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what is [a nontrivial fermionic] QFT [at finite T and µ] ? 



Gross-Neveu Models

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

GN2

�GN2
NJL2

Gross/Neveu, 1974
Nambu/Jona-Lasinio, 1961

⇥ � �5 ⇥

� � ei� ⇥5
�



Gross-Neveu Models

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

GN2

�GN2
NJL2

Gross/Neveu, 1974
Nambu/Jona-Lasinio, 1961

⇥ � �5 ⇥

� � ei� ⇥5
�

• renormalizable
• asymptotically free
• chiral symmetry breaking
• large Nf  limit



Gross-Neveu Models

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

GN2

�GN2
NJL2

            phase diagram?(T, µ)

Gross/Neveu, 1974
Nambu/Jona-Lasinio, 1961

⇥ � �5 ⇥

� � ei� ⇥5
�

• renormalizable
• asymptotically free
• chiral symmetry breaking
• large Nf  limit



Wolff, 1985

uniform condensate

Phase diagram of 
Gross-Neveu model

m = 0

m 6= 0



Wolff, 1985

uniform condensate

Phase diagram of 
Gross-Neveu model

m = 0

m 6= 0

Thies & 
Urlichs, 2005

periodic, 
crystalline, 

phase

Basar, GD, 
Thies, 2009

m = 0

m 6= 0



Wolff, 1985

uniform condensate

Phase diagram of 
Gross-Neveu model

m = 0

m 6= 0

Thies & 
Urlichs, 2005

periodic, 
crystalline, 

phase

Basar, GD, 
Thies, 2009

m = 0

m 6= 0



Wolff, 1985
Barducci et al, 1995

uniform condensate
( same as GN2 )

Phase diagram of 
NJL2 model

m = 0

m 6= 0



Wolff, 1985
Barducci et al, 1995

uniform condensate
( same as GN2 )

Phase diagram of 
NJL2 model

m = 0

m 6= 0

Schön, Thies, 2000

Basar, GD, Thies, 2009

“chiral spiral”

⇥(x)� i�(x) = A e2iµx

m = 0



Wolff, 1985
Barducci et al, 1995

uniform condensate
( same as GN2 )

Phase diagram of 
NJL2 model

m = 0

m 6= 0

Schön, Thies, 2000

Basar, GD, Thies, 2009

“chiral spiral”

⇥(x)� i�(x) = A e2iµx

m = 0

chiral spiral



Gross-Neveu: GN2

gap equation:

⇥(x) =
�

�⇥(x)
ln det (i⇤/� ⇥(x))

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

scalar condensate �

Le� = ⇥̄i⇤/⇥ � � ⇥̄⇥ +
1
2
�2



Gross-Neveu: GN2

gap equation:

⇥(x) =
�

�⇥(x)
ln det (i⇤/� ⇥(x))

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

scalar condensate �

Le� = ⇥̄i⇤/⇥ � � ⇥̄⇥ +
1
2
�2

�(x) = �⇥̄(x)⇥(x)⇥

Hartree-Fock : �
�i⇤x �(x)
�(x) i⇤x

⇥
⇥ = E⇥



Gross-Neveu: GN2

gap equation:

⇥(x) =
�

�⇥(x)
ln det (i⇤/� ⇥(x))

at finite T, µ

LGN = �̄ i ⇤/� +
g2

2
�
�̄�

⇥2

scalar condensate �

Le� = ⇥̄i⇤/⇥ � � ⇥̄⇥ +
1
2
�2

�(x) = �⇥̄(x)⇥(x)⇥

Hartree-Fock : �
�i⇤x �(x)
�(x) i⇤x

⇥
⇥ = E⇥



scalar condensate � pseudoscalar condensate �

chiral Gross-Neveu or NJL2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

Le� = ⌅̄i⇧/⌅ � ⌅̄
�
⇤ � i �5 ⇥

⇥
⌅ +

1
2

�
⇤2 + ⇥2

⇥

� = ⇥ � i�



scalar condensate � pseudoscalar condensate �

chiral Gross-Neveu or NJL2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

Le� = ⌅̄i⇧/⌅ � ⌅̄
�
⇤ � i �5 ⇥

⇥
⌅ +

1
2

�
⇤2 + ⇥2

⇥

gap equation(s) :

�(x) =
⇥

⇥��(x)
ln det

�
i⇧/�

⇤
⌅(x)� i �5 ⇤(x)

⌅⇥
� = ⇥ � i�



scalar condensate � pseudoscalar condensate �

chiral Gross-Neveu or NJL2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

Le� = ⌅̄i⇧/⌅ � ⌅̄
�
⇤ � i �5 ⇥

⇥
⌅ +

1
2

�
⇤2 + ⇥2

⇥

gap equation(s) :

�(x) =
⇥

⇥��(x)
ln det

�
i⇧/�

⇤
⌅(x)� i �5 ⇤(x)

⌅⇥
� = ⇥ � i�

Hartree-Fock :

�(x) = ⇥⇥̄(x)⇥(x)⇤ � i ⇥⇥̄(x)i�5⇥(x)⇤

�
�i⇥x �(x)
��(x) i⇥x

⇥
� = E�



scalar condensate � pseudoscalar condensate �

chiral Gross-Neveu or NJL2

LNJL = ⇥̄ i ⌅/ ⇥ +
g2

2

⇤�
⇥̄⇥

⇥2 +
�
⇥̄i�5⇥

⇥2
⌅

Le� = ⌅̄i⇧/⌅ � ⌅̄
�
⇤ � i �5 ⇥

⇥
⌅ +

1
2

�
⇤2 + ⇥2

⇥

gap equation(s) :

�(x) =
⇥

⇥��(x)
ln det

�
i⇧/�

⇤
⌅(x)� i �5 ⇤(x)

⌅⇥
� = ⇥ � i�

Hartree-Fock :

�(x) = ⇥⇥̄(x)⇥(x)⇤ � i ⇥⇥̄(x)i�5⇥(x)⇤

�
�i⇥x �(x)
��(x) i⇥x

⇥
� = E�

at finite T, µ



inhomogeneous phase?

single kink: �(x) = m tanh(m x)

Dashen-Hasslacher-Neveu (1975): inverse scattering 

V± = �2 ± �⇥ “reflectionless” potentials 

gap equation at zero temperature and density:



inhomogeneous phase?

single kink: �(x) = m tanh(m x)

Dashen-Hasslacher-Neveu (1975): inverse scattering 

V± = �2 ± �⇥ “reflectionless” potentials 

gap equation at zero temperature and density:

twisted kink: 

Shei (1976): inverse scattering 

“reflectionless” Dirac operator

�(x) = m
cosh

�
m sin( �

2 ) x� i �
2

⇥

cosh
�
m sin( �

2 ) x
⇥



2. ansatz reduces gap eqn. to NLSE, a soluble nonlinear 
ODE !
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The parameter A sets the scale of the condensate
and its

length scale:

A ¼ Aðm; !;"Þ $ %2imscði!=4Þndði!=4Þ
(4.13)

where sc ¼ sn=cn and nd ¼ 1=dn are Jacobi e
lliptic func-

tions [37,38
]. The functions #

and $ are the Weierstrass

sigma and zeta fu
nctions [37–

40], some relevant pr
operties

of which are
given in App

endix B.We have chose
n real and

imaginary half-periods
: !1 ¼ Kð"Þ and !3 ¼ iK0 $

iKð1% "Þ. Both periods are therefore controlled by the

single (real) elliptic parameter 0 & " & 1. Also, %3 $

$ðiK0Þ is purely imaginary. The parameter ! 2

½0; 4K0ð"Þ( is related to the angle through which the con-

densate rota
tes in one period L ¼ 2K=A:

!ðxþ LÞ ¼ e2i’!ðxÞ
(4.14)

where the a
ngle ’ is a function

of ! and ",

’ ¼ K

!
%i$ði!=2Þ þ insði!=2Þ %

%!

