛 − 𝑃𝑛 𝑥 ∇𝑢 → 0  in 𝐿2 Ω 𝑁 

The corrector is local. To construct the strong approximation 𝑃𝑛 𝑥 ∇𝑢(𝑥) in a 

point 𝑥, we only need to know ∇𝑢(𝑥). Moreover 𝑃𝑛  depends locally of Ω. 



Return to the wave problem:  Take 𝐴𝑛 𝑡, 𝑥  symmetric 

𝐴𝑛 𝑡, 𝑥 𝜉 ∙ 𝜉 ≥ 𝛼 𝜉 2,    𝐴𝑛 𝑥  ≤ 𝛽,   𝛼 ≤ 𝜌𝑛 𝑡, 𝑥 ≤ 𝛽 

a.e.   𝑡, 𝑥 ∈  0, 𝑇 × Ω, ∀𝜉 ∈ ℝ𝑁 . 

Assume 𝐴𝑛 𝑡, .  ⇀
𝐻
𝐴 𝑡, .   a.e. 𝑡 ∈  0, 𝑇 ,  𝜌𝑛 ⇀

∗
𝜌 in 𝐿∞  0, 𝑇 × Ω  

 𝑓𝑛 → 𝑓 in 𝐿1 0, 𝑇; 𝐿2(Ω) , 𝑢𝑛
0 ⇀ 𝑢0 in 𝐻0

1 Ω , 𝜗𝑛 ⇀ 𝜗 in 𝐿2 Ω . 

Then, 𝑢𝑛  solution of 

 𝒫𝑛     

𝜕𝑡 𝜌𝑛 𝑡, 𝑥 𝜕𝑡𝑢𝑛 − div𝑥 𝐴𝑛 𝑡, 𝑥 ∇𝑥𝑢𝑛 = 𝑓𝑛   in  0, 𝑇 × Ω

𝑢𝑛 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢𝑛 0, 𝑥 = 𝑢𝑛
0 𝑥 ,   𝜌𝑛 0, 𝑥 𝜕𝑡𝑢𝑛 0, 𝑥 = 𝜗𝑛 𝑥     in Ω,

  

satisfies 𝑢𝑛 ⇀
∗
𝑢 in 𝐿∞  0, 𝑇; 𝐻0

1 Ω  ∩𝑊1,∞ 0, 𝑇; 𝐿2 Ω   with 

 𝒫     

𝜕𝑡 𝜌 𝑡, 𝑥 𝜕𝑡𝑢 − div𝑥 𝐴 𝑡, 𝑥 ∇𝑥𝑢 = 𝑓  in  0, 𝑇 × Ω

𝑢 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢 0, 𝑥 = 𝑢0 𝑥 ,   𝜌 0, 𝑥 𝜕𝑡𝑢 0, 𝑥 = 𝜗 𝑥     in Ω.

  

 

 



This resul was proved by: 

F. Colombini, S. Spagnolo 1978: 

𝜌𝑛 = 1, 𝐴𝑛  bounded in 𝑊1,∞ 0, 𝑇; 𝐿∞ Ω 𝑁×𝑁  

S. Brahim-Otsmane, G. Francfort, F. Murat 1992: 

𝜌𝑛 , 𝐴𝑛  independent of the time variable 𝑡. 

 

Our aim: To consider 𝜌𝑛 , 𝐴𝑛  less smooth (possibly non continuous) in 𝑡. 

Remark: Some smoothness is necessary in order to have existence (and 

uniqueness) of solution for  𝒫𝑛 . 

A.E. Hurd, D.H. Sattinger 1968: Problem  𝒫𝑛  has not solution in general for 

 𝜌𝑛 = 1, 𝐴𝑛  constant in the two sides of an hyperplan not parallel to 𝑡 = 0. 
 

F. Colombini, S. Spagnolo 1989: Problem  𝒫𝑛  has not solution in general for 

𝜌𝑛 = 1, 𝐴𝑛 ∈ 𝐶0,𝛼 [0, 𝑇] × Ω; ℝ𝑁×𝑁 , 𝛼 < 1. 
 

 



We generalize the above homogenization result to the case 

𝜌𝑛  bounded in 𝐵𝑉(0, 𝑇; 𝐿∞ Ω ) 

𝐴𝑛  bounded in 𝐵𝑉 0, 𝑇; 𝐿∞ Ω;ℝ𝑁×𝑁  . 

