What is a Quantum Field on a noncommutative space-time?

A. lbort
UCIIIM

What is a Quantum Field on a noncommutative space-time?

An (nontrivial) example: A quantum scalar field on a noncommutative geon space-time

A. lbort
UCIIIM

What is a Quantum Field on a noncommutative space-time?

An (nontrivial) example: A quantum scalar field on a noncommutative geon space-time

A. lbort
UCIIIM

En homenaje a Manolo Asorey en su cumpleaños

Index

Introduction

I.What are geons?
I.I Prime manifolds
1.2 Canonical gravity
I. 3 Geons
II.Twist of geon space-times
II.I Drinfel'd twist
II. 2 Covariance
II. 3 Twisting Abelian discrete groups
II. 4 Twisted covariant geon quantum fields
II. 5 Twisted nonabelian discrete groups

Introduction

Uncertainty principle + Classical gravity

Introduction

Uncertainty principle + Classical gravity

Introduction

Uncertainty principle + Classical gravity

DFR principle
 $$
\left[x_{\mu}, x_{\nu}\right]=\theta_{\mu \nu} \neq 0
$$

S. Doplicher, K. Fredenhagen, and J. E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187-220

Introduction

Uncertainty principle + Classical gravity

DFR principle $\quad\left[x_{\mu}, x_{\nu}\right]=\theta_{\mu \nu} \neq 0$

Quantum fields on noncommutative spacetimes

A. P. Balachandran, A. Ibort, G. Marmo and M. Martone. Phys. Rev. D81, 085017 (2010); SIGMA 6, 052 (2010), JHEP 1103, 57 (2011).
S. Doplicher, K. Fredenhagen, and J. E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187-220

Introduction

Uncertainty principle + Classical gravity

DFR principle $\quad\left[x_{\mu}, x_{\nu}\right]=\theta_{\mu \nu} \neq 0$

Quantum fields on noncommutative spacetimes

A. P. Balachandran, A. Ibort, G. Marmo and M. Martone. Phys. Rev. D81, 085017 (2010); SIGMA 6, 052 (2010), JHEP 1103, 57 (2011).
S. Doplicher, K. Fredenhagen, and J. E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187-220 Joint work with AP Balachandran, G Marmo, M Martone arXiv:1009.5117

I.What are geons?

$$
\mathcal{M}_{1}, \quad \mathcal{M}_{2}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2}
$$

I.What are geons?

$$
\mathcal{M}_{1}, \quad \mathcal{M}_{2}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2}
$$

I.What are geons?

$\mathcal{M}_{1}, \quad \mathcal{M}_{2}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2}$

$$
\begin{aligned}
& \mathcal{M}_{1} \#\left(\mathcal{M}_{2} \# \mathcal{M}_{3}\right) \cong\left(\mathcal{M}_{1} \# \mathcal{M}_{2}\right) \# \mathcal{M}_{3}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2} \# \mathcal{M}_{3} \\
& \mathcal{M}_{1} \# \mathcal{M}_{2} \cong \mathcal{M}_{2} \# \mathcal{M}_{1} \\
& \mathcal{M} \# S^{d} \cong S^{d} \# \mathcal{M} \cong \mathcal{M}
\end{aligned}
$$

I.What are geons?

$\mathcal{M}_{1}, \quad \mathcal{M}_{2}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2}$

$\mathcal{M}_{1} \#\left(\mathcal{M}_{2} \# \mathcal{M}_{3}\right) \cong\left(\mathcal{M}_{1} \# \mathcal{M}_{2}\right) \# \mathcal{M}_{3}, \quad \mathcal{M}_{1} \# \mathcal{M}_{2} \# \mathcal{M}_{3}$ $\mathcal{M}_{1} \# \mathcal{M}_{2} \simeq \mathcal{M}_{2} \# \mathcal{M}_{1}$ $\mathcal{M} \# S^{d} \cong S^{d} \# \mathcal{M} \cong \mathcal{M}$

Prime manifolds $\quad \mathcal{M}=\#{ }_{\alpha} \mathcal{P}_{\alpha} \bmod S^{d}$

I.I. Prime manifolds
d = 2

I.I. Prime manifolds
 $\mathrm{d}=2$
 $\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$

I.I. Prime manifolds

 $\mathrm{d}=2$$\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ $d=3$

I.I. Prime manifolds $\mathrm{d}=2$
$\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ $\mathrm{d}=3$
Spherical Space Forms

$$
\begin{aligned}
& \text { I.I. Prime manifolds } \\
& \mathrm{d}=2 \\
& \mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2} \\
& \mathrm{~d}=3 \\
& \text { Spherical Space Forms } \\
& S^{3} / D, \quad D \subset S O(4), \quad D \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad L_{p, q} \quad L_{1,2} \cong L_{2,1} \cong \mathbb{R} P^{3}
\end{aligned}
$$

> I. I. Prime manifolds $\mathbf{d}=2$
> $\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ $\mathbf{d}=3$

Spherical Space Forms
$S^{3} / D, \quad D \subset S O(4), \quad D \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad L_{p, q} \quad L_{1,2} \cong L_{2,1} \cong \mathbb{R} P^{3}$
Hyperbolic spaces
I.I. Prime manifolds $\mathrm{d}=2$
$\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ d=3
Spherical Space Forms

$S^{3} / D, \quad D \subset S O(4), \quad D \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad L_{p, q} \quad L_{1,2} \cong L_{2,1} \cong \mathbb{R} P^{3}$
Hyperbolic spaces
$\mathcal{H}^{+}=\left\{x=\left(x_{0}, \vec{x}\right) \in \mathbb{R} \times \mathbb{R}^{3} \cong \mathbb{R}^{4}:\left(x_{0}\right)^{2}-(\vec{x})^{2}=1, x_{0}>0\right\}$
$\mathcal{H}^{+} / D \quad D \subset \mathscr{L}_{+}^{\uparrow}$
I.I. Prime manifolds $\mathrm{d}=2$
$\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ d=3
Spherical Space Forms