2K

"
: (4.15)

Here we used the quasiperiodi
city property (B2) of the

#

function. N
ote that ’ and % $ $ðKÞ are real, and when

" ! 1, we have ’
! %!=2. This cry

stalline com
plex kink

is plotted in
Fig. 7, show

ing the wind
ing of the ki

nk over a

period.

It is also useful to visualize the condensate
(4.12) in

terms of its amplitude and
phase: ! ¼ Mei& . The modulus

squared is a
bounded per

iodic functio
n, with perio

d 2K=A:

M2 $ j!ðxÞj2 ¼ A2ðP ðAxþ iK0Þ % P ði!=2ÞÞ: (4.16)

Here we used the quasiperiodi
city property (B2) of the

#

function, tog
ether with the product

identity (B12) relati
ng

the # and P functions. T
he phase & can be expressed

as

&ðxÞ ¼ Að%i$ði!=2Þ þ insði!=2ÞÞx

þ
i

2
ln

!
#ðAxþ iK0 þ i!=2Þ
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"
þ
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2
: (4.17)

The amplitude and p
hase are plo

tted in Fig. 8
. Note that th

e

amplitude is pe
riodic while

the phase ch
anges by 2’ over

each period.

The complex crystalline condensate
in (4.12) satisfi

es

the NLSE:

!00 % 2j!j2!% ið2Ainsði!=2ÞÞ!
0

% A2ð3P ði!=2Þ % ns2ði!=2ÞÞ! ¼ 0: (4.18)

Comparing this equation with the NLSE (2.13), we can

extract the functions aðEÞ, bð
EÞ, and N ðEÞ appearing in

(2.12), there
by determining the exact diago

nal resolven
t.

To express thes
e functions in

a compact form, we define

some properties o
f the associated fermionic spectrum for

the BdG equation (1.8). This
spectrum has positive and

negative energy continua starting at E ¼ *m, together

with a single bound band in the gap, as depicted in

Fig. 9. In contrast to the case for the real kink crystal in

Sec. III, her
e the bound

band is not center
ed in the middle

of the gap, b
ut is displac

ed from the center. T
he parameter

! characterize
s this asymmetry in the spectrum

. The band

edges are functions of both the winding angle ! and the

elliptic para
meter ":

E1 ¼ %m; E2 ¼ mð%1þ 2nc2ði!=4;"ÞÞ;

E3 ¼ mð%1þ 2nd2ði!=4;"ÞÞ;
E4 ¼ þm:

(4.19)

In the infini
te period limit (" ! 1), the band

contracts to
a

single bound
state, with E2 ¼ E3 ¼ m cosð!=2Þ, and this

is

precisely the bound state of the single complex kink, as

shown in Fig. 6. At a
finite period

, but when ! ¼ 2K0ð"Þ,

we find E2 ¼ %E3 ¼ %ð1%
ffiffiffi
"

p

1þ
ffiffiffi
"

p Þm, and the band is centered

symmetrically about 0; this
is precisely

the band spectrum

of the real kink array in Sec. III. Th
us, we can roughlyFIG. 7 (color onlin

e). Plot of the
complex kink crystal con-

densate (4.1
2), for " ¼ 0:8 and ! ¼ 3Kð0:2Þ=2, illustratin

g how

the kink winds aroun
d zero each period, with

out the amplitude

vanishing. T
he kink is the solid (red) line, a

nd the surface is

shown simply to illustrate tha
t both the amplitude and

the phase

are changing over each period.
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E

FIG. 6 (color onlin
e). Plot of the f

ermion single-partic
le spec-

trum for the single complex kink (4.5), as a function of the

winding parameter !. Note
that for ! ¼ ' (when the condens

ate

is real) the
bound state is at 0, but

for all other
values of !

the

bound state lies asymmetrically in the gap.
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E1 ¼ %m; E2 ¼ mð%1þ 2nc2ði!=4;"ÞÞ;

E3 ¼ mð%1þ 2nd2ði!=4;"ÞÞ;
E4 ¼ þm:

(4.19)

In the infini
te period limit (" ! 1), the band

contracts to
a

single bound
state, with E2 ¼ E3 ¼ m cosð!=2Þ, and this

is

precisely the bound state of the single complex kink, as

shown in Fig. 6. At a
finite period

, but when ! ¼ 2K0ð"Þ,

we find E2 ¼ %E3 ¼ %ð1%
ffiffiffi
"

p

1þ
ffiffiffi
"

p Þm, and the band is centered

symmetrically about 0; this
is precisely

the band spectrum

of the real kink array in Sec. III. Th
us, we can roughlyFIG. 7 (color onlin

e). Plot of the
complex kink crystal con-

densate (4.1
2), for " ¼ 0:8 and ! ¼ 3Kð0:2Þ=2, illustratin

g how

the kink winds aroun
d zero each period, with

out the amplitude

vanishing. T
he kink is the solid (red) line, a

nd the surface is

shown simply to illustrate tha
t both the amplitude and

the phase

are changing over each period.

π
2π
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m

E

FIG. 6 (color onlin
e). Plot of the f

ermion single-partic
le spec-

trum for the single complex kink (4.5), as a function of the

winding parameter !. Note
that for ! ¼ ' (when the condens

ate

is real) the
bound state is at 0, but

for all other
values of !

the

bound state lies asymmetrically in the gap.
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four parameters

GD & Basar, PRL, PRD, 2008

“finite-gap” Dirac system

exact spectral function/density of states �

1. gap equation in terms of Gorkov resolvent R(x;E) = ⇥x| 1
E � H

|x⇤

gap equation at nonzero temperature and density:
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no charge conjugation symmetry 
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�
�i�x �(x)
��(x) i�x

⇥

q

�(x) = A e2 i q x



phase diagram of real Gross-Neveu (GN2) 

gap equation solution has 2 parameters

grand potential: � = � 1
�

⇤
dE ⇥(E) ln

�
1 + e��(E�µ)

⇥

minimize Ψ w.r.t. parameters, as function of T and µ 

Basar, GD, 
Thies, 2009
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phase diagram of chiral Gross-Neveu (NJL2) 

gap equation solution has 4 parameters

grand potential: � = � 1
�

⇤
dE ⇥(E) ln

�
1 + e��(E�µ)

⇥

minimize Ψ w.r.t. parameters, as function of T and µ 

⇥(x)� i �(x) = A(T ) e2iµ x

Schön, Thies, 2000
Basar, GD, Thies, 2009

“chiral spiral”
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why can these gap equations be solved?



Ginzburg-Landau approach 

� = � 1
�

⇤
dE ⇥(E) ln

�
1 + e��(E�µ)

⇥

⇤(E) =
1
⇥

Im
�

dx trR(x;E + i�)

�GL =
�

n

�n(T, µ)
⇥

ĝn(x)
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Ginzburg-Landau for NJL2 (complex condensate)
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for Gross-Neveu and NJL we can solve the 
Ginzburg-Landau expansion to all orders! 
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conserved quantities of mKdV/AKNS

AKNS: Ablowitz, Kaup, Newell, Segur

mKdV: modified Korteweg-de Vries

V± = �2 ± �⇥Miura transformation:
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implication:

Gross-Neveu:

Ginzburg-Landau expansion = mKdV hierarchy

NJL:

 Ginzburg-Landau expansion = AKNS hierarchy

Başar, GD, Thies, 2009
Correa, GD, Plyushchay, 2009



Q: is this just “magic” of 1+1 dimensions, 

or 

could there be some integrable structure 
in 2+1 dimensions?



integrability in 2+1 dimensions?

