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FIG. 1. (a) S1
#S1 ∼= S1

. (b) T 2
#S2 ∼= T 2 ∼= S2

#T 2

Mi\Bi with spheres Sd−1
i (Sd−1

i ∼ Sd−1
) as boundaries ∂(Mi\Bi). Then M1#M2 is obtained by identifying

these spheres. If Mi are oriented, this identification must be done with orientation-reversal so that M1#M2

is oriented.

Connected summing, #, is associative and commutative:

a) M1#(M2#M3)
∼= (M1#M2)#M3 so that we can write M1#M2#M3;

b) M1#M2
∼= M2#M1.

Here are some simple examples:

• d = 1. S1
#S1 ∼= S1

. (See Fig. 1 (a)).

• d = 2. S2
#S2 ∼= S2

.

• d = 2. T 2
#S2

= T 2 ∼= S2
#T 2

. (See Fig. 1 (b)).

• d = 2. T 2
#T 2 ∼= Σ2. Genus two manifold. (See Fig. 2).

As the examples here suggest, for any dimension d, M#Sd ∼= Sd
#M ∼= M.

These considerations can be extended to asymptotically flat manifolds. If M1 is asymptotically flat and

M2 is closed and both are oriented (and of the same dimension), then M1#M2 is obtained by removing balls

Bi from Mi and identifying the boundaries ∂(Mi\Bi) compatibly with orientation as pointed out above. The

connected sum M1#M2 is asymptotically flat and oriented.
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FIG. 2. T 2#T 2 ∼= Σ2. Genus 2 surface.

We will now state certain basic results in low–dimensional topology considering only closed or asymptotically

flat, and oriented manifolds M. In the asymptotically flat case, we will insist that there is only one asymptotic

region. That is, the asymptotic region of M is homeomorphic to the complement of a ball Bd in Rd. In other

words M has one asymptotic region if all its topological complexities can be encompassed within a sphere

Sd−1 ⊂ M.

The case d = 1 is trivial, there being only two such manifolds S1 and R1. (R1 has “one” asymptotic region

in the above sense even though it is not connected.)

The basic results of interest for d = 2 and 3 are as follows.

A. Closed Manifolds

In d = 2 and 3, there is a class of special closed manifolds called prime manifolds. Any closed manifold

M �= Sd for d = 2 or 3 is a unique connected sum of prime manifolds Pα (with the understanding that spheres

are not inserted in the connected sum):

M = #αPα . (3)

(All manifolds have the same dimension. If M = Sd, then (3) is substituted by the triviality Sd = Sd, hence,

a better way to write (3) is M = #αPα mod Sd.)

The uniqueness of (3) implies that a prime Pα cannot be decomposed as the connected sum of two or more

primes. (It is indecomposable just like a stable elementary particle.)

For d = 2, there is just one prime, namely the torus. In that case, T 2#T 2#...#T 2 with k terms is just a

5
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product is associative.

The last two factors in (12) are easily understood, the second term being the N -th direct product of the

MCG of the single geon manifold M∞ = Rd#Pα and SN being the usual permutation group of N elements

that consists of elements which permute the geons.

The first term, namely S , is called the group of “slides” and consists of diffeos which take one prime

through another along non-contractible loops. The existence of such a term is strictly linked with the fact that

the primes are not simply connected. In fact elements of S can be described using elements of fundamental

groups of the single primes Pα. Since we are not interested in the full details of the MCG, we refer the reader

to the literature for further details [22, 23] while we now move on to the analysis of the N = 2 case where we

can also get a better understanding of what slides represent.

As we said the group D(2)∞/D(2)∞
0 of the manifold Rd#Pα#Pα appropriate for two identical geons contains

diffeos corresponding to the exchange E(2) of geons and a new type of diffeos called slides besides the diffeos

D(1)∞/D(1)∞
0 of Rd#Pα.

If Rd#Pα#Pα is represented as in Fig. 3 with bumps representing Pα, the exchange diffeo E(2) can be

regarded as moving the geons so that they exchange places. This diffeo (mod D(2)∞
0 ) is the generator of S2 in

(12). For d = 3, E(2)2 ∈ D(2)∞
0 , but for d = 2 that is not so. Thus for d = 2, we can have geons with fractional

statistics [21].