For the right-hand side 𝑓𝑛  we just assume 

𝑓𝑛 = 𝑓𝑛
1 + 𝑓𝑛

2, 

with 

𝑓𝑛
1 ⇀

∗
𝑓1   in 𝔐 0, 𝑇; 𝐿2 Ω   

𝑓𝑛
2 ⇀

∗
𝑓2   in 𝐵𝑉 0, 𝑇; 𝐻−1 Ω   

 𝑓𝑛
2

𝑡2

𝑡1

𝑑𝑠 →  𝑓2
𝑡2

𝑡1

𝑑𝑠  in 𝐻−1 Ω , 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇. 

 

 



Remark: The existence and uniqueness of solution for  𝒫𝑛  is due to  

A. Arosio 1984 for 𝜌𝑛 = 1 (L. De Simon, G. Torelli 1974 𝑓𝑛 = 0). Our 

little contribution to the existence result was to consider 𝜌𝑛  in 

𝐵𝑉 0, 𝑇; 𝐿∞ Ω   and uniformly elliptic. 

Indeed these result hold in an abstract setting where 𝐿2 Ω  and 𝐻0
1 Ω  are 

replaced by abstract Hilbert spaces 𝐻, 𝑉,  

𝑉 continuously imbedded in 𝐻. 

Idea of the proof of the homogenization result. 

For 𝑡 ∈  0, 𝑇 ,  ℎ ∈  𝑡, 𝑇 − 𝑡  the function  

𝑢 𝑛 𝑥 =  𝑢𝑛 𝑠, 𝑥 
𝑡+ℎ

𝑡

𝑑𝑠 

satisfies the elliptic problem 

 



−div 𝐴𝑛 𝑡, 𝑥 ∇𝑢 𝑛(𝑥)  

= 𝜌𝑛 𝑡 + ℎ, 𝑥 𝜕𝑡𝑢𝑛 𝑡 + ℎ, 𝑥 − 𝜌𝑛 𝑡, 𝑥 𝜕𝑡𝑢𝑛 𝑡, 𝑥 +  𝑓𝑛 𝑠 𝑑𝑠
𝑡+ℎ

𝑡

 

+div   𝐴𝑛 𝑠, 𝑥 − 𝐴𝑛 𝑡, 𝑥  
𝑡+ℎ

𝑡

∇𝑢𝑛 𝑠, 𝑥 𝑑𝑠     in Ω 

where in the right-hand side, for 𝑡 outside a countable set, the last term is 

small for ℎ  small and the other terms converge strongly in 𝐻−1 Ω . 

Remark: (a first corrector result)  If 𝑢 is smooth enough, we have 

 ∇𝑢𝑛 𝑠, 𝑥 𝑑𝑠
𝑡2

𝑡1

− 𝑃𝑛(𝑠, 𝑥)∇𝑢 𝑠, 𝑥 𝑑𝑠
𝑡2

𝑡1

→ 0  𝑖𝑛 𝐿2 Ω 𝑁 , 

for 0 ≤ 𝑡1 < 𝑡2 ≤ 𝑇. 

Here, for 𝑠 ∈  0, 𝑇 , 𝑃𝑛(𝑠, 𝑥) is the sequence of matrices giving the elliptic 

corrector for 𝐴𝑛 𝑠, 𝑥 . 



Question: Is the elliptic corrector a corrector for the wave problem? 

Theorem (S. Brahim-Otsmane, G. Francfort, F. Murat 1992): 

Assume 𝜌𝑛 , 𝐴𝑛  independent of 𝑡, 𝐴𝑛 ⇀
𝐻
𝐴,  𝜌𝑛 ⇀

∗
𝜌 in 𝐿∞ Ω , 

𝑓𝑛 = 𝑓 ∈ 𝐿2  0, 𝑇 × Ω , 𝑢𝑛
0 ⇀ 𝑢0 in 𝐻0

1 Ω , 𝜗𝑛 ⇀ 𝜗 in 𝐿2 Ω . 