DRAFT – not for circulation – DRAFT

Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

Gökçe Başar and Gerald V. Dunne

Department of Physics, University of Connecticut, Storrs, CT 06269

(Dated: November 10, 2010)

Recent studies of the thermodynamical phase diagrams of the Gross-Neveu model (GN2),

and its chiral cousin, the NJL2 model, have shown that there are phases with inhomoge-

neous crystalline condensates. These (static) condensates can be found analytically because

the relevant gap equations can be reduced to the nonlinear Schrödinger equation, whose

deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Re-

cently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon

scattering in the massless GN2 model satisfy the Sinh-Gordon equation and can be mapped

directly to classical string solutions in AdS3. Here we suggest a geometrical perspective for

this result, based on the generalized Weierstrass representation for the embedding of 2d sur-

faces into 3d spaces, which explains why these well-known integrable systems underlie these

various Gross-Neveu gap equations, and why there should be a connection to classical string

theory solutions. This geometric viewpoint may be useful for higher dimensional models,

where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov

systems.

The Gross-Neveu model [1–3] is a remarkable 1 + 1 dimensional interacting fermionic model

that shares some important features with quantum chromodynamics (QCD): it is asymptotically

free, it has dynamical mass generation, it has dynamical chiral symmetry breaking, and it has

a limit of large number of flavors that behaves like the ’t Hooft limit of QCD. It has been well

studied, but some surprising features have come to light only relatively recently. For example,

at finite temperature and density, in the Nf � ⇥ limit, the phase diagram shows regions in

which the system prefers to form a spatially inhomogeneous crystalline condensate. This is true

both of the Gross-Neveu model, GN2, that has a discrete chiral symmetry [4, 5], and of the

NJL2 model that has a continuous chiral symmetry [6, 7], although the phase diagrams are very

di�erent. The inhomogeneous phase of the GN2 model has been verified on the lattice [8]. Similar

1d inhomogeneous condensates have also been found in higher-dimensional models [9–11]. The

relevant gap equations can be solved analytically at finite temperature and density because of a

rich integrability structure underlying this model. Some aspects of this integrability were recognized

already in the zero temperature and density analyses [2, 12–14], but the integrability properties

JHEP, 2011
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Kink dynamics, sinh-Gordon solitons and strings in AdS3

from the Gross-Neveu model

Andreas Klotzek∗ and Michael Thies†

Institut für Theoretische Physik III, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
(Dated: June 3, 2010)

Guided by a study of kink-antikink scattering in the Gross-Neveu model and other known so-
lutions of the Hartree-Fock approach of a particularly simple type, we demonstrate a quantitative
relationship between three different problems: Quantized 1+1-dimensional fermions in the large N
limit, solitons of the classical sinh-Gordon equation and classical strings moving in 3-dimensional
anti de Sitter space. Aside from throwing light on the relationship between quantum field theory
and classical physics, this points to the full solvability of the dynamical N-kink-antikink problem in
the Gross-Neveu model.

PACS numbers: 11.10.Kk,11.10.St,11.25.Pm

I. INTRODUCTION

The simplest variant of the Gross-Neveu (GN) model
family [1] consists of N species of massless Dirac fermions
in 1+1 dimensions, interacting via a scalar-scalar four-
fermion interaction,

L =
N
∑

k=1

ψ̄ki∂/ψk +
g2

2

(

N
∑

k=1

ψ̄kψk

)2

. (1)

This model has asymptotic freedom, no scale, and a dis-
crete chiral symmetry ψ → γ5ψ which gets broken spon-
taneously in the vacuum, yielding a dynamical fermion
mass m via dimensional transmutation. Throughout this
paper we will be exclusively dealing with the ’t Hooft
limit N → ∞, Ng2 = const. [2]. As is well known, the
attractive interaction gives rise to a marginally bound
scalar fermion-antifermion state (the σ-meson) with mass
2m and to a rich variety of multi-fermion bound states
(baryons) [3, 4]. Moreover, the model features a non-
trivial phase diagram as a function of temperature and
chemical potential with three distinct phases (massless
and massive Fermi gas, baryon crystal) meeting at a tri-
critical point [5]. It is of interest not only as a toy model
for strong interaction particle physics, but also because
of its almost literal recurrence in condensed matter sys-
tems such as conducting polymers, carbon nanotubes or
quasi-one-dimensional superconductors [6]. In the large
N limit, baryons as well as baryonic matter and the phase
diagram can be determined with semiclassical methods,
notably the relativistic Hartree-Fock (HF) method [7].
Relativity enters in two ways — use of the Dirac equa-
tion instead of the Schrödinger equation, and taking into
account the filled, interacting Dirac sea. Recently we
have started to address time-dependent questions by gen-
eralizing this approach to time-dependent Hartree-Fock

∗andreas@theorie3.physik.uni-erlangen.de
†thies@theorie3.physik.uni-erlangen.de

(TDHF) [8]. In a first step, the boosted baryon was con-
sidered, demonstrating a covariant energy-momentum re-
lation and deriving exact structure functions as fermion
momentum distributions in the infinite momentum frame
[9]. In the present work, we proceed to the next level of
complication and study baryon-baryon scattering, an is-
sue which has not yet been discussed in any detail in
the large N limit. This may well be the first concrete
realization of Witten’s vision about baryon-baryon inter-
actions in the large N limit, originally developed in a
non-relativistic context [10]. Aside from the genuine in-
terest in the scattering problem of composite, relativistic
bound states, we hope to get further insights into the
mathematical structure of the GN model by enlarging
the spectrum of questions addressed in the framework of
the TDHF approach.
Before embarking on this problem, it may be worth-

while to recapitulate some of the experience gained with
previous applications of the HF approach. The basic
mathematical problem can be formulated in a single line
as

(i∂/− S)ψα = 0, S = −g2
occ
∑

β

ψ̄βψβ , (2)

where the ψα are c-number spinors (single particle wave
functions). Since the sum over occupied states includes
the Dirac sea, this is an infinite system of coupled, non-
linear partial differential equations. At finite tempera-
ture and chemical potential, a similar formula applies,
but the sum includes thermal occupation numbers. Ex-
cept in the case of a homogeneous mean field S which
acts like a dynamical mass, the solution of Eqs. (2) is
highly non-trivial. Nevertheless, for the model defined in
Eq. (1), closed analytical solutions have been found in
all cases studied so far. If one examines in detail how
self-consistency is achieved, one notices that all known
solutions fall into two classes: Type I solutions are such
that the contribution from every occupied single particle
state is either zero or proportional to the full mean field
S,

ψ̄αψα = λαS. (3)

Hartree-Fock:

JPA, 2010

(i⇤/� �(x)) ⇥k = 0

�(x) =
�

k

⇥̄k(x)⇥k(x)
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2m and to a rich variety of multi-fermion bound states
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terest in the scattering problem of composite, relativistic
bound states, we hope to get further insights into the
mathematical structure of the GN model by enlarging
the spectrum of questions addressed in the framework of
the TDHF approach.
Before embarking on this problem, it may be worth-

while to recapitulate some of the experience gained with
previous applications of the HF approach. The basic
mathematical problem can be formulated in a single line
as