Slides S (2) arise because for Pα �= Sd, π1(Pα) �= {e} for d = 2 (where Pα = T 2), and d = 3 (in view of the

now-proved Poincaré conjecture). Thus let L be a non-contractable loop threading Rd#P(1)
α , where P(j)

α are

primes and let Bp be a ball containing a point P on L in its interior. Then S (2)
21 , the slide of P(2)
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We will twist geon spacetimes by using D(1)∞/D(1)∞
0

which is consistent with DFR argument
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i∂0f
(±)
m = ±|Em|f (±)

m

χ̄m = χ−m f̄ (±)
m = f (∓)

−m

f (±)
m (g−1p) =

�

�m�

f (±)
m� (p)Dm� �m(g) [g] ∈ D(1)/D(1)∞

0

D is a unitary representation of D(1)/D(1)∞
0

ϕ0 =
�

�m

�
c�mf (+)

�m + c†�mf (−)
−�m

�

[cm, c†n] = δm,n, [cm, cn] = [c†m, c†n] = 0
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II.4 Twisted covariant geons

Covariance
U(g)cmU(g)−1 = cm�D̄m�m(g), U(g)c†mU(g)−1 = c†m�Dm�m(g)

ϕθ =
�

�m

�
a�mf (+)

�m + a†�mf (−)
−�m

�
Twisted covariant geon quantum field

Covariance for two-geons states

a†m =
�

m�

c†me
i
2 miθijm�

j Pm�

am =
�

m�

�
e−

i
2 miθijm�

j Pm�

�
cm ≡ V−m cm

V −1
−m = Vm =

�

m�

e
i
2 miθijm�

j Pm�
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II.4 Twisted covariant geons

Covariance
U(g)cmU(g)−1 = cm�D̄m�m(g), U(g)c†mU(g)−1 = c†m�Dm�m(g)

Twisted covariant geon quantum field

Covariance for two-geons states

a†m =
�

m�

c†me
i
2 miθijm�

j Pm�

am =
�

m�

�
e−

i
2 miθijm�

j Pm�

�
cm ≡ V−m cm

V −1
−m = Vm =

�

m�

e
i
2 miθijm�

j Pm�

ϕθ =
�

m,m�

�
Pmϕ0

�
e−

i
2 miθijm�

j Pm�
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II.5 Twisting nonabelian discrete groups

D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k

i=1Zni

Maximal abelian subgroup

ϕθ =
�

�,��

�
a� b(+)

� + a∗� b(−)
�

�
� = (�0, �1, ..., �N )
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II.5 Twisting nonabelian discrete groups

D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k

i=1Zni

Maximal abelian subgroup

ϕθ =
�

�,��

�
a� b(+)

� + a∗� b(−)
�

�

a� =
�

��

c� σ(�, ��)P�� a∗
� =

�

��
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II.5 Twisting nonabelian discrete groups

D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k
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ϕθ =
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�
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II.5 Twisting nonabelian discrete groups

D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k

i=1Zni

Maximal abelian subgroup

ϕθ =
�

�,��

σ(�, ��)
�
P�ϕ0

�
P��

ϕθ =
�

�,��

�
a� b(+)

� + a∗� b(−)
�

�

a� =
�

��

c� σ(�, ��)P�� a∗
� =

�

��

c†� σ̄(�, ��)P��

� = (�0, �1, ..., �N )

Fσ =
�

�,��
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D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k

i=1Zni

Maximal abelian subgroup

ϕθ =
�

�,��

σ(�, ��)
�
P�ϕ0

�
P��

ϕθ =
�

�,��

�
a� b(+)

� + a∗� b(−)
�

�

a� =
�

��

c� σ(�, ��)P�� a∗
� =

�

��

c†� σ̄(�, ��)P��

� = (�0, �1, ..., �N )

Fσ =
�

�,��

σ(�, ��)P� ⊗ P�� , σ(�, ��) ∈ C

ϕθ � ϕθ =
�

��,���

σ(��, ���)
�
P��ϕ

2
0

�
P��

Nonabelian twists imply non-associative spacetimes!
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II.5 Twisting nonabelian discrete groups

D(1)/D(1)∞
0 ≡ G0 ⊃ G1 ⊃ · · · ⊃ GN = A A = ×k

i=1Zni

Maximal abelian subgroup

ϕθ =
�

�,��

σ(�, ��)
�
P�ϕ0

�
P��

ϕθ =
�

�,��

�
a� b(+)

� + a∗� b(−)
�

�

a� =
�

��

c� σ(�, ��)P�� a∗
� =

�

��

c†� σ̄(�, ��)P��

� = (�0, �1, ..., �N )

Fσ =
�

�,��

σ(�, ��)P� ⊗ P�� , σ(�, ��) ∈ C

ϕθ � ϕθ =
�

��,���

σ(��, ���)
�
P��ϕ

2
0

�
P��

(ϕθ � ϕθ) � ϕθ �= ϕθ � (ϕθ � ϕθ)

Nonabelian twists imply non-associative spacetimes!
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That's all for today ... congratulations Manolo!
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