$S^{3} / D, \quad D \subset S O(4), \quad D \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad L_{p, q} \quad L_{1,2} \cong L_{2,1} \cong \mathbb{R} P^{3}$ Hyperbolic spaces

$$
\mathcal{H}^{+}=\left\{x=\left(x_{0}, \vec{x}\right) \in \mathbb{R} \times \mathbb{R}^{3} \cong \mathbb{R}^{4}:\left(x_{0}\right)^{2}-(\vec{x})^{2}=1, x_{0}>0\right\}
$$

$$
\mathcal{H}^{+} / D \quad D \subset \mathscr{L}_{+}^{\uparrow}
$$

Other $\quad S^{2} \times S^{1}, \ldots$
I.I. Prime manifolds d=2
$\mathcal{M}^{2}=T^{2} \# T^{2} \# \cdots \# T^{2}$ d=3
Spherical Space Forms

$S^{3} / D, \quad D \subset S O(4), \quad D \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \quad L_{p, q} \quad L_{1,2} \cong L_{2,1} \cong \mathbb{R} P^{3}$ Hyperbolic spaces

$$
\mathcal{H}^{+}=\left\{x=\left(x_{0}, \vec{x}\right) \in \mathbb{R} \times \mathbb{R}^{3} \cong \mathbb{R}^{4}:\left(x_{0}\right)^{2}-(\vec{x})^{2}=1, x_{0}>0\right\}
$$

$$
\mathcal{H}^{+} / D \quad D \subset \mathscr{L}_{+}^{\uparrow}
$$

Other $\quad S^{2} \times S^{1}, \ldots$
Manifolds with one asymptotic region $\quad \mathcal{M}_{\infty}=\mathbb{R}^{d} \#{ }_{\alpha} \mathcal{P}_{\alpha}$

I.2. Canonical Quantum Gravity

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

Space-time topology $\mathcal{M}_{\infty} \times \mathbb{R} \quad D^{\infty} \subset \operatorname{Diff}^{\infty}\left(\mathcal{M}_{\infty}\right)$

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

Space-time topology $\mathcal{M}_{\infty} \times \mathbb{R} \quad D^{\infty} \subset \operatorname{Diff}^{\infty}\left(\mathcal{M}_{\infty}\right)$
Quantization of non-simply connected configuration spaces

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

Space-time topology $\mathcal{M}_{\infty} \times \mathbb{R} \quad D^{\infty} \subset \operatorname{Diff}^{\infty}\left(\mathcal{M}_{\infty}\right)$
Quantization of non-simply connected configuration spaces

$$
\mathcal{H}, \quad \rho: \pi_{1}(\mathcal{Q}) \rightarrow \mathcal{U}(\mathcal{H})
$$

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

Space-time topology $\mathcal{M}_{\infty} \times \mathbb{R} \quad D^{\infty} \subset \operatorname{Diff}^{\infty}\left(\mathcal{M}_{\infty}\right)$
Quantization of non-simply connected configuration spaces

$$
\begin{aligned}
& \mathcal{H}, \quad \rho: \pi_{1}(\underline{Q}) \rightarrow \mathcal{U}(\mathcal{H}) \quad \mathcal{H} \cong \bigoplus \mathcal{H}_{l} \\
& \mathcal{E}=\widetilde{\mathcal{Q}} \times \mathcal{H} / \pi_{1}(\mathcal{Q})=\widetilde{\mathcal{Q}} \times_{\pi_{1}(\mathcal{Q})} \mathcal{H} \quad l \in \widetilde{\pi_{1}(\mathcal{Q})} \\
& \widetilde{\mathcal{Q}} \rightarrow \mathcal{Q} \quad \text { Universal covering space }
\end{aligned}
$$

I.2. Canonical Quantum Gravity

$$
\mathcal{Q} \equiv \operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}
$$

Space-time topology $\mathcal{M}_{\infty} \times \mathbb{R} \quad D^{\infty} \subset \operatorname{Diff}^{\infty}\left(\mathcal{M}_{\infty}\right)$
Quantization of non-simply connected configuration spaces

$$
\begin{aligned}
& \mathcal{H}, \quad \rho: \pi_{1}(\mathcal{Q}) \rightarrow \mathcal{U}(\mathcal{H}) \quad \mathcal{H} \cong \bigoplus \mathcal{H}_{l} \\
& \mathcal{E}=\widetilde{\mathcal{Q}} \times \mathcal{H} / \pi_{1}(\mathcal{Q})=\widetilde{\mathcal{Q}} \times_{\pi_{1}(\mathcal{Q})} \mathcal{H} \quad l \in \widetilde{\pi_{1}(\mathcal{Q})} \\
& \widetilde{\mathcal{Q}} \rightarrow \mathcal{Q} \quad \text { Universal covering space } \\
& \mathcal{F}=\Gamma(\mathcal{E})=\bigoplus_{l} \mathcal{F}_{l} \quad \text { Fork space } \\
& \mathcal{F}_{l}=\Gamma\left(\mathcal{E}_{l}\right) ; \quad \mathcal{E}_{l}=\widetilde{Q} \times_{\pi_{1}} \mathcal{H}_{l}
\end{aligned}
$$

I.3. Quantum geons

I.3. Quantum geons

$$
\begin{aligned}
& \Psi \in \mathcal{F}_{l} \quad \Psi: \widetilde{\mathcal{Q}} \rightarrow \mathcal{H}_{l} \\
& \Psi(\gamma \star \alpha)=\rho_{l}\left(\alpha^{-1}\right) \Psi(\gamma), \quad \gamma \in \widetilde{\mathcal{Q}}, \alpha \in \pi_{1}(\mathcal{Q})
\end{aligned}
$$