(i∂/− S)ψα = 0, S = −g2
occ
∑

β

ψ̄βψβ , (2)

where the ψα are c-number spinors (single particle wave
functions). Since the sum over occupied states includes
the Dirac sea, this is an infinite system of coupled, non-
linear partial differential equations. At finite tempera-
ture and chemical potential, a similar formula applies,
but the sum includes thermal occupation numbers. Ex-
cept in the case of a homogeneous mean field S which
acts like a dynamical mass, the solution of Eqs. (2) is
highly non-trivial. Nevertheless, for the model defined in
Eq. (1), closed analytical solutions have been found in
all cases studied so far. If one examines in detail how
self-consistency is achieved, one notices that all known
solutions fall into two classes: Type I solutions are such
that the contribution from every occupied single particle
state is either zero or proportional to the full mean field
S,

ψ̄αψα = λαS. (3)

Hartree-Fock:
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Guided by a study of kink-antikink scattering in the Gross-Neveu model and other known so-
lutions of the Hartree-Fock approach of a particularly simple type, we demonstrate a quantitative
relationship between three different problems: Quantized 1+1-dimensional fermions in the large N
limit, solitons of the classical sinh-Gordon equation and classical strings moving in 3-dimensional
anti de Sitter space. Aside from throwing light on the relationship between quantum field theory
and classical physics, this points to the full solvability of the dynamical N-kink-antikink problem in
the Gross-Neveu model.
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I. INTRODUCTION

The simplest variant of the Gross-Neveu (GN) model
family [1] consists of N species of massless Dirac fermions
in 1+1 dimensions, interacting via a scalar-scalar four-
fermion interaction,

L =
N
∑

k=1

ψ̄ki∂/ψk +
g2

2

(

N
∑

k=1

ψ̄kψk

)2

. (1)

This model has asymptotic freedom, no scale, and a dis-
crete chiral symmetry ψ → γ5ψ which gets broken spon-
taneously in the vacuum, yielding a dynamical fermion
mass m via dimensional transmutation. Throughout this
paper we will be exclusively dealing with the ’t Hooft
limit N → ∞, Ng2 = const. [2]. As is well known, the
attractive interaction gives rise to a marginally bound
scalar fermion-antifermion state (the σ-meson) with mass
2m and to a rich variety of multi-fermion bound states
(baryons) [3, 4]. Moreover, the model features a non-
trivial phase diagram as a function of temperature and
chemical potential with three distinct phases (massless
and massive Fermi gas, baryon crystal) meeting at a tri-
critical point [5]. It is of interest not only as a toy model
for strong interaction particle physics, but also because
of its almost literal recurrence in condensed matter sys-
tems such as conducting polymers, carbon nanotubes or
quasi-one-dimensional superconductors [6]. In the large
N limit, baryons as well as baryonic matter and the phase
diagram can be determined with semiclassical methods,
notably the relativistic Hartree-Fock (HF) method [7].
Relativity enters in two ways — use of the Dirac equa-
tion instead of the Schrödinger equation, and taking into
account the filled, interacting Dirac sea. Recently we
have started to address time-dependent questions by gen-
eralizing this approach to time-dependent Hartree-Fock
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(TDHF) [8]. In a first step, the boosted baryon was con-
sidered, demonstrating a covariant energy-momentum re-
lation and deriving exact structure functions as fermion
momentum distributions in the infinite momentum frame
[9]. In the present work, we proceed to the next level of
complication and study baryon-baryon scattering, an is-
sue which has not yet been discussed in any detail in
the large N limit. This may well be the first concrete
realization of Witten’s vision about baryon-baryon inter-
actions in the large N limit, originally developed in a
non-relativistic context [10]. Aside from the genuine in-
terest in the scattering problem of composite, relativistic
bound states, we hope to get further insights into the
mathematical structure of the GN model by enlarging
the spectrum of questions addressed in the framework of
the TDHF approach.
Before embarking on this problem, it may be worth-

while to recapitulate some of the experience gained with
previous applications of the HF approach. The basic
mathematical problem can be formulated in a single line
as

(i∂/− S)ψα = 0, S = −g2
occ
∑

β

ψ̄βψβ , (2)

where the ψα are c-number spinors (single particle wave
functions). Since the sum over occupied states includes
the Dirac sea, this is an infinite system of coupled, non-
linear partial differential equations. At finite tempera-
ture and chemical potential, a similar formula applies,
but the sum includes thermal occupation numbers. Ex-
cept in the case of a homogeneous mean field S which
acts like a dynamical mass, the solution of Eqs. (2) is
highly non-trivial. Nevertheless, for the model defined in
Eq. (1), closed analytical solutions have been found in
all cases studied so far. If one examines in detail how
self-consistency is achieved, one notices that all known
solutions fall into two classes: Type I solutions are such
that the contribution from every occupied single particle
state is either zero or proportional to the full mean field
S,

ψ̄αψα = λαS. (3)

Hartree-Fock:
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I. INTRODUCTION

The simplest variant of the Gross-Neveu (GN) model
family [1] consists of N species of massless Dirac fermions
in 1+1 dimensions, interacting via a scalar-scalar four-
fermion interaction,

L =
N
∑

k=1

ψ̄ki∂/ψk +
g2

2

(

N
∑

k=1

ψ̄kψk

)2

. (1)

This model has asymptotic freedom, no scale, and a dis-
crete chiral symmetry ψ → γ5ψ which gets broken spon-
taneously in the vacuum, yielding a dynamical fermion
mass m via dimensional transmutation. Throughout this
paper we will be exclusively dealing with the ’t Hooft
limit N → ∞, Ng2 = const. [2]. As is well known, the
attractive interaction gives rise to a marginally bound
scalar fermion-antifermion state (the σ-meson) with mass
2m and to a rich variety of multi-fermion bound states
(baryons) [3, 4]. Moreover, the model features a non-
trivial phase diagram as a function of temperature and
chemical potential with three distinct phases (massless
and massive Fermi gas, baryon crystal) meeting at a tri-
critical point [5]. It is of interest not only as a toy model
for strong interaction particle physics, but also because
of its almost literal recurrence in condensed matter sys-
tems such as conducting polymers, carbon nanotubes or
quasi-one-dimensional superconductors [6]. In the large
N limit, baryons as well as baryonic matter and the phase
diagram can be determined with semiclassical methods,
notably the relativistic Hartree-Fock (HF) method [7].
Relativity enters in two ways — use of the Dirac equa-
tion instead of the Schrödinger equation, and taking into
account the filled, interacting Dirac sea. Recently we
have started to address time-dependent questions by gen-
eralizing this approach to time-dependent Hartree-Fock
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(TDHF) [8]. In a first step, the boosted baryon was con-
sidered, demonstrating a covariant energy-momentum re-
lation and deriving exact structure functions as fermion
momentum distributions in the infinite momentum frame
[9]. In the present work, we proceed to the next level of
complication and study baryon-baryon scattering, an is-
sue which has not yet been discussed in any detail in
the large N limit. This may well be the first concrete
realization of Witten’s vision about baryon-baryon inter-
actions in the large N limit, originally developed in a
non-relativistic context [10]. Aside from the genuine in-
terest in the scattering problem of composite, relativistic
bound states, we hope to get further insights into the
mathematical structure of the GN model by enlarging
the spectrum of questions addressed in the framework of
the TDHF approach.
Before embarking on this problem, it may be worth-

while to recapitulate some of the experience gained with
previous applications of the HF approach. The basic
mathematical problem can be formulated in a single line
as