We define 𝑢𝑛 , 𝑢 by 

 𝒫𝑛     

𝜕𝑡 𝜌𝑛 𝑥 𝜕𝑡𝑢𝑛 − div𝑥 𝐴𝑛 𝑥 ∇𝑥𝑢𝑛 = 𝑓  in  0, 𝑇 × Ω

𝑢𝑛 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢𝑛 0, 𝑥 = 𝑢𝑛
0 𝑥 ,   𝜌𝑛 𝑡, 𝑥 𝜕𝑡𝑢𝑛 0, 𝑥 = 𝜗𝑛 𝑥     in Ω,

  

 

 𝒫     

𝜕𝑡 𝜌 𝑥 𝜕𝑡𝑢 − div 𝐴 𝑥 ∇𝑢 = 𝑓  in  0, 𝑇 × Ω

𝑢 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢 0, 𝑥 = 𝑢0 𝑥 ,   𝜌 𝑡, 𝑥 𝜕𝑡𝑢 0, 𝑥 = 𝜗 𝑥     in Ω.

  

 

 

 

 



We introduce 𝑢 𝑛 , 𝑢 𝑛 ∈ 𝐿∞  0, 𝑇; 𝐻0
1 Ω   as the solutions of 

 
−div 𝐴𝑛 𝑥 ∇𝑢 𝑛 𝑡, 𝑥  = −div 𝐴 𝑥 ∇𝑢 𝑡, 𝑥    in Ω

𝑢 𝑛 𝑡, 𝑥 = 0  on 𝜕Ω.
      𝑡 ∈  0, 𝑇  

 
 

 
𝜕𝑡 𝜌𝑛 𝑥 𝜕𝑡𝑢 𝑛 − div 𝐴𝑛 𝑥 ∇𝑢 𝑛 = 0  in  0, 𝑇 × Ω

𝑢 𝑛 𝑡, 𝑥 = 0  on   0, 𝑇 × 𝜕Ω

𝑢 𝑛 0, 𝑥 = 𝑢𝑛
0 𝑥 − 𝑢 𝑛 𝑡, 𝑥 ,   𝜌𝑛 𝑥 𝜕𝑡𝑢 𝑛 = 𝜗𝑛 𝑥 −

 𝜌𝑛 𝑥 

 𝜌 𝑥 
𝜗 𝑥     in Ω.

  

Then       
∇𝑢𝑛 − ∇𝑢 𝑛 − ∇𝑢 𝑛 → 0  in 𝐿∞ 0, 𝑇; 𝐿2 Ω 𝑁 

𝜕𝑡𝑢𝑛 − 𝜕𝑡𝑢 − 𝜕𝑡𝑢 𝑛 → 0  in 𝐿∞ 0, 𝑇; 𝐿2 Ω  .
 

Remark: If 𝑢 is smooth enough, the first equality can be written as 

∇𝑢𝑛 − 𝑃𝑛 𝑥 ∇𝑢 − ∇𝑢 𝑛 → 0  in 𝐿∞ 0, 𝑇; 𝐿2 Ω 𝑁 . 

𝑢 𝑛  only depends on the initial data 

It only gives a true corrector if 𝑢 𝑛 → 0 in 𝐿2  0, 𝑇; 𝐻0
1 Ω  . 

Then       
∇𝑢𝑛 − ∇𝑢 𝑛 → 0  in 𝐿∞ 0, 𝑇; 𝐿2 Ω 𝑁 

𝜕𝑡𝑢𝑛 − 𝜕𝑡𝑢 → 0  in 𝐿∞ 0, 𝑇; 𝐿2 Ω  .
 

 

 



The convergence 𝑢 𝑛 → 0 in 𝐿2  0, 𝑇; 𝐻0
1 Ω   

only holds if the initial data is well prepared, in the following sense 

−div 𝐴𝑛 𝑥 ∇𝑢𝑛
0 𝑥     compact in 𝐻−1 Ω  

𝜗𝑛
𝜌𝑛

−
𝜗

𝜌
→ 0  in 𝐿2 Ω   

(second condition is equivalent to  𝜕𝑡𝑢𝑛(0) − 𝜕𝑡𝑢(0) → 0  in 𝐿2 Ω ) 

In another case, the elliptic corrector is not a corrector for ∇𝑢𝑛  and 𝜕𝑡𝑢𝑛  

does not converges strongly to 𝜕𝑡𝑢. 