I.3. Quantum geons

$$
\begin{aligned}
& \Psi \in \mathcal{F}_{l} \quad \Psi: \widetilde{\mathcal{Q}} \rightarrow \mathcal{H}_{l} \\
& \Psi(\gamma \star \alpha)=\rho_{l}\left(\alpha^{-1}\right) \Psi(\gamma), \quad \gamma \in \widetilde{\mathcal{Q}}, \alpha \in \pi_{1}(\mathcal{Q})
\end{aligned}
$$

Quantum geons are state vectors of a quantum gravity theory over a topologically non-trivial space-time, selected by the UIRR's of

$$
\pi_{1}\left(\operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}\right)
$$

I.3. Quantum geons

$$
\begin{aligned}
& \Psi \in \mathcal{F}_{l} \quad \Psi: \widetilde{\mathcal{Q}} \rightarrow \mathcal{H}_{l} \\
& \Psi(\gamma \star \alpha)=\rho_{l}\left(\alpha^{-1}\right) \Psi(\gamma), \quad \gamma \in \widetilde{\mathcal{Q}}, \alpha \in \pi_{1}(\mathcal{Q})
\end{aligned}
$$

Quantum geons are state vectors of a quantum gravity theory over a topologically non-trivial space-time, selected by the UIRR's of

$$
\pi_{1}\left(\operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}\right)
$$

$\pi_{1}\left(\operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}\right) \cong D^{\infty} / D_{0}^{\infty}:=\operatorname{MCG}\left(\mathcal{M}_{\infty}\right)$

I.3. Quantum geons

$$
\begin{aligned}
& \Psi \in \mathcal{F}_{l} \quad \Psi: \widetilde{\mathcal{Q}} \rightarrow \mathcal{H}_{l} \\
& \Psi(\gamma \star \alpha)=\rho_{l}\left(\alpha^{-1}\right) \Psi(\gamma), \quad \gamma \in \widetilde{\mathcal{Q}}, \alpha \in \pi_{1}(\mathcal{Q})
\end{aligned}
$$

Quantum geons are state vectors of a quantum gravity theory over a topologically non-trivial space-time, selected by the UIRR's of

$$
\pi_{1}\left(\operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}\right)
$$

$\pi_{1}\left(\operatorname{Riem}\left(\mathcal{M}_{\infty}\right) / D^{\infty}\right) \cong D^{\infty} / D_{0}^{\infty}:=\operatorname{MCG}\left(\mathcal{M}_{\infty}\right)=\mathcal{S} \rtimes \prod^{\operatorname{MCG}^{(1)} \rtimes S_{N}}$

II.Twists of geon spacetimes

II.I Drinfel'd twist

II. Twists of geon spacetimes

II.I Drinfel'd twist

Poincaré group algebra

II.Twists of geon spacetimes

II.I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow}$

II.Twists of geon spacetimes

II.I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

II.Twists of geon spacetimes

II.I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}
$$

II. Twists of geon spacetimes

II. I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
\begin{aligned}
& F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}} \\
& \Delta_{\theta}(g)=F_{\theta}^{-1} \Delta_{0}(g) F_{\theta}
\end{aligned}
$$

II. Twists of geon spacetimes

II. I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}
$$

$\Delta_{\theta}(g)=F_{\theta}^{-1} \Delta_{0}(g) F_{\theta}$
$\mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right)$

II.Twists of geon spacetimes

II. I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
\begin{aligned}
& F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}} \\
& \Delta_{\theta}(g)=F_{\theta}^{-1} \Delta_{0}(g) F_{\theta} \\
& \mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right) \\
& \mathcal{P}_{\mu}=-i \partial_{\mu} \quad \mathscr{F}_{\theta}=\mathrm{e}^{\frac{i}{2} \overleftarrow{\partial}_{\mu} \theta_{\mu \nu} \vec{\partial}_{\nu}}
\end{aligned}
$$

II.Twists of geon spacetimes

II. I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}
$$

$$
\Delta_{\theta}(g)=F_{\theta}^{-1} \Delta_{0}(g) F_{\theta}
$$

$$
\mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right)
$$

$$
\mathcal{P}_{\mu}=-i \partial_{\mu} \quad \mathscr{F}_{\theta}=\mathrm{e}^{\frac{i}{2} \overparen{\partial}_{\mu} \theta_{\mu \nu} \vec{\partial}_{\nu}}
$$

$$
f \star g=f \mathrm{e}^{-\frac{i}{2} \stackrel{\mathcal{P}_{\mu}}{ } \theta^{\mu \nu} \overrightarrow{\mathcal{P}}_{\nu}} g, \quad f, g \in \mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right)
$$

II.Twists of geon spacetimes

II. I Drinfel'd twist

Poincaré group algebra $\mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad \theta=\left(\theta_{\mu \nu}\right)$

$$
F_{\theta} \in \mathbb{C} \mathscr{P}_{+}^{\uparrow} \otimes \mathbb{C} \mathscr{P}_{+}^{\uparrow} \quad P_{\mu} \quad F_{\theta}=\mathrm{e}^{-\frac{i}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}
$$

$$
\Delta_{\theta}(g)=F_{\theta}^{-1} \Delta_{0}(g) F_{\theta}
$$

$$
\mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right)
$$

$$
\mathcal{P}_{\mu}=-i \partial_{\mu} \quad \mathscr{F}_{\theta}=\mathrm{e}^{\frac{i}{2} \overparen{\partial}_{\mu} \theta_{\mu \nu} \vec{\partial}_{\nu}}
$$

$$
f \star g=f \mathrm{e}^{-\frac{i}{2} \stackrel{\mathcal{P}_{\mu}}{ } \theta^{\mu \nu} \overrightarrow{\mathcal{P}}_{\nu}} g, \quad f, g \in \mathcal{A}_{\theta}\left(\mathbb{R}^{d}\right)
$$

We will twist geon spacetimes by using $D^{(1) \infty} / D_{0}^{(1) \infty}$ which is consistent with DFR argument
II. 2 Covariance