(i∂/− S)ψα = 0, S = −g2
occ
∑

β

ψ̄βψβ , (2)

where the ψα are c-number spinors (single particle wave
functions). Since the sum over occupied states includes
the Dirac sea, this is an infinite system of coupled, non-
linear partial differential equations. At finite tempera-
ture and chemical potential, a similar formula applies,
but the sum includes thermal occupation numbers. Ex-
cept in the case of a homogeneous mean field S which
acts like a dynamical mass, the solution of Eqs. (2) is
highly non-trivial. Nevertheless, for the model defined in
Eq. (1), closed analytical solutions have been found in
all cases studied so far. If one examines in detail how
self-consistency is achieved, one notices that all known
solutions fall into two classes: Type I solutions are such
that the contribution from every occupied single particle
state is either zero or proportional to the full mean field
S,

ψ̄αψα = λαS. (3)
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As the right-hand side is constant, we have succeeded
in deriving a non-linear partial differential equation for
the self-consistent TDHF potential, at least for type I
solutions. If we disregard the kink crystal for the mo-
ment and focus on localized solutions where S reaches
its vacuum value asymptotically, we can even determine
the constant. In units where S = m = 1 in the vacuum,
we infer from Eq. (55) that

h1h2!
2 = −1

4
. (56)

In normal coordinates, the final equation for S reads

S∂µ∂
µS − ∂µS∂

µS + S4 − 1 = 0. (57)

It is satisfied by the kink and the kink-antikink solutions
in arbitrary Lorentz frames, but also by the kink crystal
for which we have not derived the value of the constant,
Eq. (56). One can write down a simple (although singu-
lar) Lagrangian which yields Eq. (57) as Euler-Lagrange
equation, namely

L =
1

S2

(

∂µS∂
µS − S4 − 1

)

. (58)

However, this should not be interpreted as effective
bosonic field theory for the GN model. If one derives
the Hamiltonian density H from L in the usual way, one
does not get the correct energy density. The reason is
presumably the fact that we already made use of proper-
ties of the solution when deriving Eq. (57), notably the
fact that we are dealing with a type I solution of the
TDHF problem. In this way we are not really able to in-
tegrate out the fermions in full generality and construct
the effective bosonic action for arbitrary scalar fields.
Eq. (57) does not yet resemble any of the well-known

equations with solitonic solutions. The closest we could
come to a more familiar looking form was by means of
the change of variables [17]

S2 = eθ, θ = lnS2, (59)

which reduces Eq. (57) to the sinh-Gordon equation,

∂µ∂
µθ + 4 sinh θ = 0. (60)

However we loose the information about the sign of S
and hence also the Z2 chiral symmetry in this nonlinear
transformation – the two vacua S = ±1 are mapped onto
the same value θ = 0. Since the zero’s of S give rise to
singularities of θ, it is easy to reconstruct a solution S of
Eq. (57) from a singular solitonic solution θ of the sinh-
Gordon equation, so that the mapping is nevertheless
quite useful. With this caveat, the matrices C1, C2 and
the linear equations (52) can then be identified with the
Lax pair of the sinh-Gordon equation.
Notice that the coefficient 4 in Eq. (60) has a sim-

ple physical interpretation: The linearized sinh-Gordon
equation,

(∂µ∂
µ + 4) θ = 0, (61)

yields the Klein-Gordon equation for a scalar meson with
mass 2 in units of the fermion mass. This can be identi-
fied with the σ meson of the massless GN model. The re-
lation between kink, σ meson and sinh-Gordon equation
in the massless GN model is analogous to the relation be-
tween the light baryon, the π meson and the sine-Gordon
equation in the massive 2d Nambu–Jona-Lasinio model
(NJL2) close to chiral limit (derivative expansion [14]).
In the latter case, this was interpreted as the simplest re-
alization of the Skyrme model in the sense that baryons
are topologically non-trivial excitations of the pion field
[24]. In the GN model, we have now identified a similar
picture for the case of a discrete chiral symmetry, the
baryon emerging as a large amplitude excitation of the σ
field. The similarity between the baryons in both cases
is particularly striking if one writes the sine-Gordon and
sinh-Gordon solitons in the following form:

1. Massless GN model (exact, mσ = 2),

S2 = eθ, θ = −4 artanh e−mσx,

0 = ∂µ∂
µθ +m2

σ sinh θ. (62)

2. Massive NJL2 model (leading order derivative ex-
pansion, mπ = 2

√
γ with γ the confinement param-

eter [14]),

S − iP = eiφ, φ = 4 arctan emπx,

0 = ∂µ∂
µφ+m2

π sinφ. (63)

We can also write down a common formula for topological
baryon number,

lnΦ(∞)− lnΦ(−∞) = 2πiNB, (64)

with Φ = S for the GN model and Φ = S − iP for
the NJL2 model. However, in the GN case, this only
determines the non-integer part of the induced baryon
number [25] (kink and antikink give ∓1/2 although they
have the same value of induced baryon number of −1/2)
so that the analogy should perhaps not be overrated.
The kink belongs to the class of “traveling wave solu-

tions” of the sinh-Gordon equation. Kink-antikink scat-
tering is an example of a “functional separable solution”
[26]

θ(x, t) = 4 artanh [f(t)g(x)] (65)

where

(f,t)
2 = Af4 +Bf2 + C,

−(g,x)
2 = Cg4 + (B + 4)g2 +A. (66)

The generalN soliton solution is also known for the sinh-
Gordon equation [20, 27] and is a likely candidate for the
TDHF solution of the GN model with N kinks and an-
tikinks. Since the Lax pair including the spinor wave
functions are known, all what one would have to do is
find the bound state solutions and verify self-consistency.

�
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nonlinear Dirac equation :
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k

f(k) = 1
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v cosh(2x/
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scattering solution :



⇥(x, t) =
�

�⇥(x, t)
ln det (i⇤/� ⇥(x, t))

⇥(x, y) =
�

�⇥(x, y)
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so we have a solution to the gap equation:

perhaps we can find a solution to :

this could represent a static crystalline phase of the 
2+1 dimensional Gross-Neveu model
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Recent studies of the thermodynamical phase diagrams of the Gross-Neveu model (GN2),

and its chiral cousin, the NJL2 model, have shown that there are phases with inhomoge-

neous crystalline condensates. These (static) condensates can be found analytically because

the relevant gap equations can be reduced to the nonlinear Schrödinger equation, whose

deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Re-

cently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon

scattering in the massless GN2 model satisfy the Sinh-Gordon equation and can be mapped

directly to classical string solutions in AdS3. Here we suggest a geometrical perspective for

this result, based on the generalized Weierstrass representation for the embedding of 2d sur-

faces into 3d spaces, which explains why these well-known integrable systems underlie these

various Gross-Neveu gap equations, and why there should be a connection to classical string

theory solutions. This geometric viewpoint may be useful for higher dimensional models,

where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov

systems.