Since 

  ∇𝑢𝑛 𝑠, 𝑥 − ∇𝑢 𝑛 𝑠, 𝑥  𝑑𝑠
𝑡2

𝑡1

→ 0  in 𝐿2 Ω 𝑁  

this means that in general (although the coefficients do not depend on 𝑡)  ∇𝑢𝑛 , 𝜕𝑡𝑢 

oscillate in 𝑡, which cannot be seen just approximating 𝑢𝑛  by the solution of an 

elliptic problem. 

  

 



We have generalized this result for coefficients depending on 𝑡.  

We need a lot more of regularity than  in the homogenization result. 

Namely: We asume 𝐴𝑛 ∈ 𝐶1 [0, 𝑇]; 𝐿∞ Ω 𝑁×𝑁 , 𝜌𝑛 ∈ 𝐶1 [0, 𝑇]; 𝐿∞ Ω   

with the equicontinuity property 

lim
ℎ→0

max
 𝑡2−𝑡1 ≤ℎ

 𝜕𝑡𝐴𝑛 𝑡2, .  − 𝜕𝑡𝐴𝑛 𝑡1, .   𝐿∞  Ω 𝑁×𝑁 = 0 

lim
ℎ→0

max
 𝑡2−𝑡1 ≤ℎ

 𝜕𝑡𝜌𝑛 𝑡2, .  − 𝜕𝑡𝜌𝑛 𝑡1, .   𝐿∞  Ω = 0, 

uniformly in 𝑛. 

For the right-hand side, we just assume  𝑓𝑛 = 𝑓𝑛
1 + 𝑓𝑛

2 with 

𝑓𝑛
1 ⇀ 𝑓1   in 𝐿1 0, 𝑇; 𝐿2 Ω  , lim

ℎ→0
sup
𝑛
  𝑓𝑛

1 𝑡 + ℎ, .  − 𝑓𝑛
1 𝑡, .   𝐿2 Ω 

𝑇−ℎ

0

= 0 

 

𝑓𝑛
2 → 𝑓2   in 𝑊1,1 0, 𝑇; 𝐻−1 Ω  . 

 

 



Idea of the proof:  

Assume that the coefficients and the right-hand side are  sufficiently 

smooth in the time variable and that the initial data satisfies (in particular 

it is well prepared) 

−div 𝐴𝑛(0, 𝑥)∇𝑢𝑛
0  bounded in 𝐿2 Ω 𝑁  

𝜗𝑛(𝑥)

𝜌𝑛(0, 𝑥)
 bounded in 𝐻0

1 Ω . 

Then, we can derive in  𝒫𝑛  with respect to 𝑡, to obtain  

𝜕𝑡𝑢𝑛  bounded in 𝐿∞  0, 𝑇; 𝐻0
1 Ω   

𝜕𝑡𝑡
2 𝑢𝑛  bounded in 𝐿∞ 0, 𝑇; 𝐿2 Ω   

and then 𝜕𝑡𝑢𝑛  is compact in 𝐿∞ 0, 𝑇; 𝐿2 Ω  . 

 



Theorem: The above corrector result does not hold if we just assume 

𝐴𝑛  bounded in 𝐶1  0, 𝑇 ; 𝐿∞ Ω 𝑁×𝑁  

  𝜌𝑛  bounded in 𝐶1 [0, 𝑇]; 𝐿∞ Ω  . 

Counterexample 

 
 
 

 
 𝜕𝑡𝑡

2 𝑢𝑛 − 𝜕𝑥   1 +
1

𝑛
sin 𝑛𝑡 cos 𝑛𝑥 cos 𝑥 𝜕𝑥𝑢𝑛 = 0 in  0, 𝑇 × (0, 𝜋)

𝑢𝑛 𝑡, 0 = 𝑢𝑛 𝑡, 𝜋 = 0,  a.e.  𝑡 ∈  0, 𝑇 

𝑢𝑛 0, 𝑥 = 0,   𝜕𝑡  𝑢𝑛 0, 𝑥 = sin 𝑥 ,   a.e.  𝑥 ∈  0, 𝜋 .