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha}
$$

$$
D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{a} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

Geon quantum field

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad$ Geon quantum field

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{a} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$$
\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad \text { Geon quantum field }
$$

Diffeomorphism invariance

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad$ Geon quantum field
Diffeomorphism invariance

$$
[g] \in D^{(1)} / D_{0}^{(1) \infty}, \quad\left[g^{\prime}\right], \quad g^{\prime}=g g_{0}^{\infty}, \quad g_{0}^{\infty} \in D_{0}^{(1) \infty}
$$

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad$ Geon quantum field
Diffeomorphism invariance

$$
\begin{aligned}
& {[g] \in D^{(1)} / D_{0}^{(1) \infty}, \quad\left[g^{\prime}\right], \quad g^{\prime}=g g_{0}^{\infty}, \quad g_{0}^{\infty} \in D_{0}^{(1) \infty}} \\
& \left([g] \varphi_{0}\right)(p)=\varphi_{0}\left(g^{-1} p\right) \quad\left(=\varphi\left(g^{\prime-1} p\right)=\left(\left[g^{\prime}\right] \varphi_{0}\right)(p)\right.
\end{aligned}
$$

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad$ Geon quantum field
Diffeomorphism invariance

$$
\begin{aligned}
& {[g] \in D^{(1)} / D_{0}^{(1) \infty}, \quad\left[g^{\prime}\right], \quad g^{\prime}=g g_{0}^{\infty}, \quad g_{0}^{\infty} \in D_{0}^{(1) \infty}} \\
& \left([g] \varphi_{0}\right)(p)=\varphi_{0}\left(g^{-1} p\right) \quad\left(=\varphi\left(g^{\prime-1} p\right)=\left(\left[g^{\prime}\right] \varphi_{0}\right)(p)\right. \\
& U: D^{(1)} / D_{0}^{(1) \infty} \rightarrow \mathcal{U}(\mathcal{H})
\end{aligned}
$$

II. 2 Covariance

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \quad D^{(1)}, \quad D^{(1) \infty}, \quad D_{0}^{(1) \infty}
$$

$$
\mathcal{M}_{\infty}=\mathbb{R}^{d} \# \mathcal{P}_{\alpha} \# \ldots \# \mathcal{P}_{\alpha} \quad(N \text { factors }) \quad D^{(N)}, \quad D^{(N) \infty}, \quad D_{0}^{(N) \infty}
$$

$\Phi_{0}: \mathscr{S}\left(\mathcal{M}_{\infty}\right) \rightarrow \mathscr{A}(\mathcal{H}) \quad$ Geod quantum field

Diffeomorphism invariance

$$
\begin{gathered}
{[g] \in D^{(1)} / D_{0}^{(1) \infty}, \quad\left[g^{\prime}\right], \quad g^{\prime}=g g_{0}^{\infty}, \quad g_{0}^{\infty} \in D_{0}^{(1) \infty}} \\
\left([g] \varphi_{0}\right)(p)=\varphi_{0}\left(g^{-1} p\right) \quad\left(=\varphi\left(g^{\prime-1} p\right)=\left(\left[g^{\prime}\right] \varphi_{0}\right)(p)\right. \\
U: D^{(1)} / D_{0}^{(1) \infty} \rightarrow \mathcal{U}(\mathcal{H}) \\
{[g] \varphi_{0}=U([g]) \varphi_{0} U([g])^{\dagger}, \quad[g] \in D^{(1)} / D_{0}^{(1) \infty}}
\end{gathered}
$$

II. 3 Twisting Abelian discrete groups

$$
A \subset D^{(1)} / D_{0}^{(1) \infty}
$$

II. 3 Twisting Abelian discrete groups

$$
\begin{aligned}
& A \subset D^{(1)} / D_{0}^{(1) \infty} \\
& \quad \mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{2 \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
\end{aligned}
$$

II. 3 Twisting Abelian discrete groups

$A \subset D^{(1)} / D_{0}^{(1) \infty}$

$$
\mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{i \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
$$

UIRR's $\quad \varrho_{m} \quad \chi_{m}(\xi)=\xi^{m}, \quad m \in\{0,1, \ldots,(n-1)\}$

II. 3 Twisting Abelian discrete groups

$A \subset D^{(1)} / D_{0}^{(1) \infty}$

$$
\mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{i \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
$$

UIRR's $\quad \varrho_{m} \quad \chi_{m}(\xi)=\xi^{m}, \quad m \in\{0,1, \ldots,(n-1)\}$

$$
\hat{\xi}_{m} \quad \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k}
$$

II. 3 Twisting Abelian discrete groups

$$
\begin{aligned}
& A \subset D^{(1)} / D_{0}^{(1) \infty} \\
& \quad \mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{2 \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
\end{aligned}
$$

UIRR's $\quad \varrho_{m} \quad \chi_{m}(\xi)=\xi^{m}, \quad m \in\{0,1, \ldots,(n-1)\}$

$$
\begin{aligned}
& \hat{\xi}_{m} \quad \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k} \\
& \bar{\chi}\left(\xi^{l}\right) \chi\left(\xi^{l}\right)=1, \quad \bar{\chi}\left(\xi^{l}\right)=\chi\left(\xi^{-l}\right) \\
& \frac{1}{n} \sum_{\xi} \bar{\chi}_{m}(\xi) \chi_{n}(\xi)=\delta_{m, n}
\end{aligned}
$$

II. 3 Twisting Abelian discrete groups

$$
\begin{aligned}
& A \subset D^{(1)} / D_{0}^{(1) \infty} \\
& \quad \mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{2 \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
\end{aligned}
$$