The Gross-Neveu model [1–3] is a remarkable 1 + 1 dimensional interacting fermionic model

that shares some important features with quantum chromodynamics (QCD): it is asymptotically

free, it has dynamical mass generation, it has dynamical chiral symmetry breaking, and it has

a limit of large number of flavors that behaves like the ’t Hooft limit of QCD. It has been well

studied, but some surprising features have come to light only relatively recently. For example,

at finite temperature and density, in the Nf � ⇥ limit, the phase diagram shows regions in

which the system prefers to form a spatially inhomogeneous crystalline condensate. This is true

both of the Gross-Neveu model, GN2, that has a discrete chiral symmetry [4, 5], and of the

NJL2 model that has a continuous chiral symmetry [6, 7], although the phase diagrams are very

di�erent. The inhomogeneous phase of the GN2 model has been verified on the lattice [8]. Similar

1d inhomogeneous condensates have also been found in higher-dimensional models [9–11]. The

relevant gap equations can be solved analytically at finite temperature and density because of a

rich integrability structure underlying this model. Some aspects of this integrability were recognized

already in the zero temperature and density analyses [2, 12–14], but the integrability properties

JHEP, 2011
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z̄ = x � iy. So we now consider an embedding of the form ⇠X(x, t) : � ⇥ R1,1 ⌅⇤ R1,2, with

the conformal parameterization ds2 = f2(�dt2 + dx2). The first fundamental form in light-cone

coordinates is:

⇠X+. ⇠X� =
f2

2
, ⇠X+. ⇠X+ = 0 , ⇠X�. ⇠X� = 0 (38)

To construct the Gauss-Codazzi equations, we define the Minkowski analogues of the Hopf di⇥er-

ential and the mean curvature:

⇠X++. ⇠N = i Q(+) , ⇠X��.N = �i Q(�) , ⇠X+�.N = � i

2
H f2 (39)

The Gauss-Codazzi equations can easily be written by repeating the steps of the Euclidean con-

struction in Minkowsi space:

ff+� � f+f� �
1
4
H2f4 = �Q(+)Q(�) (40)

Q(+)
� =

1
2
f2H+ (41)

Q(�)
+ =

1
2
f2H� (42)

As in the Euclidean case, surfaces of constant mean curvature (H = l) are characterized by a

Sinh-Gordon equation. If H is constant, H = l, then we see that the Gauss-Codazzi equations

(41, 42) imply that Q(±) are left/right moving. Furthermore, they can be set to be constants,

by appropriate isometries. Defining f2 = 2
⌃

|Q(+)Q(�)|
l e�, the other Gauss-Codazzi equation (40)

becomes the Sinh-Gordon (ShG) equation:

⇥+� � 2l
⇧

|Q(+)Q(�)| sinh(⇥) = 0 (43)

2. Spinor Representation of Minkowski Surfaces in R1,2

The Minkowski version of the generalized Weierstrass representation follows analogously. But

switching to Minkowski signature, the nonlinear Dirac equation of the Gross-Neveu model emerges

in the constant mean curvature case.

We define Minkowski Dirac matrices, �0 = ⇤1, and �1 = i⇤2, and the Dirac equation is

(i�/ � S) ⌅ = 0 or

�

⇤ S �2i�+

2i�� S

⇥

⌅ ⌅ = 0 (44)

which we can write as two equations:

⌅1,� =
i

2
S ⌅2 , ⌅2,+ = � i

2
S ⌅1 (45)

Gauss-Codazzi equations

H: mean curvature
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⇠X++. ⇠N = i Q(+) , ⇠X��.N = �i Q(�) , ⇠X+�.N = � i

2
H f2 (39)

The Gauss-Codazzi equations can easily be written by repeating the steps of the Euclidean con-

struction in Minkowsi space:

ff+� � f+f� �
1
4
H2f4 = �Q(+)Q(�) (40)

Q(+)
� =

1
2
f2H+ (41)

Q(�)
+ =

1
2
f2H� (42)

As in the Euclidean case, surfaces of constant mean curvature (H = l) are characterized by a

Sinh-Gordon equation. If H is constant, H = l, then we see that the Gauss-Codazzi equations

(41, 42) imply that Q(±) are left/right moving. Furthermore, they can be set to be constants,

by appropriate isometries. Defining f2 = 2
⌃

|Q(+)Q(�)|
l e�, the other Gauss-Codazzi equation (40)

becomes the Sinh-Gordon (ShG) equation:

⇥+� � 2l
⇧

|Q(+)Q(�)| sinh(⇥) = 0 (43)

2. Spinor Representation of Minkowski Surfaces in R1,2

The Minkowski version of the generalized Weierstrass representation follows analogously. But

switching to Minkowski signature, the nonlinear Dirac equation of the Gross-Neveu model emerges

in the constant mean curvature case.

We define Minkowski Dirac matrices, �0 = ⇤1, and �1 = i⇤2, and the Dirac equation is

(i�/ � S) ⌅ = 0 or

�

⇤ S �2i�+

2i�� S

⇥

⌅ ⌅ = 0 (44)

which we can write as two equations:

⌅1,� =
i

2
S ⌅2 , ⌅2,+ = � i

2
S ⌅1 (45)
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In terms of the lightcone coordinates, x±, the energy-momentum tensor components are related to

the Hopf di⇥erentials, h1 and h2, and the mean curvature H:

T+� = Q(�) , T�+ = Q(+) , T++ = T�� =
H

2
�
⇥̄⇥

⇥2 (53)

The energy momentum flow is identical with the Codazzi equations:

⇧µTµ⇤ = (⇥̄⇥)2⇧⇤S ⇥

⇤
⌃⇧

⌃⌅

Q(+)
� = 1

2f2H+

Q(�)
+ = 1

2f2H�

(54)

Hence the Minkowski version of the surface/Gross-Neveu dictionary is:

Dirac equation : (i/⇧ � S)⇥ = 0

induced metric factor : f = det� = ⇥̄⇥

mean curvature : H = S (⇥̄⇥)�1

Hopf di⇥erentials :

⇤
⌃⇧

⌃⌅

Q(+) = �i(⇥⇥1⇥1,+ � ⇥⇥1,+⇥1)

Q(�) = i(⇥⇥2⇥2,� � ⇥⇥2,�⇥2)
(55)

[In [18], the notation h1 and h2 was used for these Hopf di⇥erentials: h1 = �Q(+), and h2 = Q(�).]

Minimal surfaces (with H = 0) are described by a free massless Dirac equation, and the cor-

responding spinors are right/left movers. Constant mean curvature surfaces (with H = l) are

described by a nonlinear Dirac equation, since H = l implies S = l ⇥̄⇥:

Minkowski constant mean curvature surfaces ⇥ (i/⇧ � l ⇥̄⇥)⇥ = 0 (56)

Furthermore, the Gauss equation (40) becomes the ShG equation

Gauss equation ⇥ Sinh-Gordon equation : �+� � 2
⌥

|h1h2| l sinh(�) = 0 (57)

where the metric factor f2 is written as f2 = 2
⌅

|h1h2|
l e�. In terms of the function S(x+, x�)

appearing in the Dirac equation, this ShG equation reads:

S S+� � S+ S� �
H2

4l2
S4 = �l2Q(+)Q(�) (58)

Note the di⇥erent signs relative to the Euclidean version (37).

C. Minkowski Signature: Immersion of 2d Surfaces in AdS3

Our discussion so far gives a geometrical explanation of why the “Type I” solutions to the

time-dependent Hartree-Fock problem must satisfy the Sinh-Gordon equation, as was argued in

S = H �̄�

f = �̄�

13

In terms of the lightcone coordinates, x±, the energy-momentum tensor components are related to

the Hopf di⇥erentials, h1 and h2, and the mean curvature H:

T+� = Q(�) , T�+ = Q(+) , T++ = T�� =
H

2
�
⇥̄⇥

⇥2 (53)

The energy momentum flow is identical with the Codazzi equations:

⇧µTµ⇤ = (⇥̄⇥)2⇧⇤S ⇥

⇤
⌃⇧

⌃⌅

Q(+)
� = 1

2f2H+

Q(�)
+ = 1

2f2H�

(54)

Hence the Minkowski version of the surface/Gross-Neveu dictionary is:

Dirac equation : (i/⇧ � S)⇥ = 0

induced metric factor : f = det� = ⇥̄⇥

mean curvature : H = S (⇥̄⇥)�1

Hopf di⇥erentials :

⇤
⌃⇧

⌃⌅

Q(+) = �i(⇥⇥1⇥1,+ � ⇥⇥1,+⇥1)

Q(�) = i(⇥⇥2⇥2,� � ⇥⇥2,�⇥2)
(55)

[In [18], the notation h1 and h2 was used for these Hopf di⇥erentials: h1 = �Q(+), and h2 = Q(�).]

