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In recent years low-D quantum lattice systems have been actively
investigated using a variety of numerical methods:

- Density Matrix Renormalization Group (DMRG)
- Matrix Product States (MPS)
- Projected Entangled Pair States (PEPS)
- Multiscale Entanglement Renormalization Ansatz (MERA)

The DMRG or the MPS are more appropiate to 1D gapped systems
which satisfy the area law: finite subsystem entanglement entropy

However the area law is violated in 1D critical systems which leads to
troubles, that can be partially overcome using finite size methods.

In MPS the finite entanglement entropy is related to finite bond
dimension, so a possible alternative to describe critical systems is
to consider infinite dimensional matrices.



A concrete realization of this idea is provided by Conformal Field Theory.

The Hilbert space of CFT is infinite dimensional and can be used as 
auxiliary space for MPS, supporting long range entanglement. 

Like the standard MPS, the iMPS depends on a set of variational
parameters  that can be fixed by minimization of the energy for a given
model Hamiltonian. 

In some cases one can even construct the parent Hamiltonian. 
The iMPS constructed from the Wess-Zumino-Witten models 
yield parent Hamiltonians related to Haldane-Shastry model. 

CFT has also been applied to construct ansatzs for GS and excitations
in the Fractional Quantum Hall Effect, like the Laughlin and Moore-Read
wave functions. 

These leads to many analogies between iMPS and FQHE wave
functions, with potential applications to non abelian states and TQC. 



Plan of the talk

-- Brief review of MPS

-- Vertex operators and iMPS

-- Applications to spin chains

-- Haldane-Shastry model 

-- Generalizations of the Haldane-Shastry model

-- Relation with FQH wave functions  



Matrix Product States

Consider a 1D spin 1/2 system with N sites and Hamiltonian
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The entanglement entropy in a bipartition A U B scales as

! 

S
A
" log#

In a critical system described by a CFT (periodic BCs)    
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hence one needs very large matrices to describe critical systems
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Another  alternative is to choose infinite dimensional matrices: 
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Tagliacozzo et al
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c = central charge



MPS state

auxiliary space
   (string like)

physical degrees 

  iMPS state
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The simplest CFT: massless boson (c=1)

Consider a chiral free boson field             
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Zero modes,               and  infinite number of oscillators
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The Hilbert space is generated by all the bosonic oscillators (string) 
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Normal ordered exponentials of the boson field
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Vertex operators

Multipoint correlator of Jastrow type
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Application: Laughlin wave function
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Infinite Matrix Product States
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Idea: use the vertex operators as MPS “matrices”

MPS:
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si"Ai si( ) : vertex operator

For a spin system (i.e. Heisenberg spin chain)

Variational parameters
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The “momentum” of vertex is proportional to the spin of each site



Wave function generated by the  iMPS:
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Spin version of the Laughlin wave function

minimization of the energy of the ansatz

(N spins  on a circle)



The sign factors given by the Marshall rule of antiferromagnets
(Perron-Frobenius theorem)
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- Random bond
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Determining the parameters                          in terms of the couplings

- Overlaps with exact wave functions up to N=20 sites
- Spin-spin correlators
- Renyi entropy 

Applications to spin 1/2 Heisenberg like chains:
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Anisotropic spin 1/2 Heisenberg model
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 The iMPS is exact in two cases                
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At the isotropic AFH model 
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Renyi entropy                            and spin correlators (MC method)                        
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Phases

! 

0 " J
2

< J
2c
# 0.241

J
2c

< J
2

< J
MG

= 0.5

J = J
MG

J
MG

< J <$

! 

J
2

> 0

Critical c=1

Spontaneously dimerized
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Dimer spiral phase

Choice of parameters                 -> rotational invariance

! 

" =
1

2

  

! 

z
n

=
exp(" # i$0)exp(2% i(0,2,4,K) /N) even sites

exp(#" + i$0)exp(2% i(0,2,4,K) /N) odd sites

& 
' 
( 

! 

"
0

-> dimerization

! 