UIRR's $\varrho_{m} \quad \chi_{m}(\xi)=\xi^{m}, \quad m \in\{0,1, \ldots,(n-1)\}$

$$
\begin{aligned}
& \hat{\xi}_{m} \quad \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k} \\
& \bar{\chi}\left(\xi^{l}\right) \chi\left(\xi^{l}\right)=1, \quad \bar{\chi}\left(\xi^{l}\right)=\chi\left(\xi^{-l}\right) \\
& \frac{1}{n} \sum_{\xi} \bar{\chi}_{m}(\xi) \chi_{n}(\xi)=\delta_{m, n} \\
& \hat{\xi}^{l} \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k+l}=\frac{1}{n} \sum_{k=l}^{n+l-1} \bar{\chi}_{m}\left(\xi^{k-l}\right) \hat{\xi}^{k}=\chi_{m}\left(\xi^{l}\right) \mathfrak{P}_{m}
\end{aligned}
$$

II. 3 Twisting Abelian discrete groups

$$
\begin{aligned}
& A \subset D^{(1)} / D_{0}^{(1) \infty} \\
& \quad \mathbb{Z}_{n}=\left\{\left.\xi^{k} \equiv \mathrm{e}^{i \frac{2 \pi}{n} k} \right\rvert\, k=0,1, \ldots,(n-1)\right\}
\end{aligned}
$$

UIRR's $\quad \varrho_{m} \quad \chi_{m}(\xi)=\xi^{m}, \quad m \in\{0,1, \ldots,(n-1)\}$

$$
\begin{aligned}
& \hat{\xi}_{m} \quad \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k} \\
& \bar{\chi}\left(\xi^{l}\right) \chi\left(\xi^{l}\right)=1, \quad \bar{\chi}\left(\xi^{l}\right)=\chi\left(\xi^{-l}\right) \quad \mathfrak{P}_{m} \mathfrak{P}_{n}=\delta_{m, n} \mathfrak{P}_{n} \\
& \frac{1}{n} \sum_{\xi} \bar{\chi}_{m}(\xi) \chi_{n}(\xi)=\delta_{m, n} \\
& \hat{\xi}^{l} \mathfrak{P}_{m}=\frac{1}{n} \sum_{k=0}^{n-1} \bar{\chi}_{m}\left(\xi^{k}\right) \hat{\xi}^{k+l}=\frac{1}{n} \sum_{k=l}^{n+l-1} \bar{\chi}_{m}\left(\xi^{k-l}\right) \hat{\xi}^{k}=\chi_{m}\left(\xi^{l}\right) \mathfrak{P}_{m}
\end{aligned}
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$
$A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}$
UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$

$$
\chi_{\mathbf{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathrm{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$
$A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}$
UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathbf{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathbf{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathrm{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathrm{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$

$$
\mathbb{P}_{\mathbf{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathbf{m}} \mathbb{P}_{\mathbf{m}^{\prime}}=\delta_{\mathbf{m}, \mathrm{m}^{\prime}} \mathbb{P}_{\mathbf{m}}, \quad \sum_{\mathrm{m}} \mathbb{P}_{\mathrm{m}}=\text { identity of } A
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathrm{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathrm{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$
$\mathbb{P}_{\mathbf{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathbf{m}} \mathbb{P}_{\mathrm{m}^{\prime}}=\delta_{\mathrm{m}, \mathrm{m}^{\prime}} \mathbb{P}_{\mathrm{m}}, \quad \sum_{\mathrm{m}} \mathbb{P}_{\mathbf{m}}=$ identity of A
Drinfel'd twist

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$
$A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}$
UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathrm{m}}=\prod_{i} \chi_{m_{i}} \quad \mathfrak{P}_{\mathrm{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$
$\mathbb{P}_{\mathbf{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathbf{m}} \mathbb{P}_{\mathbf{m}^{\prime}}=\delta_{\mathrm{m}, \mathrm{m}^{\prime}} \mathbb{P}_{\mathbf{m}}, \quad \sum_{\mathrm{m}} \mathbb{P}_{\mathbf{m}}=$ identity of A
Drinfel'd twist

$$
\theta=\left[\theta_{i j}=-\theta_{j i} \in \mathbb{R}\right]
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathrm{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathrm{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$

$$
\mathbb{P}_{\mathbf{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathbf{m}} \mathbb{P}_{\mathbf{m}^{\prime}}=\delta_{\mathbf{m}, \mathbf{m}^{\prime}} \mathbb{P}_{\mathbf{m}}, \quad \sum_{\mathbf{m}} \mathbb{P}_{\mathbf{m}}=\text { identity of } A
$$

Drinfel'd twist $\quad \theta=\left[\theta_{i j}=-\theta_{j i} \in \mathbb{R}\right]$

$$
F_{\theta}=\sum_{\mathbf{m}, \mathbf{m}^{\prime}} \mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}} \otimes \mathbb{P}_{\mathbf{m}^{\prime}}
$$

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathbf{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathbf{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$

$$
\mathbb{P}_{\mathrm{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathbf{m}} \mathbb{P}_{\mathbf{m}^{\prime}}=\delta_{\mathrm{m}, \mathrm{~m}^{\prime}} \mathbb{P}_{\mathrm{m}}, \quad \sum_{\mathrm{m}} \mathbb{P}_{\mathrm{m}}=\text { identity of } A
$$

Drinfel'd twist $\quad \theta=\left[\theta_{i j}=-\theta_{j i} \in \mathbb{R}\right]$

$$
F_{\theta}=\sum_{\mathbf{m}, \mathbf{m}^{\prime}} \mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}} \otimes \mathbb{P}_{\mathbf{m}^{\prime}}
$$