Minimal surfaces (with H = 0) are described by a free massless Dirac equation, and the cor-

responding spinors are right/left movers. Constant mean curvature surfaces (with H = l) are

described by a nonlinear Dirac equation, since H = l implies S = l ⇥̄⇥:

Minkowski constant mean curvature surfaces ⇥ (i/⇧ � l ⇥̄⇥)⇥ = 0 (56)

Furthermore, the Gauss equation (40) becomes the ShG equation

Gauss equation ⇥ Sinh-Gordon equation : �+� � 2
⌥

|h1h2| l sinh(�) = 0 (57)

where the metric factor f2 is written as f2 = 2
⌅

|h1h2|
l e�. In terms of the function S(x+, x�)

appearing in the Dirac equation, this ShG equation reads:

S S+� � S+ S� �
H2

4l2
S4 = �l2Q(+)Q(�) (58)

Note the di⇥erent signs relative to the Euclidean version (37).

C. Minkowski Signature: Immersion of 2d Surfaces in AdS3

Our discussion so far gives a geometrical explanation of why the “Type I” solutions to the

time-dependent Hartree-Fock problem must satisfy the Sinh-Gordon equation, as was argued in

Gauss-Codazzi equations

spinor representation:
Dirac equation:

induced metric factor:
mean curvature:

Hopf differentials:



11

z̄ = x � iy. So we now consider an embedding of the form ⇠X(x, t) : � ⇥ R1,1 ⌅⇤ R1,2, with

the conformal parameterization ds2 = f2(�dt2 + dx2). The first fundamental form in light-cone
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⇠X+. ⇠X� =
f2

2
, ⇠X+. ⇠X+ = 0 , ⇠X�. ⇠X� = 0 (38)
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⇠X++. ⇠N = i Q(+) , ⇠X��.N = �i Q(�) , ⇠X+�.N = � i

2
H f2 (39)

The Gauss-Codazzi equations can easily be written by repeating the steps of the Euclidean con-

struction in Minkowsi space:

ff+� � f+f� �
1
4
H2f4 = �Q(+)Q(�) (40)

Q(+)
� =

1
2
f2H+ (41)

Q(�)
+ =

1
2
f2H� (42)

As in the Euclidean case, surfaces of constant mean curvature (H = l) are characterized by a

Sinh-Gordon equation. If H is constant, H = l, then we see that the Gauss-Codazzi equations

(41, 42) imply that Q(±) are left/right moving. Furthermore, they can be set to be constants,

by appropriate isometries. Defining f2 = 2
⌃

|Q(+)Q(�)|
l e�, the other Gauss-Codazzi equation (40)

becomes the Sinh-Gordon (ShG) equation:
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⇧

|Q(+)Q(�)| sinh(⇥) = 0 (43)

2. Spinor Representation of Minkowski Surfaces in R1,2
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switching to Minkowski signature, the nonlinear Dirac equation of the Gross-Neveu model emerges

in the constant mean curvature case.

We define Minkowski Dirac matrices, �0 = ⇤1, and �1 = i⇤2, and the Dirac equation is
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⌅ ⌅ = 0 (44)
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⌅1,� =
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2
S ⌅2 , ⌅2,+ = � i

2
S ⌅1 (45)
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Minimal surfaces (with H = 0) are described by a free massless Dirac equation, and the cor-

responding spinors are right/left movers. Constant mean curvature surfaces (with H = l) are

described by a nonlinear Dirac equation, since H = l implies S = l ⇥̄⇥:
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where the metric factor f2 is written as f2 = 2
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l e�. In terms of the function S(x+, x�)

appearing in the Dirac equation, this ShG equation reads:
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Note the di⇥erent signs relative to the Euclidean version (37).
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2
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2
H f2 (39)

The Gauss-Codazzi equations can easily be written by repeating the steps of the Euclidean con-
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4
H2f4 = �Q(+)Q(�) (40)

Q(+)
� =

1
2
f2H+ (41)

Q(�)
+ =

1
2
f2H� (42)

As in the Euclidean case, surfaces of constant mean curvature (H = l) are characterized by a

Sinh-Gordon equation. If H is constant, H = l, then we see that the Gauss-Codazzi equations

(41, 42) imply that Q(±) are left/right moving. Furthermore, they can be set to be constants,

by appropriate isometries. Defining f2 = 2
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|Q(+)Q(�)|
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becomes the Sinh-Gordon (ShG) equation:
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|Q(+)Q(�)| sinh(⇥) = 0 (43)
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in the constant mean curvature case.
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⌥
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Note the di⇥erent signs relative to the Euclidean version (37).

C. Minkowski Signature: Immersion of 2d Surfaces in AdS3
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time-dependent Hartree-Fock problem must satisfy the Sinh-Gordon equation, as was argued in
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f = �̄�
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As the right-hand side is constant, we have succeeded
in deriving a non-linear partial differential equation for
the self-consistent TDHF potential, at least for type I
solutions. If we disregard the kink crystal for the mo-
ment and focus on localized solutions where S reaches
its vacuum value asymptotically, we can even determine
the constant. In units where S = m = 1 in the vacuum,
we infer from Eq. (55) that

h1h2!
2 = −1

4
. (56)

In normal coordinates, the final equation for S reads

S∂µ∂
µS − ∂µS∂

µS + S4 − 1 = 0. (57)

It is satisfied by the kink and the kink-antikink solutions
in arbitrary Lorentz frames, but also by the kink crystal
for which we have not derived the value of the constant,
Eq. (56). One can write down a simple (although singu-
lar) Lagrangian which yields Eq. (57) as Euler-Lagrange
equation, namely

L =
1

S2

(

∂µS∂
µS − S4 − 1

)

. (58)

However, this should not be interpreted as effective
bosonic field theory for the GN model. If one derives
the Hamiltonian density H from L in the usual way, one
does not get the correct energy density. The reason is
presumably the fact that we already made use of proper-
ties of the solution when deriving Eq. (57), notably the
fact that we are dealing with a type I solution of the
TDHF problem. In this way we are not really able to in-
tegrate out the fermions in full generality and construct
the effective bosonic action for arbitrary scalar fields.
Eq. (57) does not yet resemble any of the well-known

equations with solitonic solutions. The closest we could
come to a more familiar looking form was by means of
the change of variables [17]

S2 = eθ, θ = lnS2, (59)

which reduces Eq. (57) to the sinh-Gordon equation,

∂µ∂
µθ + 4 sinh θ = 0. (60)