  

Here 𝐴𝑛 𝑡, 𝑥 = 1 +
1

𝑛
sin 𝑛𝑡 cos 𝑛𝑥 cos 𝑥 is bounded in 𝐶1  0, 𝑇 × Ω   

and converges uniformly to 1 

𝜕𝑥 𝐴𝑛 0, 𝑥 𝜕𝑥𝑢𝑛
0 = 0,    

𝜗𝑛
𝜌𝑛

= sin 𝑥 



Thus 𝑢𝑛 ⇀
∗
𝑢 = sin 𝑡 sin 𝑥 in 𝐿∞  0, 𝑇; 𝐻0

1 0, 𝜋  ∩𝑊1,∞ 0, 𝑇; 𝐿2 0, 𝜋   

solution of      
𝜕𝑡𝑡

2 𝑢 − 𝜕𝑥𝑥
2 𝑢 = 0 in  0, 𝑇 × (0, 𝜋)

𝑢 𝑡, 0 = 𝑢 𝑡, 𝜋 = 0,  a.e.  𝑡 ∈  0, 𝑇 

𝑢 0, 𝑥 = 0,   𝜕𝑡𝑢 0, 𝑥 = sin 𝑥 ,   a.e.  𝑥 ∈  0, 𝜋 .

  

However 

𝜕𝑥𝑢𝑛 ↛ 𝜕𝑥𝑢,   𝜕𝑡𝑢𝑛 ↛ 𝜕𝑡𝑢     in 𝐿2  0, 𝑇 ×  0, 𝜋  . 

 

 



Periodic case 

We consider the case Ω = ℝ𝑁 .  

 

 
𝜕𝑡 𝜌𝜀 𝑡, 𝑥 𝜕𝑡𝑢𝜀 − divx 𝐴𝜀 𝑡, 𝑥 ∇𝑥𝑢𝜀 = 𝑓

𝜀
  in  0, 𝑇 × ℝ𝑁

𝑢𝜀 0, 𝑥 = 𝑢𝜀
0 𝑥 ,   𝜌

𝜀
 𝑡, 𝑥 𝜕𝑡𝑢𝜀 0, 𝑥 = 𝜗𝜀 𝑥     in ℝ𝑁,

  

𝜌𝜀 ≡ 𝜌0  
𝑥

𝜀
 + 𝜀𝜌1  𝑡, 𝑥,

𝑡

𝜀
,
𝑥

𝜀
 , 𝐴𝜀 ≡ 𝐴0  

𝑥

𝜀
 + 𝜀𝐴1  𝑡, 𝑥,

𝑡

𝜀
,
𝑥

𝜀
  

𝑓𝜀 ≡ 𝑓  𝑡, 𝑥,
𝑡

𝜀
,
𝑥

𝜀
 ,    𝑢𝜀

0 ≡ 𝑢0 𝑥 + 𝜀𝑢1  𝑥,
𝑥

𝜀
 ,   𝜗𝜀 ≡ 𝜗  𝑥,

𝑥

𝜀
 . 

 

The functions are periodic of period 𝑌 =  0,1 𝑁 in 𝑥/𝜀  

and Bohr almost-periodic in 𝑡/𝜀. 

The right-hand side and the initial data are small at infinity. 

 

 



We define (ℳ denotes mean) 

𝜌 = ℳ𝑦 𝜌0(𝑦) ,     

𝐴ℎ𝜉 = ℳ𝑦  𝐴0 𝑦  𝜉 + ∇𝑤𝜉 𝑦   , ∀𝜉 ∈ ℝ𝑁 ,  with 

−div  𝐴0 𝑦  𝜉 + ∇𝑤𝜉 𝑦   = 0   in ℝ𝑁 , 𝑤𝜉    periodic 

𝑓  𝑡, 𝑥 = ℳ𝑦,𝑠 𝑓 𝑡, 𝑥, 𝑠, 𝑦  ,     𝜗  𝑥 = ℳ𝑦 𝜗(𝑥, 𝑦) . 