Quantization conditions

II. 3 Twisting Abelian discrete groups

A Maximal abelian subgroup of $D^{(1)} / D_{0}^{(1) \infty}$

$$
A=\mathbb{Z}_{n} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{k}}
$$

UIRR's $\varrho_{m_{1}} \otimes \varrho_{m_{2}} \otimes \ldots \otimes \varrho_{m_{k}}, \quad m_{j} \in\left\{0,1, . ., n_{j}-1\right\}$
$\chi_{\mathbf{m}}=\prod \chi_{m_{i}} \quad \mathfrak{P}_{\mathbf{m}}=\otimes_{i} \mathfrak{P}_{m_{i}}$
$\mathbb{C} A{ }^{i}$
$\mathbb{P}_{\mathrm{m}}=\otimes_{i} \mathbb{P}_{m_{i}}, \quad \mathbb{P}_{\mathrm{m}} \mathbb{P}_{\mathrm{m}^{\prime}}=\delta_{\mathrm{m}, \mathrm{m}^{\prime}} \mathbb{P}_{\mathrm{m}}, \quad \sum_{\mathrm{m}} \mathbb{P}_{\mathrm{m}}=$ identity of A
Drinfel'd twist $\quad \theta=\left[\theta_{i j}=-\theta_{j i} \in \mathbb{R}\right]$

$$
F_{\theta}=\sum_{\mathbf{m}, \mathbf{m}^{\prime}} \mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}} \otimes \mathbb{P}_{\mathbf{m}^{\prime}}
$$

Quantization conditions

$$
\theta_{i j}=\frac{4 \pi}{n_{i j}} \quad \frac{n_{i}}{n_{i j}}, \frac{n_{j}}{n_{i j}} \in \mathbb{Z}
$$

II. 4 Twisted covariant geon quantum fields

II. 4 Twisted covariant geon quantum fields

UIRR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

II. 4 Twisted covariant geon quantum fields

UIRR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$f_{\mathrm{m}}^{(\pm)} \quad$ positive and negative frequencies $\pm\left|E_{\vec{m}}\right|$

II. 4 Twisted covariant geon quantum fields

URR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$$
\begin{aligned}
& f_{\mathbf{m}}^{(\pm)} \quad \text { positive and negative frequencies } \pm\left|E_{\vec{m}}\right| \\
& f_{\mathbf{m}}^{(\pm)}\left(h^{-1} p\right)=f_{\mathbf{m}}^{(\pm)}(p) \chi_{\mathbf{m}}(h), \quad h \in A \\
& i \partial_{0} f_{\mathbf{m}}^{(\pm)}= \pm\left|E_{\mathbf{m}}\right| f_{\mathbf{m}}^{(\pm)}
\end{aligned}
$$

II. 4 Twisted covariant geon quantum fields

URR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$$
\begin{aligned}
& f_{\mathbf{m}}^{(\pm)} \quad \text { positive and negative frequencies } \pm\left|E_{\vec{m}}\right| \\
& f_{\mathbf{m}}^{(\pm)}\left(h^{-1} p\right)=f_{\mathbf{m}}^{(\pm)}(p) \chi_{\mathbf{m}}(h), \quad h \in A \\
& i \partial_{0} f_{\mathbf{m}}^{(\pm)}= \pm\left|E_{\mathbf{m}}\right| f_{\mathbf{m}}^{(\pm)} \\
& \quad \bar{\chi}_{\mathbf{m}}=\chi_{-\mathbf{m}} \quad \bar{f}_{\mathbf{m}}^{(\pm)}=f_{-\mathbf{m}}^{(\mp)}
\end{aligned}
$$

II. 4 Twisted covariant geon quantum fields

URR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$$
\begin{aligned}
& f_{\mathbf{m}}^{(\pm)} \quad \text { positive and negative frequencies } \quad \pm\left|E_{\vec{m}}\right| \\
& f_{\mathbf{m}}^{(\pm)}\left(h^{-1} p\right)=f_{\mathbf{m}}^{(\pm)}(p) \chi_{\mathbf{m}}(h), \quad h \in A \\
& i \partial_{0} f_{\mathbf{m}}^{(\pm)}= \pm\left|E_{\mathbf{m}}\right| f_{\mathbf{m}}^{(\pm)} \\
& \bar{\chi}_{\mathbf{m}}=\chi_{-\mathbf{m}} \quad \bar{f}_{\mathbf{m}}^{(\pm)}=f_{-\mathbf{m}}^{(\mp)} \\
& f_{\mathbf{m}}^{(\pm)}\left(g^{-1} p\right)=\sum_{\vec{m}^{\prime}} f_{\mathbf{m}^{\prime}}^{(\pm)}(p) \mathscr{D}_{\mathbf{m}^{\prime} \vec{m}}(g) \quad[g] \in D^{(1)} / D_{0}^{(1) \infty}
\end{aligned}
$$

II. 4 Twisted covariant geon quantum fields

URR's

$$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$$
\begin{aligned}
& f_{\mathbf{m}}^{(\pm)} \quad \text { positive and negative frequencies } \pm\left|E_{\vec{m}}\right| \\
& f_{\mathbf{m}}^{(\pm)}\left(h^{-1} p\right)=f_{\mathbf{m}}^{(\pm)}(p) \chi_{\mathbf{m}}(h), \quad h \in A \\
& i \partial_{0} f_{\mathbf{m}}^{(\pm)}= \pm\left|E_{\mathbf{m}}\right| f_{\mathbf{m}}^{(\pm)} \\
& \bar{\chi}_{\mathbf{m}}=\chi_{-\mathbf{m}} \quad \bar{f}_{\mathbf{m}}^{(\pm)}=f_{-\mathbf{m}}^{(\mp)} \\
& f_{\mathbf{m}}^{(\pm)}\left(g^{-1} p\right)=\sum_{\vec{m}^{\prime}} f_{\mathbf{m}^{\prime}}^{(\pm)}(p) \mathscr{D}_{\mathbf{m}^{\prime} \vec{m}}(g) \quad[g] \in D^{(1)} / D_{0}^{(1) \infty}
\end{aligned}
$$