" -> “split” of the chain 





The Haldane-Shastry model (1988)
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Spin-spin correlator (Gebhard-Vollhardt 1987)

Eliminate the states doubly occupied (Gutzwiller projection)
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The Gutzwiller states has only spin degrees of freedom
that can be seen as a hardcore boson
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 ground state of the Hamiltonian (Haldane-Shastry)



                           Properties of the HS model

- spin-spin correlation functions decays algebraically

- elementary excitations: spinons (spin 1/2 with fractional statistics)

- degenerate spectrum described by a Quantum Group symmetry

- critical theory at the fixed point of the renormalization group

- this fixed point is described a CFT:                  WZW model
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The HS model and the AF Heisenberg model belong to the
  same universality class described by the WZW model, but
  the AFH model is a marginal irrelevant perturbation of the 
  WZW which give rise to the log corrections in correlators
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Chiral correlators in CFT (conformal blocks)

A CFT is defined by a collection of primary fields
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Fusion rules of the primary fields (skeleton of OPE)
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WZW model SU(2)@ k=1
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Haldane- Shastry wave function 

is the  unique chiral correlator of this model 
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Notice that the “positions” of the spins are equally spaced

The HS wavefunction above is also  good description for rotational
invariant critical and non critical systems (recall the J1-J2 model)

Question: is there are Hamiltonian for which this wave function
Is the GS for generic values of the parameters

  

! 

z
n
, n =1,L,N ?

  

! 

H ="
z

n
z

m

(z
n
" z

m
)
2

+
1

12
w

n,m
(c

n
" c

m
)

# 

$ 
% 

& 

' 
( 

n)m

*
r 
S 

n
+
r 
S 

m

! 

w
n,m =

z
n

+ z
m

z
n
" z

m

, c
n

= w
n,m, E0 =

n#m

$
1

16
n#m

$ w
n,m

2 "
N(N +1)

16

! 

z
n

= e
2" i n /N # c

n
= 0 $n inhomogenous HS model



Review: Null vectors of the SU(2)@k  WZW model

The modes         of the currents operators satisfy the Kac-Moody algebra
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Decoupling of this null vector yields the primary fields (Gepner-Witten)

and the fusion rules of the model
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Decoupling of null vectors in correlators of primary fields
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Spin 1 version of the Haldane-Shastry model 

Take SU(2)@k=2  -> c = 3/2

Primary fields: 
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This theory is equivalent to three Ising models (c= 3 x 1/2)

  

! 

"
a1a2Kan

= #
a1
(z
1
)L#

an
(z

n
)
! 

"
a
(a =1,2,3)

Fusion rules ->  a unique chiral correlator for these fields:

The Hamiltonian contains 4 body spin-spin couplings

Renyi entropy and correlators -> this is a critical models SU(2)@k=2

(Pfaffian like)



Degenerate spin 1/2 version of the Haldane-Shastry model 

! 

"
1/ 2
#"

1/ 2
= "

0
+ "

1

Take again  SU(2)@k=2

Fusion rule of spin 1/2 field

! 

2
N / 2"1Number of chiral correlators of N spin 1/2 fields = 

Now the GS is NOT unique but degenerate !!

Example N = 6 -> 4 GS

The Hamiltonian contains 4 body terms



Mixing spin 1/2 and spin 1 for SU(2)@k=2
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Laughlin wave function: boson (c=1)
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Moore-Read wave function for FQHE @5/2  (1992)  
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The quasiholes of the Moore-Read state: non abelian anyons
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Basis for Topological Quantum Computation
                         (braids -> gates)
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 FQHE                CFT                   Spin Models

Electron                 field                spin 1
Quasihole              field                spin 1/2

Braiding of        Monodromy            Adiabatic
quasiholes       of correlators         change of H

An analogy via CFT
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live effectively in 2 dimensions

To have “braiding” for the spin systems we need to
generalize these models to 2D



SU(2)@k=1,  spin 1/2, D=2

u and v are the spinor coordinates. This is the GS of the Hamiltonian
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The wave function is defined in the sphere

2D generalization of the Haldane-Shastry model 



Low energy spectrum on the Platonic Solids
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The SU(2)@k=2 in 2D is the analogue of the Moore-Read state

In the FQHE the z’s are the positions of the electrons or quasiholes

In the spin models the z’s parametrize the couplings of the
Hamiltonian. They are not real positions of the spins.

Braiding amounts to change these couplings is a certain way.

So in principle one can do topological quantum computation
in these spin systems.

But one has first to show that  Holonomy = Monodromy

This problem has been recently solved for the Moore-Read state
(Bonderson, Gurarie, Nayak, 2010)



Conclusions

- Using CFT we extended the MPS to infinite dimensional matrices

- Description of critical and non critical systems

- Generalization of the Haldane-Shastry model in several directions
      1) inhomogenous
      2) higher spin
      3) degenerate ground states
      4) 1D -> 2D
      5) analogues of non abelian FQHE

Prospects

- Physics of the generalized HS Hamiltonians 

- Relation between the iMPS and MERA

- TCQ with HS models