Then, 𝑢𝜀 ⇀
∗
𝑢0 in 𝐿∞ 0, 𝑇; 𝐻1 ℝ𝑁  ∩𝑊1,∞ 0, 𝑇; 𝐿2 ℝ𝑁  , solution of 

 
𝜌 𝜕𝑡𝑡

2 𝑢0 − div 𝐴ℎ∇𝑢0 = 𝑓   in  0, 𝑇 × ℝ𝑁

𝑢0 0, 𝑥 = 𝑢0 𝑥 ,   𝜌 𝜕𝑡𝑢0 0, 𝑥 =  𝜗  𝑥     in ℝ𝑁,
  

Moreover, if  𝑢0 is smooth enough, we have 

𝑢𝜀 − 𝑢0 − 𝜀𝑢1  𝑡, 𝑥,
𝑡

𝜀
,
𝑥

𝜀
 → 0  in 𝐻1 ℝ𝑁 × (0, 𝑇)  



The function 𝑢1 = 𝑢1(𝑥, 𝑡, 𝑠, 𝑦) satisfies 

𝜌0 𝑦 𝜕𝑠𝑠
2 𝑢1 − divy  𝐴0(𝑦) ∇𝑥𝑢0 + ∇𝑦𝑢1  = 0  , 

and it is periodic with respect to 𝑥 and Besicovitch almost-periodic with 

respect to 𝑠. 

It recalls the equation satisfied by the classical corrector in periodic 

homogenization. It does not suffices to determine 𝑢1. Indeed, we have 

𝑢1(𝑥, 𝑡, 𝑠, 𝑦)  = 𝑢 1(𝑥, 𝑡, 𝑦)  + 𝑢 1(𝑥, 𝑡, 𝑠, 𝑦) 

With 𝑢 1 the elliptic corrector, solution of 

−divy  𝐴0(𝑦) ∇𝑥𝑢0 + ∇𝑦𝑢 1  = 0  

and 𝑢 1 satisfying  𝜌0 𝑦 𝜕𝑠𝑠
2 𝑢 1 − divy 𝐴0(𝑦)∇𝑦𝑢 1 = 0   

which has a large number of solutions. 

 

 



Namely, denoting by 𝜆0 = 0 < 𝜆1 < 𝜆2 < ⋯, the  eigenvalues of  

−divy 𝐴0(𝑦)𝛻𝑦𝛷 = 𝜆𝑖𝜌0 𝑦 𝛷 𝑦  in ℝ𝑁 

with periodic boundary conditions, we have 

𝑢 1 𝑥, 𝑡, 𝑠, 𝑦 =   𝛷𝑖 𝑥, 𝑡, 𝑦 cos  𝜆𝑖𝑠 + 𝜓𝑖 𝑥, 𝑡, 𝑦 sin  𝜆𝑖𝑠  

∞

𝑖=0

 

With 𝛷𝑖 , 𝜓𝑖  eigenfunctions with respect to 𝑦. 

It is necessary to add another equation to determine 𝑢 1 and then 𝑢1. 

Formally (it can be justified using two-scale convergence), it is obtained 

from the asymptotic expansion 

𝑢𝜀 𝑡, 𝑥 = 𝑢0 𝑡, 𝑥 + 𝜀𝑢1  𝑡, 𝑥,
𝑡

𝜀
,
𝑥

𝜀
 + 𝜀2𝑢2  𝑡, 𝑥,

𝑡

𝜀
,
𝑥

𝜀
 + ⋯ 



We have: 

2𝜌0 𝑦 𝜕𝑡𝑠
2 𝑢1 − div𝑥 𝐴0 𝑦 ∇𝑦𝑢1 − div𝑦 𝐴0 𝑦 ∇𝑥𝑢1  

+𝜕𝑠 𝜌1 𝑡, 𝑥, 𝑠, 𝑦  𝜕𝑡𝑢0 + 𝜕𝑠𝑢1  − div𝑦  𝐴1 𝑦  ∇𝑥𝑢0 + ∇𝑦𝑢1   

+𝜌0 𝑦 𝜕𝑠𝑠
2 𝑢2 − div𝑦 𝐴0 𝑦 𝛻𝑦𝑢2 = 𝑓 − 𝑓    

together to the initial conditions 

𝑢1 0, 𝑥, 0, 𝑦 − 𝑢1(𝑥, 𝑦) independent of  𝑦 

𝜌0 𝑦  𝜕𝑡𝑢0 0, 𝑥 + 𝜕𝑠𝑢1 0, 𝑥, 0, 𝑦  = 𝜗(𝑥, 𝑦) 

Remark: The equation contains simultaneously the microscopic and 

macroscopic variables. The function 𝑢1 depends non-locally of 𝑢0. 