\mathscr{D} is a unitary representation of $D^{(1)} / D_{0}^{(1) \infty}$

II. 4 Twisted covariant gean quantum fields

CIR's
 $$
\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right) \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

$$
\begin{aligned}
& f_{\mathbf{m}}^{(\pm)} \quad \text { positive and negative frequencies } \quad \pm\left|E_{\vec{m}}\right| \\
& f_{\mathbf{m}}^{(\pm)}\left(h^{-1} p\right)=f_{\mathbf{m}}^{(\pm)}(p) \chi_{\mathbf{m}}(h), \quad h \in A \\
& i \partial_{0} f_{\mathbf{m}}^{(\pm)}= \pm\left|E_{\mathbf{m}}\right| f_{\mathbf{m}}^{(\pm)} \\
& \bar{\chi}_{\mathbf{m}}=\chi_{-\mathbf{m}} \quad \bar{f}_{\mathbf{m}}^{(\pm)}=f_{-\mathbf{m}}^{(\mp)} \\
& f_{\mathbf{m}}^{(\pm)}\left(g^{-1} p\right)=\sum_{\vec{m}^{\prime}} f_{\mathbf{m}^{\prime}}^{(\pm)}(p) \mathscr{D}_{\mathbf{m}^{\prime} \vec{m}}(g) \quad[g] \in D^{(1)} / D_{0}^{(1) \infty}
\end{aligned}
$$

\mathscr{D} is a unitary representation of $D^{(1)} / D_{0}^{(1) \infty}$

$$
\begin{aligned}
& \varphi_{0}=\sum_{\vec{m}}\left[c_{\vec{m}} f_{\vec{m}}^{(+)}+c_{\vec{m}}^{\dagger} f_{-\vec{m}}^{(-)}\right] \\
& {\left[c_{\mathbf{m}}, c_{\mathbf{n}}^{\dagger}\right]=\delta_{\mathbf{m}, \mathbf{n}}, \quad\left[c_{\mathbf{m}}, c_{\mathbf{n}}\right]=\left[c_{\mathbf{m}}^{\dagger}, c_{\mathbf{n}}^{\dagger}\right]=0}
\end{aligned}
$$

II. 4 Twisted covariant geons

Covariance

II. 4 Twisted covariant geons

Covariance

$$
U(g) c_{\mathbf{m}} U(g)^{-1}=c_{\mathbf{m}^{\prime}} \overline{\mathscr{D}}_{\mathbf{m}^{\prime} \mathbf{m}}(g), \quad U(g) c_{\mathbf{m}}^{\dagger} U(g)^{-1}=c_{\mathbf{m}^{\prime}}^{\dagger} \mathscr{D}_{\mathbf{m}^{\prime} \mathbf{m}}(g)
$$

II. 4 Twisted covariant geons

Covariance

$$
U(g) c_{\mathrm{m}} U(g)^{-1}=c_{\mathrm{m}^{\prime}} \overline{\mathscr{D}}_{\mathrm{m}^{\prime} \mathrm{m}}(g), \quad U(g) c_{\mathrm{m}}^{\dagger} U(g)^{-1}=c_{\mathrm{m}^{\prime}}^{\dagger} \mathscr{D}_{\mathbf{m}^{\prime} \mathrm{m}}(g)
$$

Twisted covariant geon quantum field

$$
\varphi_{\theta}=\sum_{\vec{m}}\left[a_{\vec{m}} f_{\vec{m}}^{(+)}+a_{\vec{m}}^{\dagger} f_{-\vec{m}}^{(-)}\right]
$$

II. 4 Twisted covariant geons

Covariance

$$
U(g) c_{\mathbf{m}} U(g)^{-1}=c_{\mathbf{m}^{\prime}} \overline{\mathscr{T}}_{\mathbf{m}^{\prime} \mathbf{m}}(g), \quad U(g) c_{\mathbf{m}}^{\dagger} U(g)^{-1}=c_{\mathbf{m}^{\prime}}^{\dagger} \mathscr{D}_{\mathbf{m}^{\prime} \mathbf{m}}(g)
$$

Twisted covariant geon quantum field

$$
\varphi_{\theta}=\sum_{\vec{m}}\left[a_{\vec{m}} f_{\vec{m}}^{(+)}+a_{\vec{m}}^{\dagger} f_{-\vec{m}}^{(-)}\right]
$$

Covariance for two-geons states

II. 4 Twisted covariant geons

Covariance

$$
U(g) c_{\mathbf{m}} U(g)^{-1}=c_{\mathbf{m}^{\prime}} \overline{\mathscr{D}}_{\mathbf{m}^{\prime} \mathbf{m}}(g), \quad U(g) c_{\mathbf{m}}^{\dagger} U(g)^{-1}=c_{\mathbf{m}^{\prime}}^{\dagger} \mathscr{D}_{\mathbf{m}^{\prime} \mathbf{m}}(g)
$$

Twisted covariant geon quantum field

$$
\varphi_{\theta}=\sum_{\vec{m}}\left[a_{\vec{m}} f_{\vec{m}}^{(+)}+a_{\vec{m}}^{\dagger} f_{-\vec{m}}^{(-)}\right]
$$

Covariance for two-geons states

$$
\begin{aligned}
a_{\mathrm{m}}^{\dagger} & =\sum_{\mathrm{m}^{\prime}} c_{\mathrm{m}}^{\dagger} \mathrm{e}^{\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathrm{m}^{\prime}} \\
a_{\mathrm{m}} & =\sum_{\mathrm{m}^{\prime}}\left(\mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathrm{m}^{\prime}}\right) c_{\mathrm{m}} \equiv V_{-\mathrm{m}} c_{\mathrm{m}} \\
V_{-\mathrm{m}}^{-1} & =V_{\mathrm{m}}=\sum_{\mathrm{m}^{\prime}} \mathrm{e}^{\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathrm{m}^{\prime}}
\end{aligned}
$$