However we loose the information about the sign of S
and hence also the Z2 chiral symmetry in this nonlinear
transformation – the two vacua S = ±1 are mapped onto
the same value θ = 0. Since the zero’s of S give rise to
singularities of θ, it is easy to reconstruct a solution S of
Eq. (57) from a singular solitonic solution θ of the sinh-
Gordon equation, so that the mapping is nevertheless
quite useful. With this caveat, the matrices C1, C2 and
the linear equations (52) can then be identified with the
Lax pair of the sinh-Gordon equation.
Notice that the coefficient 4 in Eq. (60) has a sim-

ple physical interpretation: The linearized sinh-Gordon
equation,

(∂µ∂
µ + 4) θ = 0, (61)

yields the Klein-Gordon equation for a scalar meson with
mass 2 in units of the fermion mass. This can be identi-
fied with the σ meson of the massless GN model. The re-
lation between kink, σ meson and sinh-Gordon equation
in the massless GN model is analogous to the relation be-
tween the light baryon, the π meson and the sine-Gordon
equation in the massive 2d Nambu–Jona-Lasinio model
(NJL2) close to chiral limit (derivative expansion [14]).
In the latter case, this was interpreted as the simplest re-
alization of the Skyrme model in the sense that baryons
are topologically non-trivial excitations of the pion field
[24]. In the GN model, we have now identified a similar
picture for the case of a discrete chiral symmetry, the
baryon emerging as a large amplitude excitation of the σ
field. The similarity between the baryons in both cases
is particularly striking if one writes the sine-Gordon and
sinh-Gordon solitons in the following form:

1. Massless GN model (exact, mσ = 2),

S2 = eθ, θ = −4 artanh e−mσx,

0 = ∂µ∂
µθ +m2

σ sinh θ. (62)

2. Massive NJL2 model (leading order derivative ex-
pansion, mπ = 2

√
γ with γ the confinement param-

eter [14]),

S − iP = eiφ, φ = 4 arctan emπx,

0 = ∂µ∂
µφ+m2

π sinφ. (63)

We can also write down a common formula for topological
baryon number,

lnΦ(∞)− lnΦ(−∞) = 2πiNB, (64)

with Φ = S for the GN model and Φ = S − iP for
the NJL2 model. However, in the GN case, this only
determines the non-integer part of the induced baryon
number [25] (kink and antikink give ∓1/2 although they
have the same value of induced baryon number of −1/2)
so that the analogy should perhaps not be overrated.
The kink belongs to the class of “traveling wave solu-

tions” of the sinh-Gordon equation. Kink-antikink scat-
tering is an example of a “functional separable solution”
[26]

θ(x, t) = 4 artanh [f(t)g(x)] (65)

where

(f,t)
2 = Af4 +Bf2 + C,

−(g,x)
2 = Cg4 + (B + 4)g2 +A. (66)

The generalN soliton solution is also known for the sinh-
Gordon equation [20, 27] and is a likely candidate for the
TDHF solution of the GN model with N kinks and an-
tikinks. Since the Lax pair including the spinor wave
functions are known, all what one would have to do is
find the bound state solutions and verify self-consistency.
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Minimal surfaces (with H = 0) are described by a free massless Dirac equation, and the cor-

responding spinors are right/left movers. Constant mean curvature surfaces (with H = l) are

described by a nonlinear Dirac equation, since H = l implies S = l ⇥̄⇥:

Minkowski constant mean curvature surfaces ⇥ (i/⇧ � l ⇥̄⇥)⇥ = 0 (56)

Furthermore, the Gauss equation (40) becomes the ShG equation

Gauss equation ⇥ Sinh-Gordon equation : �+� � 2
⌥

|h1h2| l sinh(�) = 0 (57)

where the metric factor f2 is written as f2 = 2
⌅

|h1h2|
l e�. In terms of the function S(x+, x�)

appearing in the Dirac equation, this ShG equation reads:

S S+� � S+ S� �
H2

4l2
S4 = �l2Q(+)Q(�) (58)

Note the di⇥erent signs relative to the Euclidean version (37).

C. Minkowski Signature: Immersion of 2d Surfaces in AdS3

Our discussion so far gives a geometrical explanation of why the “Type I” solutions to the

time-dependent Hartree-Fock problem must satisfy the Sinh-Gordon equation, as was argued in

Gauss-Codazzi equations

spinor representation:
Dirac equation:

induced metric factor:
mean curvature:

Hopf differentials:

constant mean curvature H=l : nonlinear Dirac equation
�
i⇥/� l �̄(x)�(x)

⇥
� = 0
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zero mean curvature in AdS3 space
�



explicit map between time-dependent solutions
to Gross-Neveu gap equation

&
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explicit map between time-dependent solutions
to Gross-Neveu gap equation

&
classical string solutions in AdS3

suggests new geometrical approach to search for
inhomogeneous solutions to Gross-Neveu gap equations

constant mean curvature in flat space

zero mean curvature in AdS3 space
�
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immersion of curves into 3 dimensional space

Da Rios (1906), 
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potential satisfies NLSE=ShG



geometric meaning of static inhomogeneous 
condensates in 1+1 dimensions for GN2

immersion of curves into 3 dimensional space

Da Rios (1906), 
student of Levi-Civita

“vortex filament equations”

(spectral) deformations: 
mKdV hierarchy

mKdV governs thermodynamics of 1+1 GN model

potential satisfies NLSE=ShG



Gauss-Codazzi equations for moving frame of surface 
embedding can be written as a Dirac equation

(spectral) deformations of these surfaces : 
(m) Novikov-Veselov hierarchy

solutions satisfy Sinh-Gordon 

proposal/conjecture for 2+1 dim GN:

L.V. Bogdanov, 
"Veselov-Novikov Equation as a Natural Two-Dimensional Generalization 
of the Korteweg-de Vries Equation",   Theor. Math. Phys. 70, 219-233, 1987



Gauss-Codazzi equations for moving frame of surface 
embedding can be written as a Dirac equation

(spectral) deformations of these surfaces : 
(m) Novikov-Veselov hierarchy

question: does mNV govern the thermodynamics 
of 2+1 dimensional GN model ?

solutions satisfy Sinh-Gordon 

proposal/conjecture for 2+1 dim GN:

L.V. Bogdanov, 
"Veselov-Novikov Equation as a Natural Two-Dimensional Generalization 
of the Korteweg-de Vries Equation",   Theor. Math. Phys. 70, 219-233, 1987



��� � 2|�|2� = � �

⇥2��
⇤�

⇥
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⇥

⇥
|�|2

⌅
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lowest nontrivial equation of mKdV :

lowest nontrivial equation of mNV :
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⇥

⇥
|�|2

⌅
� = � �

lowest nontrivial equation of mKdV :

lowest nontrivial equation of mNV :

but: less is known about solutions ...
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• full, exact, thermodynamics & phase diagram 

• Ginzburg-Landau expansion = mKdV or AKNS hierarchy

• geometric picture: curve and surface embedding



Conclusions

• general solution of gap equation for GN2/NJL2

• full, exact, thermodynamics & phase diagram 

• Ginzburg-Landau expansion = mKdV or AKNS hierarchy

• geometric picture: curve and surface embedding

•  higher dimensional models : Novikov-Veselov hierarchy ?



congratulations Manuel,

and many more!
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one dimension: gap formation at the Fermi surface 
can lead to breakdown of translational symmetry 

GN2

or



phase diagram of chiral Gross-Neveu (NJL2) 

�
�i⇥x �(x)
��(x) i⇥x

⇥
� = E�

Peierls instability for NJL model

continuous chiral symmetry : BdG equation

�(x)� e2iqx�(x)
�(x)� ei q x �5

�(x)
E � E + q

 invariant under :



phase diagram of chiral Gross-Neveu (NJL2) 

�
�i⇥x �(x)
��(x) i⇥x

⇥
� = E�

Peierls instability for NJL model

continuous chiral symmetry : BdG equation

�(x)� e2iqx�(x)
�(x)� ei q x �5

�(x)
E � E + q

 invariant under :

minimizing the thermodynamic potential � q = µ

“system prefers to open a gap at the Fermi level”
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