Some particular cases: 

 
𝜕𝑡  𝜌0

 
𝑥

𝜀
 𝜕𝑡𝑢𝜀 − divx  𝐴0  

𝑥

𝜀
 ∇𝑥𝑢𝜀 = 𝑓  𝑡, 𝑥,

𝑡

𝜀
,
𝑥

𝜀
   in  0, 𝑇 × ℝ𝑁

𝑢𝜀 0, 𝑥 = 𝑢𝜀
0 𝑥 ,   𝜌

𝜀
 𝑡, 𝑥 𝜕𝑡𝑢𝜀 0, 𝑥 = 𝜗𝜀 𝑥     in ℝ𝑁,

  

   𝑢𝜀
0 ≡ 𝑢0 𝑥 + 𝜀𝑢1  𝑥,

𝑥

𝜀
 ,   𝜗𝜀 ≡ 𝜗  𝑥,

𝑥

𝜀
 . 

Then 𝑢𝜀~𝑢0 + 𝜀𝑢 1  𝑡, 𝑥,
𝑥

𝜀
 + 𝜀𝑢 1  𝑡, 𝑥,

𝑡

𝜀
,
𝑥

𝜀
 , with 

𝜌0 𝑦 𝜕𝑠𝑠
2 𝑢 1 − divy 𝐴0(𝑦)∇𝑦𝑢 1 = 0   

2𝜌0 𝑦 𝜕𝑡𝑠
2 𝑢 1 − div𝑥 𝐴0 𝑦 ∇𝑦𝑢 1 − div𝑦 𝐴0 𝑦 ∇𝑥𝑢 1  

+𝜌0 𝑦 𝜕𝑠𝑠
2 𝑢2 − div𝑦 𝐴0 𝑦 𝛻𝑦𝑢2 = 𝑓 − 𝑓    

𝑢 1 0, 𝑥, 𝑦 + 𝑢 1 0, 𝑥, 0, 𝑦 − 𝑢1(𝑥, 𝑦) independent of  𝑦 

𝜌0 𝑦  𝜕𝑡𝑢0 0, 𝑥 + 𝜕𝑠𝑢 1 0, 𝑥, 0, 𝑦  = 𝜗(𝑥, 𝑦) 

It is coherent with Brahim-Otsmane, Francfort,  Murat result 



Example: 𝐴 constant, 𝑎, 𝑏 smooth with compact support. 

 
𝜕𝑡𝑡

2 𝑢𝜀 − div𝑥 𝐴∇𝑥𝑢𝜀 = 0  in  0, 𝑇 × ℝ𝑁

𝑢𝜀 0, 𝑥 = 𝜀𝑎 𝑥 𝑒
2𝜋𝑖𝑘 ∙𝑥

𝜀 ,  𝑢𝜀 0, 𝑥 = 𝑏 𝑥 𝑒
2𝜋𝑖𝑘 ∙𝑥

𝜀   in ℝ𝑁 ,

  

Then               𝑢𝜀 𝑡, 𝑥 ~ 

 
𝜀

2
 𝑎  𝑥 −

𝐴𝑘

 𝐴𝑘 ∙ 𝑘
𝑡 +

1

2𝜋𝑖 𝐴𝑘 ∙ 𝑘
𝑏  𝑥 −

𝐴𝑘

 𝐴𝑘 ∙ 𝑘
𝑡  𝑒

2𝜋𝑖𝑘 ∙𝑥+ 𝐴𝑘∙𝑘𝑡
𝜀  

+
𝜀

2
 𝑎  𝑥 +

𝐴𝑘

 𝐴𝑘 ∙ 𝑘
𝑡 −

1

2𝜋𝑖 𝐴𝑘 ∙ 𝑘
𝑏  𝑥 +

𝐴𝑘

 𝐴𝑘 ∙ 𝑘
𝑡  𝑒

2𝜋𝑖𝑘 ∙𝑥− 𝐴𝑘∙𝑘𝑡
𝜀  

It was obtained by G. Francfort, F. Murat 1992 using geometrical optics. 

Related results A. Bensoussan, J. Lions, G. Papanicolau 1978. 