II. 4 Twisted covariant geons

Covariance

$$
U(g) c_{\mathbf{m}} U(g)^{-1}=c_{\mathbf{m}^{\prime}} \overline{\mathscr{D}}_{\mathbf{m}^{\prime} \mathbf{m}}(g), \quad U(g) c_{\mathbf{m}}^{\dagger} U(g)^{-1}=c_{\mathbf{m}^{\prime}}^{\dagger} \mathscr{D}_{\mathbf{m}^{\prime} \mathbf{m}}(g)
$$

Twisted covariant geon quantum field

$$
\varphi_{\theta}=\sum_{\mathbf{m}, \mathbf{m}^{\prime}}\left(\mathfrak{P}_{\mathbf{m}} \varphi_{0}\right) \mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}^{\prime}}
$$

Covariance for two-geons states

$$
\begin{aligned}
a_{\mathrm{m}}^{\dagger} & =\sum_{\mathbf{m}^{\prime}} c_{\mathrm{m}}^{\dagger} \mathrm{e}^{\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}^{\prime}} \\
a_{\mathrm{m}} & =\sum_{\mathrm{m}^{\prime}}\left(\mathrm{e}^{-\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}^{\prime}}\right) c_{\mathrm{m}} \equiv V_{-\mathrm{m}} c_{\mathrm{m}} \\
V_{-\mathrm{m}}^{-1} & =V_{\mathrm{m}}=\sum_{\mathrm{m}^{\prime}} \mathrm{e}^{\frac{i}{2} m_{i} \theta_{i j} m_{j}^{\prime}} \mathbb{P}_{\mathbf{m}^{\prime}}
\end{aligned}
$$

II. 5 Twisting nonabelian discrete groups

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=x_{i=1}^{k} \mathbb{Z}_{n_{i}}
$$

Maximal abelian subgroup

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup }
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=x_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right]
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=x_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}}
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=x_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \\
F_{\sigma}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho} \otimes \mathbb{P}_{\varrho^{\prime}}, \quad \sigma\left(\varrho, \varrho^{\prime}\right) \in \mathbb{C}
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=x_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \\
F_{\sigma}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho} \otimes \mathbb{P}_{\varrho^{\prime}}, \quad \sigma\left(\varrho, \varrho^{\prime}\right) \in \mathbb{C} \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right)\left(\mathfrak{P}_{\varrho} \varphi_{0}\right) \mathbb{P}_{\varrho^{\prime}}
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty} \equiv G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \\
F_{\sigma}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho} \otimes \mathbb{P}_{\varrho^{\prime}}, \quad \sigma\left(\varrho, \varrho^{\prime}\right) \in \mathbb{C} \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right)\left(\mathfrak{P}_{\varrho} \varphi_{0}\right) \mathbb{P}_{\varrho^{\prime}} \quad \varphi_{\theta \star} \star \varphi_{\theta}=\sum_{\vec{\varrho}, \varrho^{\prime}} \sigma\left(\vec{\varrho}, \bar{\varrho}^{\prime}\right)\left(\mathfrak{P}_{\varrho} \varphi^{-} \varphi_{0}^{2}\right) \mathbb{P}_{\vec{\varrho}}
\end{gathered}
$$

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty}=G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \\
F_{\sigma}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho} \otimes \mathbb{P}_{\varrho^{\prime}}, \quad \sigma\left(\varrho, \varrho^{\prime}\right) \in \mathbb{C} \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right)\left(\mathfrak{P}_{\varrho} \varphi_{0}\right) \mathbb{P}_{\varrho^{\prime}} \quad \varphi_{\theta} \star \varphi_{\theta}=\sum_{\vec{\varrho}, \bar{\varrho}^{\prime}} \sigma\left(\vec{\varrho}, \widehat{\varrho}^{\prime}\right)\left(\mathfrak{P}_{\bar{\varrho}} \varphi_{0}^{2}\right) \mathbb{P}_{\vec{\varrho}}
\end{gathered}
$$

Nonabelian twists imply non-associative spacetimes!

II. 5 Twisting nonabelian discrete groups

Abelian twists imply associative spacetimes

$$
\begin{gathered}
D^{(1)} / D_{0}^{(1) \infty}=G_{0} \supset G_{1} \supset \cdots \supset G_{N}=A \quad A=\times_{i=1}^{k} \mathbb{Z}_{n_{i}} \\
\varrho=\left(\varrho_{0}, \varrho_{1}, \ldots, \varrho_{N}\right) \quad \text { Maximal abelian subgroup } \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}}\left[a_{\varrho} b_{\varrho}^{(+)}+a_{\varrho}^{*} b_{\varrho}^{(-)}\right] \\
a_{\varrho}=\sum_{\varrho^{\prime}} c_{\varrho} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \quad a_{\varrho}^{*}=\sum_{\varrho^{\prime}} c_{\varrho}^{\dagger} \bar{\sigma}\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho^{\prime}} \\
F_{\sigma}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right) \mathbb{P}_{\varrho} \otimes \mathbb{P}_{\varrho^{\prime}}, \quad \sigma\left(\varrho, \varrho^{\prime}\right) \in \mathbb{C} \\
\varphi_{\theta}=\sum_{\varrho, \varrho^{\prime}} \sigma\left(\varrho, \varrho^{\prime}\right)\left(\mathfrak{P}_{\varrho} \varphi_{0}\right) \mathbb{P}_{\varrho^{\prime}} \quad \varphi_{\theta} \star \varphi_{\theta}=\sum_{\vec{\varrho}, \bar{\varrho}^{\prime}} \sigma\left(\vec{\varrho}, \widehat{\varrho}^{\prime}\right)\left(\mathfrak{P}_{\bar{\varrho}} \varphi_{0}^{2}\right) \mathbb{P}_{\vec{\varrho}}
\end{gathered}
$$

Nonabelian twists imply non-associative spacetimes!

$$
\left(\varphi_{\theta} \star \varphi_{\theta}\right) \star \varphi_{\theta} \neq \varphi_{\theta} \star\left(\varphi_{\theta} \star \varphi_{\theta}\right)
$$

That's all for today ... congratulations Manolo!

